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1. Introduction

Successful nowcasting and forecasting of the state
of the planetary boundary layer (PBL) is of value for
a wide range of practical forecasting applications. The
aim of this work is to find an efficient method for prob-
abilistic nowcasting (0-3 h forecasting) of the state of
the PBL wherever surface observations are available un-
der a vast range of weather scenarios. One can also
view it as a probabilistic PBL profile retrieval approach,
given a background ensemble and surface observations.
Surface-layer in-situ observations (2-m shelter and 10-
m anemometer height) are a dense, inexpensive, accu-
rate and reliable data source. However, as discussed
by Hacker and Snyder (2005) and Hacker and Rostkier-
Edelstein (2007) (hereafter referred to as HRO7), several
difficulties limit their optimal utilization in present oper-
ational numerical weather prediction and data assimila-
tion systems. HRO7 showed that surface observations
can be an important source of information with a single
column model (SCM) and an ensemble filter (EF). Com-
parisons in that work were against free-running simula-
tions, representing a“climatological” distribution, to obtain
a direct measure of the impact for surface observations.
The results showed that without additional sources of in-
formation, it is possible to obtain error levels in the low-
est few-hundred meters in the atmosphere that approach
observation-error levels.

We extended this work to quantify the probabilistic skill
of the same SCM, and the SCM with added complex-
ity [Hacker and Rostkier-Edelstein (2008), hereafter re-
ferred to as HRO08; and the forthcoming paper Rostkier-
Edelstein and Hacker (2009), hereafter referred to as
RHO09]. We also use a relevant 3D forecast to center the
ensemble on each day, rather than using a climatological
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ensemble as before, to generate an ensemble that is valid
for a particular time.

Although it is appealing to add additional physics and
dynamics to the SCM, expecting that these will make so-
lutions more realistic and reduce errors that arise from the
imperfect model, it is not immediately clear that additional
complexity will improve the performance of a PBL now-
casting system based on a simple model and an EF. This
question is investigated with regard to two model compo-
nents and their importance relative to surface assimila-
tion: parameterized radiation in the column and horizontal
advection to account for realistic 3D dynamics. The cost
of these, when running with tens to hundreds of ensem-
ble members (and possibly at many surface observation
sites simultaneously) can be significant (at least a 40%
increase in the computational effort). Thus it behooves
us to quantify the role of the added complexity in a prob-
abilistic sense.

Direct examination of the probabilistic skill of the sys-
tem as a function of the model components may be cum-
bersome, and we instead seek a framework for simpler
interpretation. One framework is factor separation (FS)
analysis (Stein and Alpert, 1993), which is useful in this
case as it quantifies the individual contribution of each
model component to the probabilistic performance of the
system, as well as any beneficial or detrimental interac-
tions between them. The present analysis is the first to
apply the FS technique in the framework of deterministic
and probabilistic verification of EF assimilation and fore-
casts. Primary results of the FS analysis in observation
space have been presented in HR08.

To assess the real utility of the flow-dependent error co-
variances estimates we compare the skill of the SCM/EF
system to that of a reference system based on climato-
logical error covariances and surface forecast errors.

The complete analysis and set of results is presented
in RHO09. In this paper we quote representative results
and survey the main findings.



2. PBL prediction methods

2.1 Single column model

The SCM used in this study has been described in de-
tail in HR07, HR08 and RH09. We briefly summarize the
components considered for improving probabilistic analy-
ses and nowcasts. It contains vertical turbulence, atmo-
spheric surface layer, and land-surface parameterizations
identical to those in the Advanced Research WRF version
2.2 (Skamarock et al., 2005). Resolved dynamics are in-
tegrated in time with a Crank-Nicholson time step of 10
seconds, on a vertically-stretched column with 81 levels
and the model top at approximately 16 km.

Horizontal advection to allow for the effects of 3D
dynamics is implemented following (Ghan et al., 1999)
which describe an approach for upstream advection of
temperature (T), water vapor mixing ratio (Q,), and wind
(U and V components) in SCMs. It acts to relax the SCM
state toward a prescribed 3D state (which may be time
dependent) on the advective time scale. In the absence
of any other forcing terms, the SCM would track the pre-
scribed time-dependent state.

The RRTM long-wave (Mlawer et al., 1997) and Dud-
hia short-wave Dudhia (1989) radiation schemes are also
options. The long-wave scheme is included particularly
to improve simulations during the night, when radiative
cooling can be important in the PBL.

2.2 Ensemble filter implementation

EF assimilation of surface observations is the third
model component examined here. It is considered alone,
as was described in HR07, and also in combination with
the advection and radiation described above.

The specific SCM and EF implementations are sum-
marized in detail in HR07, HR08 and RH09 and we
present here the most relevant information.

The SCM is coupled to the Data Assimilation Research
Testbed (DART), a comprehensive ensemble filter sys-
tem designed for research and education on ensemble
filters with a variety of dynamical systems, and devel-
oped at the National Center for Atmospheric Research
(NCAR). Many filter algorithms are available in DART and
we chose the default ensemble adjustment Kalman filter
algorithm (EAKF; Anderson 2001), which is a square-root
filter and here implemented in serial (Anderson, 2003).
Because of the extensive documentation in the literature,
we do not include a description of that filter, and refer
the interested reader to the citations above. Predictions
are simply the 30-minute ensemble forecasts from the EF
analyses.

The ensemble mean of initial conditions, large-scale
forcing, advective tendencies and surface radiation is
specified equal to a WRF forecast valid for a given day

and hour. Perturbations are created by adding to it the
scaled difference between that forecast and another fore-
cast from the archive. This additional member is selected
randomly from the experiment period, and the scaling of
the difference is drawn randomly from a normal distribu-
tion AC(0, 1). This approach enables the creation of arbi-
trarily large ensembles, and we use 100 members in our
experiments. The same weights and WRF forecasts are
used for both the initial conditions and the forcing, so that
forcing time series and initial conditions are consistent.

Ensembles are derived from a distribution of WRF fore-
casts with wider variance than the real analysis and fore-
cast error, potentially introducing too much spread in the
ensembles relative to ensemble-mean error. Although the
assimilation of surface observations will contract the dis-
tribution quickly (c.f. HR07) the advective tendencies can
lead to unrealistically rapid growth in ensemble spread.
In an effort to avoid this we adopt a state-augmentation
approach by which the advection speed is dynamically
tuned with the surface observations simulating the effect
of assimilating data in three spatial dimensions. Addi-
tional modeling details, such as the vertical covariance
localization are described in HRO7.

2.3 Climatological dressing (CD) technique

The reference system, based on climatological covari-
ances from the 3D WREF, is in essence a dressing tech-
nique, whereby a deterministic 3D WRF mesoscale fore-
cast is dressed with a normal distribution according to a
sample of forecasts and surface forecast errors. In this
implementation, the sample is the same sample of WRF
forecasts that provide forcing for the SCM, and the most-
recent valid WRF forecast is dressed using statistics de-
rived from the complete sample. The results should be
unrealistically good because the forecast and dressing
samples are the same, and thus the dressed forecast rep-
resents a difficult reference for the SCM ensemble system
to beat. We are exploiting WRF-derived covariances and
a recent observation to generate a probabilistic PBL pre-
diction without performing data assimilation.

The approach is to first correct the error in the pro-
file using covariances computed from the distributions of
available 3D WRF forecasts, and then dress a timely de-
terministic forecast with an uncertainty distribution scaled
by the most recent observed error. A forecaster might
have access to a recent mesoscale forecast such as the
WRF forecast initialized at e.g. 00 UTC. Given a surface
observation oy at time k, the error in the corresponding
forecast f. is dp = o — fx. If we are still addressing a true
forecast and the observation time has not yet passed, o
is unavailable. Because we are interested in very-short
range forecasting (30 min.), we assume that persistence
over the 30-minute prediction time is the best estimate



of the error: dj, = dj_;. This error is then used, with cli-
matological model covariances, to produce a probabilistic
short-range forecast from a recent deterministic forecast.

WRF forecast covariance in the column are computed
from the sample of all available forecasts during the ex-
periment period that are valid at the verification time. For
example, the collection of forecast lead times of 5.5 h and
17.5 h from 00 UTC are used to correct and dress each
WREF forecast at 0530 and 1730 UTC, respectively. Val-
ues in the column can be adjusted along the regression
line that relates an arbitrary column variable x; and the
model prediction f;:

2
Ax = %d , (1)
f
where the time subscripts have been dropped for clar-
ity. In (1), Ax is the adjustment applied to a WRF-column
state variable, Gﬁf is the covariance between the state
variable and the forecast in observation space, and 6} is
the variance of the forecast in observation space.
To estimate uncertainty we dress the adjusted profile
by scaling the variance of the climatological distribution
to give a reliable system in observation space:

(d*) = acj+o,
2\ <2
a = 7<d>260 2
7

In (2), (o) is the expectation operator, o is the derived
scaling factor. Because the individual error dy. is not use-
ful here (i.e. only the climatological mean is used), all
quantities in (2) are valid at the dressing time of day. This
is universally applied in state space such that:

Ac? = (a—1)c2
2
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where Ac? is the difference between scaled and unscaled
variance of a state variable, and 62 is the observation
error variance assigned as in the assimilation system.
Given distributions of f, o, and observation error valid
for a single forecast lead time (and corresponding time
of day), the scaling does not depend on a particular fore-
cast. In the present application, the RHS of (3) is negative
so the scaling acts to shrink the climatological variance.
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2.4 Experiment design

The experiment period is 3 May — 15 July 2003, and
the SCM is configured to run over the Atmospheric Radi-
ation Measurement (ARM) Central Facility near Lamont,

Oklahoma. It offers high-quality surface data and balloon-
borne soundings. We use 30-minute average surface
observations of winds, T, and Q, for both assimilation
and verification. Soundings are used for verifying profiles
aloft. Archived runs of the ARW version 2.1 (A, = 4 km),
coinciding with the experiment period are used for en-
semble initialization and to provide advective terms ten-
dencies, large scale forcing and surface radiation.

SCM simulations are initialized at 0300 and 1500 UTC.
Assimilation of surface observations is accomplished ev-
ery 30 minutes, starting at 0400 and 1600 UTC respec-
tively. Observations error variances are specified the
same as in HRO7, which agree roughly with values es-
timated in Crook (1996).

The 30-minute surface and PBL forecasts are verified
at 0530 and 1730 UTC (0030 and 1230 LT) against the
surface observations and the available soundings respec-
tively, corresponding to assimilation cycling over periods
of 2.5 hours prior to verification. Skill scores, described in
the next section, use 71 verification times for the surface
variables and 57 and 65 verification times for the atmo-
spheric profiles during the experiment at day and night
time respectively. The total number of verification times
is determined simply by the number of available surface
observations and the times that both the soundings and
the WRF forecast were available during the experimental
period. The limited number of verification events raises
the question of statistical significance of our results. Con-
fidence intervals (Cls) are calculated for each verification
score following a bootstrapping technique as detailed in
section 3.3.

3. Analysis Methods

3.1 Factor separation analysis

Implementation of FS analysis requires the examina-
tion of the system performance for all 2* possible model
configurations associated with the three studied model
components: assimilation, radiation, and advection. The
possible combinations are listed in Table 1 for reference.



Table 1: Key to all possible combinations of the model
components considered here.

Label Advection Radiation Assimilation
000 NO NO NO
100 YES NO NO
010 NO YES NO
001 NO NO YES
110 YES YES NO
101 YES NO YES
011 NO YES YES
111 YES YES YES

FS equations are derived by a Taylor expansion of the ef-
fect of each component. Stein and Alpert (1993) derived
the resulting equations for the factors f;  for three model
components [egs. (17)-(24) in their manuscript]. Rear-
ranging those equations allows us to directly quantify the
effect of adding new system components or sets of com-
ponents to the base system. We then define the variables
ef;jr as the “effect” of a given factor, f;;, on the skill of
the base system configuration, ego, as follows:

efooo = fooo = €o0o

efioo = fooo+ fioo = €100

eforo = fooo+ foro = eoro

efoor = fooo+ foor = eoo1

efito = fooo+ fii0 = er1o0— (e100 + €o10) + 2e000
efior = fooo+ fior = ero1 — (e100 + €o01) 4 2e000
efort = fooo+ for1 = eo11 — (eo10 + eoo1) +2eo00
efin = fooo+fii1 = ern1 — (er10+eo1 +eot1)

+(e100 + €010 + €oot1 ) -

e fooo represents the joint effect of all model components
that are not analyzed in the present study on the system
performance (and it also represents the system skill it-
self). efoo1, efo10 and ef1po show the pure effect of each
single model component evaluated in this study. In these
cases the values of ef;;; represent also the measured
performance of the system (e;jx) when each individual
component is included in the system, and in the absence
of second or third components. In contrast, efo11, €f110,
efio1 and ef111 show the effect of synergistic factors on
the system performance.

Values of ef;jx do not correspond to the measured
performance of any configuration and they cannot be di-
rectly computed from the output of individual simulations.
Rather, they show the change in performance of the base
configuration due to non-linear interaction between the
studied model components. Dual and triple interactions
are obtained when the system is run in a configuration

that includes more than one of the studied components.
Synergistic effects are not always obvious from direct ex-
amination of the ¢;j; values. This representation is also
convenient as Cls are calculated for the variables ef,:,»k,
thus they precisely show the statistical significance of the
change induced by each factor to the base configuration.
Moreover, the values of some of the chosen verification
metrics (see section 3.2) are characterized by bounded
skillful ranges. The calculation of Cls for ef;; directly
shows whether a given factor improves the system and
brings the scores to a skillful range, or on the contrary it
pushes the scores out of a skillful range.

3.2 Verification metrics

The mean absolute error (MAE), rather than the root-
mean square error (RMSE), is chosen as a deterministic
metric to quantify systematic error in the ensemble mean
because it is more resistant to outliers.

The value of the probabilistic information provided by
the SCM/EF system is measured by three main attributes
of the probabilistic forecasts: reliability, resolution and dis-
crimination.

Reliability is a measure of the statistical consistency
between the predicted probability distributions and the
verifying observations. In a reliable system the verify-
ing observation is statistically identical to a random re-
alization drawn from the predicted distribution. A reliable
system provides unbiased estimates of the observed fre-
quencies associated with different forecast probability val-
ues. Because reliability can be achieved by predicting the
climatological probability distribution, it is necessary but
not sufficient for a valuable probabilistic forecast.

Resolution measures the capability of the forecast to
distinguish between separate groups of observed events
when these have a frequency different from the clima-
tological frequency. Resolution and the closely related
attribute of discrimination are not independent attributes
but they are not the same. Resolution refers to the condi-
tional distribution of the observations given the forecasts,
while discrimination evaluates for the conditional distribu-
tion of the forecasts given the observations. Both of them
are independent of reliability and represent a measure of
the potential value of the system, since resolution is in-
sensitive to forecast bias.

The probabilistic skill of the system is evaluated
through the Brier Skill Score (BSS; Wilks 1995) and the
area under the relative operating characteristic (ROC)
curve (AUR; Mason and Graham 1999). Both of these
metrics evaluate the probabilistic prediction of the occur-
rence of a binary event and measure the system perfor-
mance relative to a reference system. The BSS is easily
decomposed into a reliability and resolution term (Mur-
phy, 1973) to understand the trade-offs in different com-



ponents of probabilistic skill. The ROC curve has been
widely used in the field of signal detection to distinguish
between two alternative results (Mason, 1982), thus, the
AUR quantifies the ability of the forecast to discriminate
between events. We define an “event” here to be a fore-
cast value exceeding the 75" percentile of the observa-
tions at the ARM central facility during the experiment.
The climatology derived from the observations during the
experiment period is used as reference in these calcula-
tions.

3.3 Confidence interval calculation

Since the number of realizations, I, is finite, an esti-
mate of the uncertainty in the verification scores is re-
quired to allow meaningful statistical conclusions. We
quantify uncertainty in the scores through the estimation
of Cls computed via a bootstrapping resampling proce-
dure. It consists of recalculation of the scores a number
of times, N, with a sample of I realizations randomly ex-
tracted from the original dataset. We define Cls derived
from the bootstrapped distributions of the scores using
the bias-correction and acceleration (BCa) technique as
described by Efron and Tibshirani (1993). The BCa inter-
vals are corrections to the standard percentile intervals.
For example, for a 90% CI the interval would be (0.05,
0.95). The BCa technique adjusts this interval so that the
mean of the bootstrapped distribution fits the original es-
timate of the score (from the original data set) and the
width gives a more accurate estimate of the CI.

Cls are calculated for the variables ef;j, thus, they
precisely represent the statistical significance of the ef-
fects of the factors relative to the base configuration.
Since all experiments are run over the same season and
verified against the same observations, the different mag-
nitude of the Cls among the various system configura-
tions at a given verification time reflect the sensitivity of
the skill of each system configuration to flow variability
from day to day. We seek a robust system that per-
forms consistently skillfully over the range of flow sce-
narios present during our experiment. This situation is
represented by skillful values of a verification score with
narrow Cls. Wide Cls indicate skill more sensitive to flow
variability.

4. Selected results and interpretation

4.1 FS analysis of SCM/EF forecast profiles

The complete FS analysis is presented in RH09, and
here we focus on some of the most representative find-
ings. Along the present paper we chose to compare be-
tween eqop and ef;jx values for the several verification

metrics .

4.1.1 Deterministic verification

Fig. 1 compares the MAE of 30-min forecasts of U pro-
files valid at 1230 LT for the base (e fooo, black lines) with
the full system (efi11, red lines) configurations. Bold solid
lines represent the original results obtained from our ex-
periments and thin dashed lines denote 90% Cls calcu-
lated using 1000 bootstraps. The full configuration per-
forms clearly better than the base configuration at all ver-
tical levels.

Detailed FS analysis reveals that pure surface assimi-
lation and advection are the most important factors for im-
proving the system performance. This might be expected
because of the strong covariance between the surface
and the column in the SCM. Radiation, as expected, has
no significant effect on U. Fig. 2(a)-(c) shows the effect
of three factors on the MAE of 30-min forecasts of U pro-
file valid at 1230 LT: (a) pure surface assimilation (black
lines for the base configuration, e fyoo; red lines for e foo1
), (b) pure advection (line types as before but red stands
for ef100), and (c) assimilation-advection synergism (line
types as before but red stands for e fio1).

Surface assimilation and advection play similar roles
in the first hundreds of meters AGL and advection dom-
inates aloft. This is caused by decreasing surface-
atmosphere coupling (which determines the vertical ex-
tent of the effect of assimilation) with height. The
assimilation-advection synergistic interaction gives rise to
a slight detrimental effect everywhere, indicated by the
red curve lying to the right of the black curve, which is
most noticeable between 400-600 m AGL. At these inter-
mediate levels the advection dominates the assimilation
because the coupling between the observation and the
column is weaker. Thus, our state-augmentation strategy
aiming to tune the advection with the assimilation of ob-
servations is less effective at these levels.

Near 1000 m AGL and above, assimilation does little
and the synergism is small; the total benefit is simply
from the advection. Comparison between Figures 1 and
2 proves that the detrimental synergism results in less
overall improvement than would be attained from the sum
of pure assimilation and advection terms. However, 90%
Cls partially overlap revealing that in many cases the syn-
ergistic detrimental effect is not significant [Fig. 2(c)].

The magnitude of the Cls is an indication of the sensi-
tivity of the calculated scores to flow variability. Cls nar-
row in the full configuration showing less dependence of
the system skill on weather scenarios. Both improving

"Jolliffe (2007) pointed out that although extensively used, the com-
parison between Cls may be misleading in some situations and advises
computing Cls on the differences between the scores to draw significant
conclusions. This issue is discussed in RH09.
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Figure 1: MAE of 30-min forecasts of U profiles valid at
1230 LT for the base configuration (black lines, epgo) and
for the full configuration including the three studied model
components (red lines, e;11). Bold solid lines represent
the original scores from our experiments, thin dashed
lines are 90% confidence intervals calculated using the
BCa bootstrapping technique.

factors, i.e., surface assimilation and horizontal advec-
tion, act to contract Cls. However, the synergistic effect
between them is characterized by wider Cls, which can
be expected as it depends on the variability of each of
them.

Figures 3, 4 and 5 present a similar analysis to that
in Figures 1 and 2 but for 30-min forecasts of 0 profiles
valid at 0030 LT. The improvement achieved in the full
configuration is clearly seen in Fig. 3, and once more the
FS analysis facilitates simple interpretation.

Fig. 4(a) reveals that the effect of surface assimilation
dominates in the first 200 m AGL and Fig. 4(c) that ad-
vection dominates higher. The vertical extent of the effect
of assimilation is shallower than that observed in Fig. 1, il-
lustrating its dependence on the flow characteristics (con-
vective unstable vs. nocturnal stable regime), which pro-
duce shallow covariance structures. Fig. 4(b) shows that
pure radiation plays a minor positive role in the SCM com-
pared to pure assimilation and pure advection and its ver-
tical extent is limited to the first 150 m AGL, above it Cls
show that the effect is not statistically significant.

The assimilation-advection non-linear interaction
[Fig. 5(a)] leads to a 90% statistically confident negative
effect at levels between 50-400 m AGL. It should be
noted that the local flow is characterized by shorter
advection time scales above the PBL, which is shallow at
night because of reduced vertical momentum exchange.
In contrast, very close to the surface (up to 50 m)
the synergistic effect is null, which results from longer
advection time scales and successful assimilation of
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Figure 2: Same as Figure 1 but dashed red lines denote
the resulting MAE when the effect of each of the following
factors is added to the MAE of the base configuration: (a)
pure assimilation (efoo1); (b) pure advection (ef100); (C)
assimilation-advection synergism (e f101)-
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Figure 3: Same as Figure 1 but for 30 min forecasts of 6
profiles valid at 0030 LT.

surface observations.

The synergistic interactions of surface radiation with
advection and assimilation [Figures 5(b) and 5(c) re-
spectively] lead to slightly negative effects and the short
vertical range is consistent with that observed for pure
radiation.

Similar to (Alpert P. and Stein, 1995) a general obser-
vation of the multi-factor results show that when the num-
ber of relevant factors increases, the role of any given fac-
tor is reduced because the synergistic interactions more
often lead to some cancellation than positive synergism.
One interpretation of this is that the system is near a lower
bound in MAE, so that multiple components that improve
MAE to a similar degree are not needed.

4.1.2 Probabilistic verification

One of the most important findings is the importance
of EF surface assimilation to the probabilistic skill of the
forecast profiles. Synergistic factors show little effect.
Fig. 6(a),(b) and (c) show the BSS and its decomposi-
tion into reliability and resolution terms respectively for
30-min forecast of T profiles valid at 0030 LT for the base
configuration (e fyoo, black lines) and for the configuration
including assimilation of surface observations only (e fyo1,
red lines). Surface assimilation improves the BSS up to
600 m AGL. It should be noted that the base configuration
shows less skill (negative value of BSS) than the refer-
ence at levels closest to the ground (up to 50 m). Assim-
ilation provides skill and Cls indicate that in some cases
it achieves its upper bound value (BSS = 1). Inspection
of the Brier terms reveals that the improvement due to
assimilation results mostly from the enhanced Brier reli-
ability term shown in Fig. 6(b), while no significant effect
on the Brier resolution term [Fig. 6(c)] is seen.
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Figure 4: Same as Figure 3 but red lines denote the re-
sulting MAE when the effect of each of the following fac-
tors is added to the MAE of the base configuration: (a)
pure assimilation (efoo1); (b) pure radiation (efi00); (C)
pure advection (ef101)-
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Figure 5: Same as Figure 3 but red lines denote the
resulting MAE when the effect of each of the follow-
ing factors is added to the MAE of the base configu-
ration: (a) assimilation-advection synergism (ef101); (b)
advection-radiation synergism (efi10); (c) assimilation-
radiation synergism (efo11).

We further inspect the effect of assimilation on the ca-
pability of the system to discriminate between groups of
events through the calculation of the AUR. The AUR is a
positively oriented metric, and values in the range [0.5,
1] implies discrimination. Fig. 7 shows the AUR for 30
min forecast of T profiles valid at 0030 LT for the base
configuration (efooo, black lines), and the configuration
including only assimilation of surface observations (e foo1,
red lines). Both the base system, and the system includ-
ing assimilation, produce discriminating forecasts. This
agrees with the Brier resolution term shown in Fig. 6(c),
and confirms that the base system provides a useful prob-
abilistic prediction system compared to climatology. Be-
cause the base system is nearly optimal in discrimination
(AUR=1) the assimilation cannot improve upon it.

4.2 SCM/EF and climatological dressing (CD) fore-
casts

Fig. 8(a) and (b) display MAE of 30-min forecast pro-
files of B at 1230 and 0030 LT respectively obtained by:
(1) ensemble mean of the SCM/EF in its full configuration
(red lines), (2) the CD procedure (blue lines), and (3) the
3D WRF forecasts (4-km grid size) used in the SCM/EF
and CD method (black lines). Solid lines denote the orig-
inal results from our experiments, and dotted lines 90%
show Cls.

The performance of the CD procedure is basically
dictated by two factors: the climatological surface-
atmosphere covariance and the validity of the linear
surface-column error relationship assumption (see Sec-
tion 2.3). Assuming that the linear relationship holds, we
expect to obtain improvement in the CD forecasts com-
pared to WREF if the observed climatologies are narrow
and WRF climatological covariances reliably represent
the observed ones. In such cases the flow-dependent
SCM/EF covariances will show little advantage over the
climatological ones. The opposite is expected when the
flow is characterized by large variability from day to day.

Fig. 8(a) shows that 6 forecast profiles calculated using
the SCM/EF and CD perform better than WRF at 1230 LT
up to 1000 m AGL. The CD forecasts show a slight advan-
tage relative to the SCM/EF. The present CD forecasts
benefit from the fact that climatological covariances are
calculated over the same period for which the numerical
experiments are performed, thus they contain information
about the mean flow during the experiment period, a sit-
uation not possible in real time forecasts.

At 0030 LT (Fig. 8(b) the SCM/EF profile shows an ad-
vantage relative to WRF in the first 200 m AGL but skill
becomes poorer above. This detrimental behavior is likely
to be a result of small spurious covariances and can pos-
sibly be corrected through vertical localization. At 0030
LT the CD forecasts perform significantly poorer relative
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Figure 6: Brier skill score [BSS, panel (a)], Brier reli-
ability term [panel (b)] and Brier resolution term [panel
(c)] (for the 75" percentile of the observations) of 30-min
forecasts of T profiles valid at 0030 LT for the base con-
figuration (black lines, egop) and for the configuration in-
cluding assimilation only (red lines, egg1). Bold solid lines
represent the original scores from our experiments, thin
dashed lines are 90% confidence intervals calculated us-
ing the BCa bootstrapping technique.
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Figure 7: Same as Fig. 6 but for the area under the rela-
tive characteristic curve (AUR).

to the SCM/EF and WRF forecasts at all vertical levels.
Hacker and Snyder (2005) calculated the standard devi-
ation of the WRF climatology used in the present work
(Fig. 1 in their paper). They found that 0 is character-
ized by small variability in the first 1000 m AGL at 1230
LT. However, their results show that at 0030 LT standard
deviations are considerably wider than those at 1230 LT,
which leads to the advantage of flow-dependent covari-
ances at 0030 LT.

The vertical extent of the superior performance of the
SCM/EF and CD 6 forecasts as compared to WRF is de-
termined by the magnitude of the surface-atmosphere co-
variances, which decreases with height. Here we do not
verify either the WRF or the CD forecasts probabilistically.
As shown, the SCM/EF system provides the advantage
of skillful probabilistic forecasts. The deterministic WRF
is incapable of this without dressing, and probabilistic ver-
ification of the CD predictions is ongoing.

5. Summary

A system based on an SCM of the PBL and on as-
similation of surface observations with an EF is used to
produce probabilistic nowcasts of PBL profiles wherever
surface observations are available. The SCM encom-
passes several components and we seek to assess the
importance of some selected components on the system
performance, with the aim of implementing the simplest
efficient system with good skill that can be easily de-
ployed, tuned and maintained. The computational cost of
these components when running many ensemble mem-
bers and eventually over many locations can be signifi-
cant. Three system components were investigated: as-
similation of surface observations, horizontal advective
tendencies, and parameterized radiation.
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Figure 8: MAE of 30-min forecasts of 0 profiles at
(a) 1230 LT and (b) 0030 LT. Red lines represent the
ensemble-mean forecasts of the SCM/EF system in its
full configuration; blue lines represent the forecasts us-
ing the climatological dressing (CD) technique; and black
lines represent the 3D WRF forecasts (4-km grid size)
used in the SCM/EF and CD calculations. Bold lines rep-
resent the scores observed in our experiments and thin
lines 90% confidence intervals using the bootstrap tech-
nique.

The performance of the system was investigated
through deterministic and probabilistic verification met-
rics, inferring statistical significance and flow dependence
of the verification scores through the calculation of Cls
based on a bootstrapping technique. To the best of our
knowledge this is the first work to systematically verify
the deterministic and probabilistic skill of SCM-predicted
profiles at sites where real surface observations are as-
similated with an EF, thus assessing the value of the EF
surface assimilation on the forecast of the vertical struc-
ture of the PBL.

One of the most important conclusions out of this study
is the fact that surface assimilation plays a more signifi-
cant role in consistently improving ensemble mean and
probabilistic skill, over a vast range of weather condi-
tions, than potentially meaningful model enhancements
(e.g. parameterized radiation or advection). The effect
of the advection tendencies depends on the advective
time scales, which are dictated by the characteristic flow
at the various atmospheric levels. Advection generally
leads to a positive effect as it introduces a one-way forc-
ing from 3D dynamics, but when simultaneously acting
with assimilation it may cancel part of the improvement
achieved through assimilation. The role of the SCM radia-
tion scheme in improving forecasts performance is minor
and in the near vicinity of the surface only.

Flow-dependent covariances estimated with the
SCM/EF show a clear advantage over the use of clima-
tological covariances (CD forecasts) when the flow is
characterized by wide variability from day to day. In this
instance the CD procedure fails to improve the WRF fore-
casts. The specific implementation of the CD technique
led to enhanced results relative to the SCM/EF under a
convective PBL regime, which is characterized by narrow
variance in the specific geographic location. We recall
that the climatological covariances were derived from the
same set of WRF forecasts that was used to calculate
the CD adjusted profiles, thus providing additional mean
flow information not available in a real forecast system
(and not available in the SCM/EF calculations).

The improvement observed in the SCM/EF forecast
profiles relative to WRF proves that assimilation of sur-
face observations with an EF may be more useful in fore-
casting the vertical structure of the PBL than full 3D dy-
namics. Moreover, simple adjustment of the WRF profile
by linear regression of the surface forecast errors onto the
WREF profile with climatological covariances, i.e., the CD
technique, is useful whenever climatology is narrow and
a linear surface-column error relationship is valid.

The SCM/EF shows probabilistic skill, thus it provides
additional information not available from full determinis-
tic 3D WRF forecasts: an estimate of the flow-dependent
uncertainty in the forecast profile at the cost of a few min-
utes calculation on a personal computer. We expect that



several results will extend to a 3D WRF/EF system as-
similating surface observations.
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