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1.  INTRODUCTION 

 
  In current global ensemble forecast systems [e.g., 
the National Centers for Environmental Prediction 
(NCEP) Global Forecast System (GFS; Toth and Kalnay 
1993) Ensemble Prediction System; European Center 
for Medium-Range Weather Forecasts (ECMWF; 
Molteni et al. 1996) Ensemble Prediction System], 
various methods to generate initial condition (IC) 
perturbations (e.g., Toth and Kalnay 1997; Palmer et al. 
1992; Molteni et al. 1996) and model perturbations yield 
reliable medium-range (2-10 day) forecasts of synoptic-
scale parameters like 500-hPa geopotential height and 
mean-sea-level pressure.  For the purpose of medium-
range synoptic forecasting, IC errors make much larger 
relative contributions than model errors after synoptic-
scale error growth becomes non-linear (~24 hrs; 
Gilmour 2001).  However, for short-range forecasts of 
small-scale phenomena like warm-season precipitation, 
which is the focus of this study, accounting for model 
error by using different combinations of physical 
parameterizations (e.g., Houtekamer et al. 1996; 
Stensrud et al. 2000; Du et al. 2004; Jones et al. 2007) 
and numerical models (e.g., Wandishin et al. 2001; Du 
et al. 2004; Eckel and Mass 2005) becomes very 
important in generating sufficient model dispersion.  
Unfortunately, even in these ensembles that include IC, 
model formulation, and physics perturbations, short-
range forecasts for sensible weather phenomenon like 
convective precipitation remain underdispersive (Eckel 
and Mass 2005).  Several factors are probably 
contributing to this lack of spread including coarsely 
resolved and temporally interpolated lateral boundary 
conditions (LBCs; Nutter et al. 2003), inappropriate IC 
perturbation strategies for short-ranges (Eckel and Mass 
2005), and inability to capture small-scale variability 
because of insufficient resolution (Eckel and Mass 
2005). 
 Because of computational limitations, regional 
scale short-range ensemble forecast (SREF) systems 
like those run at NCEP (Du et al. 2004), the University 
of Washington (UW; Eckel and Mass 2005), and Stony 
Brook University (SBU; Jones et al. 2007) have been 
forced to use relatively coarse grid-spacing (32-45 km 
for NCEP’s SREF system, 12-km within a 32-km outer 
nest in UW’s system, and 12-km for SBU’s system) and, 
thus, must use cumulus parameterization (CP).  In 

ensemble systems, using different CPs is an effective 
way to generate spread in rainfall forecasts (e.g., 
Jankov et al. 2005), but using CPs introduces 
systematic errors in rainfall forecasts (e.g., Davis et al. 
2003; Liu et al. 2006; Clark et al. 2007), and models 
using CPs cannot resolve fine scale features in rainfall 
systems.  Because of these limitations, significant 
improvements in rainfall forecasts may be realized by 
running an ensemble using explicit representation of 
convection (i.e., no CP).   
 Ongoing experiments that began in 2003 
supporting the BAMEX project (Bow echo and MCV 
EXperiment, Davis et al. 2004) using various 4-km grid-
spacing configurations of the Weather Research and 
Forecasting (WRF; Skamarock et al. 2005) model to aid 
convective forecasting have been rather successful (see 
Kain et al. 2008 for a thorough review).  For example, 
simulations using convection-allowing resolution (CAR, 
hereafter) have been found to more accurately depict 
the diurnal precipitation cycle (Clark et al. 2007; 
Weisman et al. 2008), as well as MCS frequency and 
convective system mode (Done et al. 2004; Weisman et 
al. 2008) relative to simulations using parameterized-
convection resolution (PCR, hereafter).  Although 
increasing to CAR may not necessarily increase 
forecast skill for deterministic forecasts as measured by 
traditional ―grid-based‖ metrics [e.g., Equitable Threat 
Score (Schaefer 1990) and bias] because of small 
displacement errors in small scale features leading to 
large errors (Baldwin et al. 2001; Davis et al. 2006a), it 
is possible that significant improvements in probabilistic 
precipitation forecasts may be obtained from an 
ensemble using CAR because of superior 
spatial/temporal representation of statistical properties 
of convective precipitation in the CAR members (e.g., 
Fritsch and Carbone 2004; Kong et al. 2006 and 2007).  
Also, because error growth occurs more rapidly at 
smaller scales, ensembles using CAR may have a 
better representation of forecast uncertainty.  However, 
because of current computational limitations it is difficult 
to create a CAR ensemble in real-time with a domain 
size and number of members comparable to ensembles 
that are currently being used operationally.  Although, 
given the potential advantages of CAR, an ensemble 
composed of a relatively small number of CAR 
members could potentially outperform an ensemble 
composed of a large number of PCR members, in which 
case there will be incentive for future operational 
ensemble systems to reduce numbers of members in 
order to increase to CAR.   
 Given these computational considerations, this 
study aims to compare warm-season precipitation 
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Table 1 ENS4 ensemble member specifications.  NAMa and NAMf indicate NAM forecasts and  analyses, 
respectively; em_pert and nmm_pert are perturbations from different SREF members; and em_n1, em_p1, 
nmm_n1, and nmm_p1 are different SREF members that are used for LBCs.    The remaining table elements are 
described in the text. 

 

forecast skill between a small (5-member), CAR 
ensemble using 4-km grid-spacing (ENS4) and a 
relatively large (15-member), PCR ensemble using 20-
km grid-spacing (ENS20), each covering a similar 
domain over the central United States (Fig. 1).  Because 
these ensembles have different numbers of members, 
special care is taken to properly compare probabilistic 
skill metrics.  Although ENS4 has fewer members than 
ENS20, the computational expense should not be 
considered equal.  In fact, because of the time-step 
reduction and 3-D increase in number of grid-points, a 
reduction in grid-spacing from 20 to 4-km increases 
computational expense by a factor of ~ 125.  Thus, 
because ENS4 has ⅓ the members as ENS20, it is still 
about 42 times more computationally expensive than 
ENS20 (125*⅓=42), and to conduct the comparison 
between ensembles with equal computational expense 
would require ENS20 to have 125*5=625 members.  So, 
the purpose of this study is not to compare ensembles 
with similar computational expense, but to determine if 
at some point when computational capabilities allow, it 
would be advantageous to reduce ensemble size in 
order to use CAR. 
 
2. ENSEMBLE DESCRIPTIONS AND CASES 
EXAMINED 

 
 The ENS4 ensemble was obtained from a real-
time ensemble forecasting experiment conducted as 
part of the NOAA Hazardous Weather Testbed (HWT) 
Spring Experiment (Kain et al. 2008) during April-June 
2007 (Xue et al. 2007; Kong et al. 2007).  A 4-km grid-
spacing CAR WRF-ARW (Version 2.2.0) model 
ensemble was run by the Center for Analysis and 
Prediction of Storms (CAPS) of the University of 
Oklahoma, which was composed of 10 members 
initialized daily at 2100 UTC and integrated 33 hours 
over an approximately 3000 x 2500 km domain covering 
much of the central United States (Fig. 1).  Four of the 
members used both perturbed ICs and mixed physical 
parameterizations (mixed-physics), while six members, 
including the control member, used only mixed-physics 
so that effects of changing model physics could be 
isolated.  In this study, only the four members with both  
mixed-physics and perturbed ICs plus the control 

member - a five member ensemble (ENS4 ensemble) - 
are used because the ensemble using mixed-physics 
alone ignores initial condition uncertainty, an important 
source of forecast uncertainty.  For the control member, 
the 2100 UTC analyses from NCEP's operational North 
American Mesoscale (NAM; Janjic 2003) model (at 12-
km grid-spacing) are used for ICs and the 1800 UTC 
NAM 12-km forecasts are used for LBCs.  For the initial 
perturbed members, perturbations extracted from the 
2100 UTC NCEP SREF WRF-ARW and WRF-NMM 
members are added to the 2100 UTC NAM analyses, 
and the corresponding SREF forecasts are used for 
LBCs (3-hr updates).  Xue et al. (2007) and Kong et al. 
(2007) have more details on the configurations.   
 The ENS20 ensemble was generated at Iowa 
State University and is also composed of WRF-ARW 
(Version 2.2.0) members with perturbed ICs/LBCs and 
mixed-physics.  Different sets of ICs for each ENS20 
member are obtained directly from NCEP SREF 
members (listed in Table 2), rather than adding 
perturbations to the 2100 UTC NAM analyses, and, 
similar to ENS4, SREF forecasts are used for LBCs.  
ENS4 and ENS20 specifications are listed in Tables 1 
and 2, respectively.   Forecasts were examined for 23 
cases during April-June 2007 (Figure 2).  These cases 
were chosen based on the availability of the ENS4 real-
time forecasts and represent a variety of convective 
precipitation events [e.g., isolated convection (4/19), 
heavy rainfall associated with a cut-off upper-low (4/22 – 
4/25), and many nocturnal MCSs (late May/early June)].   
 
3. DATA AND METHODOLOGY 

 
 Forecasts of 1- 3- and 6-hrly accumulated rainfall 
are examined.  The Stage IV (Baldwin and Mitchell 
1997) rainfall estimates are used to verify rainfall 
forecasts.  Both Stage IV rainfall estimates and ENS4 
rainfall data are remapped to a 20-km grid covering the 
central US (Fig. 1), which is just a sub-domain of the 
ENS20 members.   
 Probabilistic and deterministic forecasts derived 
from each ensemble were verified.  Deterministic 
forecasts were obtained using the probability matching 
technique (Ebert 2001), which is applied by assuming 
that the best spatial representation of rainfall is given by  

Ensemble 

Member 

ICs LBCs Microphysics 

Scheme 

Surface Layer 

Scheme 

Boundary Layer 

Scheme 

CN 21Z NAMa 18z NAMf WSM-6 Janjic Eta MYJ 

N1 CN - em_pert 21z SREF em_n1 Ferrier Janjic Eta MYJ 

P1 CN + em_pert 21z SREF em_p1 Thompson Janjic Eta YSU 

N2 CN – nmm_pert 21z SREF nmm_n1 Thompson Monin-Obukhov YSU 

P2 CN + nmm_pert 21z SREF nmm_p1 WSM-6 Monin-Obukhov YSU 



Table 2 ENS20 ensemble member specifications.  The ICs/LBCs table elements represent various SREF 
members. The * and + symbols denote the combination of 5 and 10 ensemble members, respectively, with the 
best statistical consistency. 

the ensemble mean and that the best frequency 
distribution of rainfall amounts is given by the ensemble 
member quantitative precipitation forecasts (QPFs).  
The ensemble mean obtained from the probability 
matching procedure (PM hereafter) can help correct for 
large biases in areal rainfall coverage and 
underestimation of rainfall amounts that are typically 
associated with using a standard ensemble mean, and 
results in a precipitation field with a much more realistic 
distribution.   
 Forecast probabilities (FPs hereafter) for 
precipitation were obtained by finding the location of the 
verification threshold within the distribution of ensemble 
member forecasts.  The reader is referred to Hamill and 
Colucci (1997 and 1998) for a thorough description of 
the application of this technique for assigning FPs. 
 To verify deterministic forecasts, equitable threat 
score (ETS; Schaefer 1990) is used.  Average ETSs 
were calculated by summing contingency table 
elements from all cases for each forecast hour and 
rainfall threshold, and computing the scores from the 
summed elements.  This aggregate method gives 

greater weight to widespread precipitation events than if 
the ETS for each case was simply averaged. 
 To verify probabilistic forecasts, the area under the 
relative operating characteristic curve (ROC score; 
Mason 1982) is used, which is closely related to the 
economic value of a forecast system (e.g., Mylne 1999; 
Richardson 2000, 2001).  The ROC score is computed 
from members of a contingency table for probabilistic 
forecasts.  To construct the ROC curve, the probability 
of detection (POD) is plotted against the probability of 
false detection (POFD) for a set of specified ranges of 
FPs.  The area under this curve is computed using the 
trapezoidal method (Wandishin et al. 2001).  Because 
the method used to compute FPs in this study allows for 
continuous (rather than discrete) values of FPs between 
0 and 100%, the same set of FP ranges that make up 
the points on the ROC curve can be used to verify both 
ensembles, and problems associated with comparing 
ROC scores between ensembles of different sizes are 
avoided. 
 The resampling methodology described in Hamill 
(1999) was used to determine whether differences in 
ETS and ROC score were statistically significant 

Ensemble 
Member 

ICs/LBCs Cumulus 
Scheme 

Microphysics 
Scheme 

Surface Layer 
Scheme 

Boundary Layer 
Scheme 

1
+ 

em_ctl BMJ Thompson Janjic Eta MYJ 

2*
+ 

em_p1 BMJ WSM-6 Janjic Eta MYJ 

3
+ 

em_n1 BMJ WSM-6 Monin-Obukhov YSU 

4 nmm_ctl BMJ Thompson Monin-Obukhov YSU 

5
+ 

nmm_p1 BMJ Ferrier Monin-Obukhov YSU 

6* nmm_n1 KF Thompson Janjic Eta MYJ 

7 eta_ctl1 KF WSM-6 Janjic Eta MYJ 

8
+ 

eta_n1 KF WSM-6 Monin-Obukhov YSU 

9
+ 

eta_n2 KF Thompson Monin-Obukhov YSU 

10 eta_n3 KF Ferrier Monin-Obukhov YSU 

11*
+ 

eta_n4 Grell Thompson Janjic Eta MYJ 

12 eta_p1 Grell WSM-6 Janjic Eta MYJ 

13*
+ 

eta_p2 Grell WSM-6 Monin-Obukhov YSU 

14
+ 

eta_p3 Grell Thompson Monin-Obukhov YSU 

15*
+ 

eta_p4 Grell Ferrier Monin-Obukhov YSU 



 

 
(α=0.05; resampling repeated 1000 times).  For ETS 
comparisons, the biases from both ensembles were 
adjusted to the average bias between them which 
minimized the adjustments made to precipitation 
forecasts to account for bias.  Because ROC score is 
insensitive to bias (e.g., Harvey et al. 1992; Mason and 
Graham 2002), no adjustments were made to forecasts 
prior to its computation.     
 
4. RESULTS 
 
4.1    Analysis of diurnally-averaged Hovmoller 
diagrams 

 
 Warm season precipitation in the central United 
States tends to form at similar times of day and 
propagate over similar longitudes so that when diurnally 
averaged time-longitude (Hovmöller) diagrams of 
precipitation are constructed, coherent and propagating 
rainfall axes are observed (Carbone et al. 2002).  These 
coherent axes, which are often composed of long-lived 
convective ―episodes‖, suggest that an intrinsic 
predictability is associated with propagating rainfall 
systems over the central United States, so that 
predictability limits that have been suggested by past 
theoretical studies (e.g., Smagorinsky 1969, Lorenz 
1969) may be longer than previously thought.  However, 
partly because of shortcomings associated with CPs 
(e.g., Molinari and Dudek 1992; Kain and Fritsch 1998; 
Davis et al. 2003; Bukovsky et al. 2006), it is believed 
that numerical models will not be able to take advantage 
of this inherent predictability until CAR is utilized.  
Evidence from some preliminary studies comparing data 

from CAR and PCR simulations (e.g., Liu et al. 2006; 
Clark et al. 2007; Weisman et al. 2008) supports this 
idea.  An ensemble of CAR members with a better 
depiction of the propagating rainfall axis over the central 
US than a PCR ensemble should have a considerable 
advantage because individual CAR members will be 
more likely to fall within the range of likely solutions if 
they have an accurate ―model climatology‖, whereas 
many of the PCR solutions may be very unlikely to verify 
because of consistent biases in timing and location for 
propagating rainfall systems.  
 To examine whether differences in the diurnal 
cycle representation exist for the ensemble members in 
this study, 1-hrly diurnally averaged Hovmöller diagrams 
for all ensemble member forecasts and Stage IV 
observations are constructed.  The Hovmöller diagram 
for Stage IV observations (Fig. 3c) shows that coherent 
propagating rainfall axes exist even for the relatively 
small number of cases examined.  A primary axis of 
observed rainfall begins around 2200 UTC (forecast 
hour 1) at about 102˚W and ends around 1500 UTC 
(forecast hour 18) at about 94˚W longitude, while a 
weaker secondary rainfall axis begins a few hours 
before model initialization (perhaps 1900 UTC) at 98˚W 
and ends around 0900 UTC (forecast hour 12) at about 
90˚W longitude.  Note that both axes begin to repeat 
during the second diurnal cycle within the forecast 
period. 
 The Hovmöller diagrams for the five members of 
ENS4 (not shown) all reveal coherent propagating 
rainfall axes resembling both the primary and secondary 
axes from Stage IV observations.  The ENS4 ensemble 
mean (computed using PM; Fig. 3a) also exhibits the 
propagating axes showing that the averaging process 
retains the propagating signal and may actually improve 
its representation relative to individual members.  This 
improvement is suggested by the spatial correlation 
coefficients computed in Hovmöller space (Fig. 3e), 
which are higher for the ENS4 ensemble mean than all 
of its members during forecast hours 4 – 18, and all but 
one of its members during forecast hours 19 – 33. 
 Generally, Hovmöller diagrams and spatial 
correlation coefficients show that ENS4 has a better 
diurnal cycle depiction and representation of 
propagating rainfall axes than ENS20, especially during 
forecast hours 19 – 33.  The larger differences during 
this later forecast period appear to result from the 
ENS20 members simulating the rainfall maximum that 
occurs during the second simulated diurnal cycle too 
early and too intensely, which is reflected in the ENS20 
ensemble mean Hovmöller diagram and diurnally 
averaged time series of domain averaged rain volume 
for ENS4 and ENS20 members (Fig. 3d).  These results 
imply that ENS4 has an inherent advantage over 
ENS20.  The following sections will use various 
standard verification metrics to determine whether this 
advantage is enough to compensate for the smaller 
ensemble size of ENS4 relative to ENS20. 

 
4.2 Comparison of ensemble ETSs 
 

Figure 2 Light pink highlighted dates indicate when 
SSEF ensemble runs were conducted and dark red 
highlighted dates indicate which of these cases 
were used in this study. 

Figure 1 Domains for a) SREF ensemble members, 
b) ENS4 and ENS20 ensemble members, and c) 
the analyses conducted in this study. 



Figure 3 Diurnally averaged Hovmöller diagrams of ensemble mean (computed using probability matching) 1-
hrly precipitation forecasts from a) ENS4, b) ENS20, and c) 1-hrly Stage IV observed precipitation.  Spatial 
correlation coefficients computed in Hovmöller space for the ensemble means during forecast hours 4-18 are 
indicated at the middle left of a) and b) and those for forecast hours 19-33 are indicated at the bottom left of a) 
and b).  The maps on the tops of panels a), b), and c) indicate the domain over which the Hovmöller diagrams 
were computed. d) Domain averaged precipitation from the ENS4 members (thin red lines), ENS20 members 
(thin blue lines), and Stage IV observations (thick black line).  e) Spatial correlation coefficients computed in 
Hovmöller space for the ENS4 and ENS20 members during forecast hours 4-18 (P1) and 19-33 (P2). 

 The skill of deterministic forecasts derived using 
PM from each ensemble is compared by constructing 
time series of ETSs for 1-, 3-, and 6-h intervals at the 
0.10-, 0.25-, and 0.50-inch rainfall thresholds (Fig. 4).  
For the ENS20 ensemble, in addition to computations 
using all 15 members, the ETSs computed using the 
ensemble mean from the 5 and 10 members with the 
best statistical consistency, as described by Eckel and 
Mass (2005) for a finite ensemble, are also examined 
[these members are noted in Table 2 and referred to as 
ENS20(5m) and ENS20(10m), hereafter].  Thus, 
comparisons between ensembles with the same number 
of members can be made, and impacts of the additional 
members to ENS20 can be examined.  The range of 
ensemble member ETSs for ENS4 and ENS20 are also 
shown in Figure 4.   
 Generally, both ENS4 and ENS20 tend to have 
maxima in ETS between forecast hours 9 and 15 when 
both models have had sufficient time to ―spin-up‖ (e.g., 
Skamarock 2004) and synoptic-scale error growth 
should still be relatively small.  In addition, these 
forecast hours correspond to the times at which the 
propagating rainfall axis in the Midwest is at its 
maximum amplitude, suggesting some enhanced 
predictability associated with long-lived MCSs, which 
occur most frequently at times corresponding to these 
forecast hours (e.g., Maddox et al. 1983).   

 ENS20(5m) appeared to generally have lower 
ETSs than ENS20, while ENS20(10m)  generally had 
very similar ETSs to ENS20, indicating that most of the 
skill realized from increasing ensemble size was 
obtained with an increase from 5 to 10 members, while 
very little skill was obtained with the increase from 10 to 
15 members.  Similar behavior illustrating a ―point of 
diminishing returns‖ has been observed in previous 
studies (e.g., Du et al. 1997; Ebert 2001), and it is likely 
that additional model diversity (e.g., addition of 
members with a different dynamic core) would result in 
a larger increase in skill as demonstrated by the NCEP 
SREF system (Du et al. 2006).  In addition, note that 
ensemble mean ETSs from both ensembles are greater 
than the highest corresponding ensemble member 
ETSs illustrating that the ensemble mean forecasts do 
represent an improvement relative to ensemble member 
forecasts, which is expected behavior in an ensemble.   
 After about forecast hour 9, at virtually all forecast 
lead times, accumulation intervals, and rainfall 
thresholds examined, ENS4 has higher ETSs than 
ENS20, with differences that are statistically significant 
occurring for 1-hrly accumulation intervals at all rainfall 
thresholds examined, and for 3- and 6-hrly accumulation 
intervals at the 0.50-inch rainfall threshold.  The 
statistically significant differences generally occur 
between forecast hours 12 and 21, corresponding to the 



Figure 4 Time series of average ETSs for the ENS4, ENS20, ENS20(5m), and ENS20(10m) ensemble mean 
precipitation forecasts at the 0.10-in precipitation threshold for a) 1-hrly, b) 3-hrly, and c) 6-hrly accumulation 
intervals, at the 0.25-in precipitation threshold for d) 1-hrly, e) 3-hrly, and f) 6-hrly accumulation intervals, and at 
the 0.50-in precipitation threshold for g) 1-hrly, h) 3-hrly, and i) 6-hrly accumulation intervals.  ENS20(5m) and 
ENS20(10m) represent ensembles composed of the combination of 5 and 10 members, respectively, of ENS20 
that have the best statistical consistency.  The blue (pink) shaded areas depict the range of ETSs from the 
ENS20 (ENS4) ensemble members.  Times at which differences between the ETSs from the ENS4 and ENS20 
ensemble mean precipitation forecasts were statistically significant are denoted by bars near the bottom of the 
panels.  The highest (middle) (lowest) bars correspond to times at which differences between ENS4 and ENS20 
[ENS20(10m)] [ENS20(5m)] were statistically significant. 

times near and just after a maxima in ETS.  
Furthermore, between forecast hours 9 and 12 at the 
0.25- and 0.50-inch rainfall thresholds for 1- and 3-hrly 
accumulation intervals (Figs. 4d, g, e, and h), all of the 
ENS4 members have higher ETSs than the maximum 
ETS of the ENS20 members.  Also, there appears to be 
a trend for the differences in ETS between ENS4 and 
ENS20 to become less as increasing accumulation 
intervals are examined, which implies that timing errors 
may explain much of the differences, because timing 
errors decrease as longer accumulation intervals are 
examined (e.g., Wandishin et al. 2001).  The implied 
influence of timing errors is also supported by the 

Hovmöller diagrams of diurnally averaged rainfall from 
each ensemble (Figs. 3a and b), and the diurnally 
averaged time series of domain average rainfall for all 
ensemble members (Fig. 4d), which were discussed in 
the previous section.   
 Further analysis (not shown; see Clark et al. 2009) 
of individual cases suggests that the ability of the CAR 
members in ENS4 to properly simulate propagating 
MCSs explains the statistically significant differences in 
ETS between ENS4 and ENS20 observed in Fig. 4.   

 
4.3 Comparison of ROC scores 
 



Figure 5 Same as Fig. 4, except for ROC scores at different sets of precipitation thresholds, and ranges among 
members are not indicated. 

 The skill of probabilistic forecasts derived from 
each ensemble is compared by constructing time series 
of ROC scores for 1-, 3-, and 6-h intervals at the 0.10-, 
0.50-, and 1.00-inch rainfall thresholds (Fig. 5).  Similar 
to ETS, ROC scores for the 5 and 10 members of the 
ENS20 ensemble with the best statistical consistency 
are also plotted.   Because statistically significant 
differences between ENS4 and ENS20 ROC scores 
were confined to higher precipitation thresholds than in 
the ETS analysis, higher thresholds than those shown 
for ETS are shown for ROC scores in Figure 5.  In 
general, maxima in ROC scores from both ensembles 
are observed at forecast hours 9-15.  However, the 
amplitude of ROC score oscillations is much larger, 
especially in ENS4, as the rainfall threshold examined 
increases.  The timing of this ROC score maximum 
likely is again due to enhanced predictability because of 
high relative frequency of MCSs at these times.  There 
also appears to be a secondary maximum in ENS4 
ROC scores at the 0.50- and 1.00-in rainfall thresholds 

for all accumulation intervals examined around forecast 
hour 27 (Figs. 5d-i).  This secondary maximum also 
appears in the ENS20 ROC scores, but only at 6-hrly 
accumulation intervals (Figs. 5f and i).  The timing of the 
secondary ROC score maximum corresponds to the 
secondary propagating rainfall axis noted in the 
Hovmöller diagram of observed precipitation during 
forecast hours 24-33 (Fig. 3c).  Thus, it is also possible 
that ROC scores are enhanced around forecast hour 27 
because of a tendency for propagating MCSs to occur 
during this time.  
 Similar to trends seen with ETS, ENS20(5m) 
generally has lower ROC scores than ENS20, while 
ENS20(10m) ROC scores are very similar to ENS20.  
Thus, most of the increase in ROC score realized from 
increasing ensemble size is obtained with an increase 
from 5 to 10 members, with the increase from 10 to 15 
members having little impact.     
 At the 0.10-in rainfall threshold, at most forecast 
lead times, ENS20 has similar or slightly higher ROC 



scores than ENS4.  However, the differences are 
statistically significant only before forecast hour 9, at 1- 
and 3-hrly accumulation intervals, and at forecast hours 
20 and 21 at 1-hrly accumulation intervals (Figs. 5a-b).  
Note that before forecast hour 9, model ―spin-up‖ 
processes are still ongoing and ENS4 takes longer than 
ENS20 to generate areas of rainfall because grid-
column saturation must occur before rainfall is 
generated in ENS4 members, while grid-column 
saturation is not required in ENS20 members because a 
CP is used.  At 0.50- and 1.00-in rainfall thresholds for 
1-hrly accumulation intervals, ENS4 ROC scores are 
higher than ENS20, with differences statistically 
significant at many forecast lead times (Figs 5d and g).  
For 3-hrly accumulation intervals, ENS4 ROC scores 
are higher than ENS20 ROC scores, with differences 
statistically significant occurring only at the 1.00-in 
rainfall threshold (Figs. 5e and h), while for 6-hrly 
accumulation intervals, there are no statistically 
significant differences (Figs. 5f and i). 
 In general, statistically significant differences 
occurred around forecast hours 9-15 and 24-30, 
corresponding to the times at which maxima in ROC 
scores were observed.  Also, similar to ETS, there was 
a trend for the differences between ENS4 and ENS20 to 
decrease with increasing accumulation intervals, 

implying the decreasing influence of timing errors with 
increasing accumulations intervals.   
 
4.4 Ensemble spread and statistical consistency 
 
4.4.1 RANK HISTOGRAMS 
 

 Rank histograms are a useful tool to assess 
ensemble spread (Hamill 2001), and are constructed by 
repeatedly tallying the rank of the rainfall observation 
relative to forecast values from an ensemble sorted from 
highest to lowest.  A reliable ensemble will generally 
have a flat rank histogram, while too little (much) spread 
is indicated by a u-shaped (n-shaped) rank histogram 
(Hamill 2001).  Furthermore, the skewness of a rank 
histogram indicates bias, with right-skewness (left-
skewness) indicating a tendency for members to over-
forecast (under-forecast) the variable being examined.   
 For an ensemble composed of n members, 
precipitation observations can fall within one of any n+1 
bins.  The bars that compose a rank histogram 
represent the fraction of observations that fall within 
each of these bins.  Thus, the ENS4 rank histograms 
are composed of 6 bars while those of ENS20 are 
composed of 16 bars.  The different numbers of rank 
histogram bars makes it difficult to compare rank 
histograms from each ensemble.  For example, it is 
obvious that the right-skewness of rank histograms from 
both ENS4 (gray shaded bars in Fig. 6a) and ENS20 
(Fig. 6b) indicates a tendency for members to over-
predict precipitation, but it is not clear which rank 
histogram indicates the greater tendency for over-
prediction.  To allow for a more convenient comparison, 
the 16 bins composing the ENS20 rank histogram are 
regrouped into 6 bins which each contain an equal 
portion of the original 16 bins (Fig. 6a).  Care should be 
taken when interpreting the regrouped rank histograms.  
For example, the outer bins in the regrouped ENS20 
rank histogram cannot be interpreted as the fraction of 
observations that fall completely outside the range of all 
ensemble members, as they are in ENS4, because they 
contain fractions from 3 of the original 16 bins.  Rather, 
the regrouped rank histograms should be viewed as the 
rank histogram that would result from ENS20 if it was 
composed of 5 members, assuming these 5 members 
had about the same reliability and bias as the 15 
member ENS20. 
 At all forecast lead times, the right-skewness of 
rank histograms from both ensembles indicates a 
tendency for members to over-predict precipitation 
(Figs. 6a, b).  The right-skewness appears to be the 
most pronounced at forecast hours 21 and 27, which 
agrees with the time series of observed and forecast 
domain averaged rainfall (Fig. 3d) also showing the 
most pronounced over-prediction during these times.  A 
comparison between the ENS4 and ENS20 (regrouped) 
rank histograms (Fig. 6a) reveals that ENS20 members 
more severely over-predict precipitation than the ENS4 
members.  Both ensembles have a slight u-shape 
indicating a lack of spread (i.e., under-prediction of 
forecast uncertainty), but the right-skewness of each 
ensemble's rank histograms makes it difficult to 

Figure 6 Rank histograms at various forecast lead times 
for 6-hrly accumulated precipitation from a) ENS4 (grey 
shaded bars) and ENS20 (regrouped; black outlined bars) 
and b) ENS20.  c) and d) are the same as a) and b), 
respectively, except the rank histograms are computed 
using bias-corrected precipitation forecasts from ENS4 
and ENS20.  The sum of the absolute value of residuals 
from fitting a least-squares line to the observed 
frequencies in each rank histogram is indicated above 
each rank histogram set.    



diagnose which ensemble suffers most severely from 
this lack of spread.  Thus, a procedure is devised to 
remove the bias from the members of the ensembles.  
The biases are removed using the PM method applied 
to each ensemble member forecast, so that forecast 

precipitation amounts are reassigned using the 
corresponding distribution of observed precipitation 
amounts.  Thus, the modified forecast precipitation 
fields have the same pattern and location as the original 
forecasts, but forecast rainfall amounts are adjusted so 
their distribution exactly matches that of the observed 
precipitation.  After the modification is applied, a 
computation of bias at all precipitation thresholds yields 
a value of 1.  An example of a precipitation forecast 
before and after this procedure is applied is displayed in 
Figure 7. 
 Figure 6c reveals that ENS4* and ENS20* have a 
very similar representation of forecast uncertainty, with 
both ensembles exhibiting a slight lack of spread, 
especially up to forecast hour 21.  However, there 
appears to be a trend for ENS4* rank histograms to 
become flatter with increasing forecast lead time, while 
those of ENS20* become slightly more u-shaped.  By 
forecast hours 27 and 33 it is clear that ENS4* has a 
better representation of forecast uncertainty than 
ENS20*, as indicated by ENS4*'s flatter rank histogram 
than ENS20*. 
  
4.4.2 STATISTICAL CONSISTENCY ANALYSIS 
  
 Ensembles correctly forecasting uncertainty are 
considered statistically consistent, and the mean-
square-error (mse) of the ensemble mean will match the 
ensemble variance when averaged over many cases 
(Talagrand et al. 1999; Eckel and Mass 2005).    In this 
study, mse and variance are computed according to 
Eqs. B6 and B7, respectively, in Eckel and Mass (2005), 
which account for an ensemble with a finite number of 
members.  An analysis of statistical consistency 
compliments that from rank histograms because 
forecast accuracy (i.e. mse of ensemble mean) and 
error growth rates (i.e. ensemble variance) between 
ensembles can be compared, attributes that cannot be 
inferred from rank histograms.  However, note that rank 
histograms provide information on ensemble bias, while 
an analysis of statistical consistency does not.  The 
importance of recognizing bias when interpreting 
statistical consistency is illustrated in this section.     
 The trends in the mse of the ensemble mean and 
ensemble variance of both ensembles follow the diurnal 
precipitation cycle (Fig. 8).  It appears that ENS20 
under-predicts forecast uncertainty at most forecast lead 
times, except around forecast hours 21-24, 
corresponding to the minimum in the diurnal 
precipitation cycle.  However, the ENS4 ensemble 
variance increases at a much faster rate than that in 
ENS20, and the ENS4 mse of the ensemble mean 
becomes similar to its ensemble variance around 
forecast hours 9, 12, and 15 for 1-, 3-, and 6-hrly 
accumulation intervals, respectively (Figs. 8a, c, and e).  
After about forecast hour 21, the ENS4 mse of the 
ensemble mean becomes smaller than the ensemble 
variance for all accumulation intervals, implying over-
prediction of forecast uncertainty, contradicting rank 
histogram results.   
 The discrepancy between rank histogram and 
statistical consistency results (Figs. 8a, c, and e) 

Figure 7 Example from an ENS4 ensemble member of a 
a) raw precipitation forecast and b) bias-corrected 
precipitation forecast, along with the c) Stage IV observed 
precipitation analysis.  The forecast was initialized 23 April 
2007 and valid for forecast hours 27-33. 



highlights the importance of recognizing the effects of 
bias when interpreting statistical consistency analyses.  
When bias is removed using the adjustment process 
described in the previous section, and mse of the 
ensemble mean and ensemble variance are 
recomputed (Figs. 8b, d, and f), the results are 
consistent with those obtained from rank histogram 
analyses (i.e. increasing statistical consistency with 
increasing forecast lead time in ENS4*, with little 
change in ENS20* statistical consistency as lead time 
increases). 
 Error growth rates (i.e., rate of increase in spread) 
can be directly analyzed using ensemble variance from 
ENS4* and ENS20* (Figs. 8b, d, and f).  First, note that 
the faster error growth inferred from ensemble variance 
in ENS4 relative to ENS20 up to forecast hour 9 (at 1- 
and 3-hrly accumulation intervals), and after forecast 
hour 21 (all accumulation intervals; Figs. 8a, c, and e), 
is largely an artifact of bias.  After the biases are 
removed, it becomes clear that the error growth rates of 
ENS4* and ENS20* are much more similar than what 
was implied by ensemble variance from ENS4 and 
ENS20.  However, there are still noticeable differences.  
An approximation of average error growth rates 
computed by fitting a least-squares line to the ensemble 
variance (displayed in Figs. 8b, d, and f) for ENS4* 
(ENS20*) yields a slope of 0.016 (0.010), 0.255 (0.145), 
and 0.959 (0.527), for 1-, 3-, and 6-hrly accumulation 

intervals, respectively.  So, although ENS20* ensemble 
variance begins higher than ENS4*, faster error growth 
likely resulting from resolving smaller scales in ENS4* 
than in ENS20*, leads to higher ensemble variance in 
ENS4* after forecast hour 21.  Because ENS20* has 
one more set of varied physics parameterizations 
(namely, the CP) than ENS4*, it is likely that the larger 
ensemble variance in ENS20* during the first part of the 
forecast period results from larger model uncertainty 
than in ENS4*, which is supported by time series of 
average ensemble variance from ENS4* and ENS20* 
run with only mixed-physics for a set of 20 cases (Fig. 
12). 
 
5. Conclusions 
 

 Generally, the results from this work are very 
encouraging for CAR, and the improvements realized 
from utilizing a CAR ensemble should provide incentive 
for operational SREF systems to refine their ensemble 
resolution to explicitly resolve convection, even if the 
number of members must be reduced due to 
computational limitations.  However, because of the 
limited time period examined (Apr-Jun) and relatively 
small sample of cases, it is not clear whether these 
results are representative of other periods with different 
flow regimes.  For example, the mid-summer months 
(i.e., July-August) characterized by a dominant upper-
level ridge over the central US and ―weakly-forced‖ 
convective events, may be even more advantageous to 
CAR ensembles relative to PCR ensembles because of 
a stronger diurnal signal during mid-Summer relative to 
Spring.     
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