
JP3.1    GROWTH OF SPREAD IN CONVECTION-ALLOWING AND CONVECTION-PARAMETERIZING 
ENSEMBLES 

 
Adam J. Clark*

1
, William A. Gallus, Jr.

1
, Ming Xue

2,3
, and Fanyou Kong

3
 

 
1 Dept. of Geological and Atmospheric Sciences, Iowa State University, Ames, IA. 

2 School of Meteorology, and 3 Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, OK 
 
 
 

1.  INTRODUCTION 

 
 To sufficiently account for model and observational 
errors so that all possible states of the future 
atmosphere are simulated, perturbation strategies for 
recent short-range ensemble forecast (SREF) systems 
include: 1) perturbing the initial conditions (ICs; Toth 
and Kalnay 1997; Palmer et al. 1992; Molteni et al. 
1996), 2) using different combinations of physical 
parameterizations (mixed-physics;  Houtekamer et al. 
1996; Stensrud et al. 2000; Du et al. 2004; Jones et al. 
2007), and 3) using different numerical models (e.g., 
Wandishin et al. 2001; Du et al. 2004; Eckel and Mass 
2005).  In current SREF systems, model (as opposed to 
analysis) errors are most difficult to account for.  Thus, 
sensible parameters influenced by small-scale 
processes that must be parameterized such as low-level 
temperature/moisture and convective precipitation, are 
associated with notably underdispersive forecasts 
(Fritsch and Carbone 2004; Eckel and Mass 2005).  The 
error growth for these sensible parameters contains a 
much larger contribution from model relative to IC errors 
than synoptic-scale parameters (e.g., 500-hPa 
geopotential heights and winds, mean-sea-level 
pressure; Stensrud et al. 2000; Eckel and Mass 2005), 
and the underdispersion may be a result of several 
deficiencies including 1) inadequate methods to account 
for model error, 2) inability to capture small-scale 
variability because of insufficient resolution (Eckel and 
Mass 2005), and 3) coarsely resolved and temporally 
interpolated lateral boundary conditions (LBCs; Nutter et 
al. 2003).   
 One method commonly used to gain information 
on ensemble spread is to isolate the error sources by 
using different perturbation strategies for a sample of 
forecasts (e.g., Houtekamer et al. 1996; Stensrud et al. 
2000; Clark et al. 2008).  For example, to isolate model 
errors, the ―perfect analysis‖ assumption can be used, in 
which identical sets of ICs/LBCs are used to initialize 
various ensemble members with mixed-physics.  
Similarly, to isolate IC errors, the ―perfect model‖ 
assumption can be used, in which identically configured 
ensemble members are initialized with different sets of 
perturbed ICs.  During the 2007 NOAA/Hazardous 
Weather Testbed (HWT) Spring Experiment (SE07; Xue 
et al. 2007; Kong et al. 2007; Kain et al. 2008), a 10-
member, 4-km grid-spacing Storm-Scale Ensemble 

Forecast (SSEF) system was run in real-time to provide 
severe weather forecasting guidance to the SE07 
participants.  Five of the SSEF members used perturbed 
ICs/LBCs and mixed-physics (ENS4; four perturbed 
members and one control member), while five members 
used only mixed-physics (ENS4

phys
) so that the impacts 

of the different physical parameterization schemes could 
be isolated.  This configuration of the 2007 SSEF 
system also facilitates an isolation of model errors 
because five members use the ―perfect analysis‖ 
assumption.   
 The goal of this work is to use the 2007 SSEF 
system to compare ensemble spread contributions from 
model errors to contributions from a combination of 
model and analysis errors for various fields in a 
convection-allowing ensemble.  In addition, ensemble 
spread growth and spread-error relationships 
associated with the two 5-member subsets of the SSEF 
system will be compared to two similarly configured 
subsets of a 20-km grid-spacing convection-
parameterizing ensemble to examine the impacts of 
horizontal resolution for various forecast fields in the two 
different ensemble configurations.   
 
2. DATA AND METHODOLOGY 

 
 The 2007 SSEF system was run during April-June 
2007 and used the WRF-ARW (Version 2.2.0; 
Skamarock et al. 2005) model.  The 10 SSEF members 
were run by the Center for Analysis and Prediction of 
Storms (CAPS) of the University of Oklahoma, initialized 
daily at 2100 UTC, and integrated 33 hours over an 
approximately 3000 x 2500 km domain covering much 
of the central United States (Fig. 1).  For the SSEF 
control member, the 2100 UTC analyses from NCEP's 
operational North American Mesoscale (NAM; Janjic 
2003) model (12-km grid-spacing) are used for ICs and 
the 1800 UTC NAM 12-km forecasts are used for LBCs.  
For the members with perturbed ICs, perturbations 
extracted from the 2100 UTC NAM analyses, and the 
corresponding SREF forecasts are used for LBCs (3-hr 
updates).  Xue et al. (2007) and Kong et al. (2007) 
provide more details on the configurations.   
 For a comparison of the 5-member SSEF 
ensemble subsets to a similarly configured convection-
parameterizing ensemble, a 30-member 20-km grid-
spacing ensemble was generated at Iowa State 
University, which was also composed of WRF-ARW 
(Version 2.2.0) members.  Fifteen of the 20-km 
members have mixed-physics and perturbed ICs/LBCs 
(ENS20), while another 15 members have only mixed-
physics (ENS20

phys
).  It should be noted that the ENS20 
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and ENS20
phys

 ensembles have one more set of varied  
physics schemes relative to ENS4 and ENS4

phys
, 

because in addition to the different planetary boundary 
layer, microphysics, and surface layer schemes, both 
20-km ensembles use different cumulus 
parameterizations (the 4-km ensembles don't use 
cumulus parameterization).  However, 5-member 
subsets of ENS20 and ENS20

phys
 that use the same 

cumulus parameterization do have the same number of 
varied physics schemes as ENS4 and ENS4

phys
.  These 

five member subsets will be referred to as ENS20cp and 
ENS20

phys
cp where CP refers to one of the three 

different cumulus parameterizations used: 1) Kain-
Fritsch (KF; Kain and Fritsch 1993), 2) Betts-Miller-
Janjic (BMJ; Betts 1986; Betts and Miller 1986; Janjic 
1994), and 3) Grell-Devenyi (GD; Grell and Devenyi 
2002).  For the 20-km ensemble members, different sets 
of ICs and corresponding LBCs for each member are 
obtained directly from NCEP SREF members.  
Ensemble member specifications are listed in Tables 1 
and 2.     
  The forecasts were examined for 20 cases during 
April-June 2007 (Figure 2).  Note, these 20 cases are 
included in the 23 cases in which ENS4 and ENS20 

Member  ICs  Microphysics  Boundary Layer  

CN PH1 21Z NAMa 21Z NAMa WSM-6 Thompson MYJ MYJ 

N1 PH2 CN-em_pert 
 

Ferrier Ferrier MYJ MYJ 

P1 PH3 CN+em_pert  Thompson WSM-6 MYJ YSU 

N2 PH4 CN-nmm_pert  Thompson Thompson YSU YSU 

P2 PH5 CN+nmm_pert  WSM-6 Ferrier YSU YSU 

Member ICs/LBCs CP Microphysics Boundary Layer 

1 16 em_ctl eta_ctl2 BMJ Thompson MYJ 

2 17 em_p1 
 

BMJ WSM-6 MYJ 

3 18 em_n1  BMJ WSM-6 YSU 

4 19 nmm_ctl  BMJ Thompson YSU 

5 20 nmm_p1  BMJ Ferrier YSU 

6 21 nmm_n1  KF Thompson MYJ 

7 22 eta_ctl  KF WSM-6 MYJ 

8 23 eta_n1  KF WSM-6 YSU 

9 24 eta_n2  KF Thompson YSU 

10 25 eta_n3  KF Ferrier YSU 

11 26 eta_n4  Grell Thompson MYJ 

12 27 eta_p1  Grell WSM-6 MYJ 

13 28 eta_p2  Grell WSM-6 YSU 

14 29 eta_p3  Grell Thompson YSU 

15 30 eta_p4  Grell Ferrier YSU 

Table 2 ENS20 (pink) and ENS20phys (blue) specifications.  The ICs/LBCs table elements represent various 
SREF members. 

Table 1 ENS4 (pink) and ENS4phys (blue) ensemble member specifications.  NAMa and NAMf indicate NAM 
forecasts and analyses, respectively; em_pert and nmm_pert are perturbations from different SREF members; 
and em_n1, em_p1, nmm_n1, and nmm_p1 are different SREF members that are used for LBCs. 



precipitation forecasts were compared in Clark et al. 
(2009).  Three cases examined in Clark et al. (2009) are 
excluded from the current study because some of the 
ENS4

phys
 members were not available.  As noted by 

Clark et al. (2009), the period examined was relatively 
active with a variety of convective precipitation events 
occurring.   
 This study examines growth of spread (i.e. 
ensemble variance) and statistical consistency [i.e. 
correspondence between ensemble variance and mean-
square-error (MSE) of the ensemble mean] for 12 fields: 
500-, 700-, and 850-hPa geopotential height (500Z, 
700Z, and 850Z, respectively), mean-sea-level pressure 
(MSLP), 2-meter temperature (T2), 2-meter dewpoint 
(Td2), 850-hPa wind magnitude (850WMAG), 850-hPa 
temperature (850T) and dewpoint (850Td), 3-hrly 
accumulated precipitation (PREC), most unstable 
convective available potential energy (MUCAPE), and 
magnitude of the 10-meter to 500-hPa shear vector 
(WS). In subsequent analyses the 12 fields examined 
are separated into those that are ―mass-related‖, or 
depend on the properties of the atmosphere within a 
vertical column (500Z, 700Z, 850Z and MSLP), and 

―low-level‖ fields that have more dependence on 
boundary layer processes and, thus, have a noticeable 
diurnal signal (T2, Td2, 850WMAG, 850T, 850Td, 
PREC, MUCAPE, and WS). Ensemble variance and 
MSE of the ensemble mean are computed according to 
Eqs. B7 and B6, respectively, in Eckel and Mass (2005).   
 
3. Results 

 
3.1 Ensemble variance time series 

  
 To illustrate the temporal evolution of spread 
growth during the 33-hour forecast period, time series of 
average ensemble variance for all 12 fields at 3-hrly 
intervals with box-plots overlaid to show variability are 
displayed in Figure 3.  In order to compare 4-km and 20-
km ensembles with the same types of perturbations, 
each panel in Fig. 3 displays either ENS4 and ENS20 
ensemble variance, or ENS4

phys
 and ENS20

phys
 

ensemble variance.  Note that the different y-axes in 
Fig. 3 don't allow a direct comparison of growth rates 
between ensembles with both sets of perturbations 
(IC/LBC+Phys) and those with only mixed physics 
(Phys)

 
for each field, but that these comparisons are 

made in the next section.  A number of distinct features 
can be seen in these time series.  First, for the mass-
related fields (Figs. 3a-h), ENS4 and ENS20 (Figs. 3a, 
c, e, and g) have a generally linear increase in mean 
spread and it appears that ENS4 spread is increasing at 
a faster rate than ENS20, which is generally expected 
behavior because the smaller scales being resolved in 
ENS4 should lead to faster error growth relative to a 
model using a coarser grid (e.g., Lorenz 1969). 
 For the mass-related fields in ENS4

phys
 and 

ENS20
phys 

(Figs. 3b, d, f, and h), the ENS20
phys

 mean 
variances increase at a faster rate than those in 
ENS4

phys
, with the exception of mean MSLP variances 

(Fig. 3h) which appear to be similar.  In addition, the 
spread increase in ENS4

phys
 and ENS20

phys 
is not linear 

as it was for ENS4 and ENS20, but instead has a ~ 6-hr 
period during forecast hours 21-27 (1800-0000 UTC) 
during which spread increases at a noticeably faster 
rate than the other times.  This 6-hr period corresponds 
to when peak solar insolation occurs and likely 
corresponds to when the different physics 
parameterizations are most active and thus result in the 
most error growth.  For example, in the central US, the 
boundary layer typically reaches its maximum depth by 
early afternoon so that turbulent processes that must be 
parameterized are occurring over a relatively deep 
layer.  In addition, peak heating and resulting well mixed 
boundary layers also lead to shallow and deep 
convective clouds requiring microphysics and cumulus 
(only for ENS20 and ENS20

phys
) parameterizations to be 

more active relative to other times.   

Figure 1 Domains for a) SREF ensemble members 
b) ENS4 and ENS20 ensemble members, and c) 
the analyses conducted in this study. 

Figure 2 Pink shaded dates indicate when 10-
member SSEF system simulations were conducted 
for SE2007 and dark red shading indicates which 
cases are used in the analysis for this study. 

 



Figure 3 Time series of mean ensemble variance from ENS4 (pink line) and ENS20 (blue line) for the 
variables a) 500-, c) 700-, and e) 850-hPa geopotential height, g) mean-sea-level pressure, i) 2-meter 
temperature, k) 2-meter dewpoint, m) 850-hPa wind magnitude, o) 850-hPa temperature, q) 850-hPa dewpoint, s) 
3-hrly accumulated precipitation, u) most unstable CAPE, w) magnitude of 500-hPa to 10-m shear vector.  b), d), 
f), h), j), l), n), p), r), t), v), and x) same as a), c), e), g), i), k), m), o), q), s), u), and w) except for ENS4

phys
 and 

ENS20
phys

.  Boxplots overlay the mean at each time interval. 

 For the low-level fields (Figs. 3i-x), ENS4 and 
ENS20 mean variances (Figs. 3i, k, m, o, q, s, u, and w) 
have clear diurnal signals superimposed on increasing 
trends.   The differences in mean variances and mean 
variance growth rates between ENS4 and ENS20 are 
dependent on the variable analyzed.  For example, 
850WMAG variances in ENS4 and ENS20 are very 
similar over the entire forecast period (Fig. 3m); Td2 
variances and variance growth rates are higher in ENS4 
relative to ENS20 for most of the forecast period (Fig. 
3k); and WS variances are similar until forecast hour 21, 

when there is a marked increase in ENS4 variances 
relative to ENS20 (Fig. 3w).  The amplitude and phase 
of the diurnal signal are also dependent on the variable 
analyzed.  For example, 850T and 850Td ENS4 and 
ENS20 variances (Figs. 3o and q, respectively) have 
smaller amplitudes relative to the other low-level fields, 
and peak variances occur for 850WMAG around 0900-
1500 UTC (Fig. 3m), for PREC at 0600-0900 UTC (Fig. 
3s), and for MUCAPE at 2100-0000 UTC (Fig. 3u).  The 
peak variances tend to match the time at which the 
forecasts of the variable considered are maximized. 



 
3.2 Variance growth rates 
 

 It was possible to subjectively infer differences in 
mean ensemble variance growth rates from the analysis 
conducted in Figure 3; however, to compare ENS4 and 
ENS20 to ENS4

phys
 and ENS20

phys
 and better quantify 

mean variance growth rates, a simple objective method 
was developed using a standard formula for growth rate: 
(Varf-Vari)/Vari*100%, where Vari and Varf are initial and 
final mean variance, respectively.  To reduce the impact 
of the diurnal cycle signal on the variance growth rates, 
mean variances at forecast hours 9 and 33 are used as 
the initial and final values, respectively, because these 
forecast hours are separated by 24 hours or one 
complete diurnal cycle.  Also, to smooth out high 
frequency variability which occurred mainly during the 
first 12 hours of the forecasts for the mass-related fields, 
a lowess filter was applied to the 1-hrly mean variance 
time series using the R statistical software package (R 
Development Core Team 2007). Finally, the mean 
variances from ENS4

phys
, ENS20, ENS20

phys
, 

ENS20
phys

kf, ENS20
phys

bmj, and  ENS20
phys

GD were 
adjusted by the difference between their variance at 
forecast hour 9 and that from ENS4.  Thus, the variance 
growth for all ensemble subsets was computed relative 
to the same initial mean variance (i.e. the ENS4 mean 

variance) to allow for comparison between ensemble 
subsets.   
 The mean variance growth rates obtained from this 
methodology are shown in Figure 4.  The growth rates 
of the mass-related fields exhibit very similar behavior, 
with ENS4 growth rates for mass-related fields around 
100% and those of ENS20 around 70%.  Also, the 
ENS20cp subsets (i.e. 5-member subsets with same 
cumulus parameterization) have slightly lower growth 
rates than ENS20, with the exception of 500Z mean 
variance in ENS20kf which is slightly larger than ENS20.  
The lower growth rates in ENS20cp subsets relative to 
ENS20 are expected because ENS20 has one 
additional source of model uncertainty relative to 
ENS20cp subsets, and the differences between ENS4 
and ENS20 growth rates are consistent with faster error 
growth expected as smaller scales are resolved (Lorenz 
1969; Smagorinsky 1969).  Note that ENS20 also has 
one additional source of model uncertainty relative to 
ENS4, but that the greater impact of higher resolution in 
ENS4 relative to having one additional source of model 
uncertainty in ENS20 results in higher growth rates in 
ENS4 than in ENS20.     
 For the mass-related fields, the ―mixed-physics 
only‖  ensemble subsets (denoted ―Phys‖ in Fig. 4) have 
much lower growth rates (~ 10%) than the subsets with 
both sets of perturbations (denoted ―IC/LBC+Phys‖ in 
Fig. 4) discussed above, which is consistent with results 

Figure 4 Mean variance growth rates from the ENS4, ENS4
phys

, ENS20, and ENS20
phys

 ensembles for fields 
shown in Figure 3.  Growth rates for five member subsets of ENS20 and ENS20

phys 
that have the same cumulus 

parameterization are also shown.  The histograms to the left for each variable indicate growth rates for 
ensembles that have IC/LBC perturbations and mixed-physics (IC/LBC+Phys) and the ones to the right are for 
mixed-physics only ensembles (Phys).  A legend is provided at the top of the figure.   



Figure 5 Mean variance ratio [%; Var(ENS4
phys

)/Var(ENS4) and Var(ENS20
phys

)/Var(ENS20)] from the 4-km 
and 20-km grid-spacing ensembles and from the 5-member 20-km ensemble subsets for the fields in Figure 3.  
The histograms to the left (right) for each field are for forecast hour 9 (33).  A legend is provided at the top of the 
figure.   

found by Kong et al. (2007) using a similar dataset.  The 
differences in growth rates occur because the different 
physics schemes that parameterize surface and 
boundary layer processes mainly influence the PBL, so 
that mass-related fields dependent on an entire vertical 
column of the atmosphere exhibit little impact.  In 
addition, the different microphysics and cumulus 
parameterizations, which can possibly have a more 
direct influence on layers of the atmosphere above the 
PBL, are only impacted where the schemes are active.  
On average, they are only active over a small fraction of 
the domain.  On the other hand, IC perturbations can 
directly affect all atmospheric layers and are present 
over the entire model domain.   
 All of the growth rates for mass-related fields in 
ENS20

phys 
are larger than those from ENS4

phys.
 Thus, 

unlike the ENS4 vs. ENS20 comparison, the impact of 
one additional source of model uncertainty in ENS20

phys
 

is greater than the impact of higher resolution in 
ENS4

phys
.  Also, similar to the ENS20cp subsets, the 

ENS20
phys

cp subsets have smaller growth rates relative 
to ENS20

phys
 resulting from having one less source of 

model uncertainty.   
 The mean variance growth rates among low-level 
fields are much more variable than for the mass-related 
fields.  However, the two sets of fields are similar in that 

the IC/LBC+Phys ensemble subsets have faster growth 
rates than the Phys subsets, with PREC being the only 
exception.  The low-level fields from Phys ensemble 
subsets all have higher variance growth rates than the 
mass-related fields, which is consistent with the low-
level fields being more dependent on the varied physical 
parameterization schemes.  For the low-level fields T2, 
Td2, PREC, and WS, the ENS4 and ENS4

phys 
variance 

growth rates are noticeable larger than those of ENS20 
and ENS20

phys
, respectively, however, for other 

variables like 850WMAG, 850T, and MUCAPE, the 
ENS20 and ENS20

phys
 growth rates are similar to or 

higher than those from ENS4 and ENS4
phys

, 
respectively.  This may indicate that, for some variables, 
higher resolution in ENS4 and ENS4

phys 
results in larger 

error growth despite the extra source of model 
uncertainty in ENS20 and ENS20

phys
, but for other 

variables, the extra source of model uncertainty in 
ENS20 and ENS20

phys 
has a larger impact than higher 

resolution.  Also note that for many of the low-level 
variables (e.g., Td2, 850WMAG, 850Td, PREC, 
MUCAPE, and WS) some of the ENS20cp and 
ENS20

phys
cp ensemble subsets have greater mean 

variance growth rates than ENS20 and ENS20
phys

, 
respectively, which is counterintuitive because smaller 
variance growth rates would be expected with one less 



source of model uncertainty.  In particular, MUCAPE 
variance growth rates for ENS20GD (~ 150%) are much 
larger than those of ENS20 (~ 110%), while ENS20kf 
MUCAPE growth rates (~ 100%) are similar to ENS20 
and those from ENS20bmj (~ 60%) are much smaller. 
 It is suspected that, for all of the low-level fields, 
systematic model biases associated with certain 
parameterization schemes and combinations of 
parameterization schemes are impacting the growth 
rates for these low-level fields.  These biases are 

important to consider in the context of an ensemble 
because, as discussed by Eckel and Mass (2005), 
systematic biases that increase forecast uncertainty do 
so ―artificially‖ because the associated errors are not 
uncertain.  Further work is planned to examine the 
impact of these biases. 
 
3.3 Mixed-physics ensemble variance contribution 
 

 To estimate the percent contribution of mixed-
physics to spread in the IC/LBC+Phys ensembles, the 
ratio of the mean ensemble variance in the Phys 
ensembles to that of the corresponding IC/LBC+Phys 
ensembles [i.e. {Var(Phys)/Var(IC/LBC+Phys)}*100%] is 
computed for all 12 fields at forecast hours 09 and 33 
(Fig. 5).  Note that the actual contributions to ensemble 
spread in the IC/LBC+Phys ensembles not only result 
from separate contributions from IC/LBC perturbations 
and mixed-physics, but also from an interaction term 
(which could be positive or negative) between the two 
error sources.  Because ensembles using only IC/LBC 
perturbations were not used in this experiment, it is not 
possible to diagnose this interaction term, and the 
estimate of variance contribution from mixed-physics 
assumes the interaction term is negligible.   
 The mixed-physics contributions to ensemble 
variance were generally much smaller for the mass-
related fields relative to the low-level fields, which could 
be inferred from the time series of mean ensemble 
variance (Fig. 3; note different y-axis scale) and is also 
consistent with the differences between the 
IC/LBC+Phys and Phys variance growth rates (Fig. 4).  
The contributions for mass-related fields decrease as 
higher atmospheric levels are examined which likely 
occurs because the the higher levels are impacted less 
by the boundary layer where the physics 
parameterizations have the greatest impact.  Also, the 
mixed-physics variance contributions for mass-related 
fields in ENS20 were larger than for ENS4, consistent 
with the extra source of model uncertainty in ENS20, 
and the ENS20cp subsets had similar contributions to 
those from ENS4, except for the mixed-physics 
contributions for MSLP that were smaller in the ENS20cp 
subsets relative to ENS4.  Perhaps the most noticeable 
feature for the mass-related fields in Figure 5 is that the 
mixed-physics variance contributions for all ensemble 
subsets are higher at forecast hour 33 than 09 implying 
that the influence of model uncertainty on ensemble 
spread increases with forecast lead time.   
 For the low-level fields, similar to the variance 
growth rates (Fig. 4), there is much more variability in 
variance contributions among the different fields 
examined and contributions range from around 10% for 
850Td in ENS4 at forecast hour 9 to around 85% for 
PREC in ENS4 and ENS20 at forecast hour 33.  On the 
other hand, similar to the mass-related fields, the 
ensemble subsets for most of the low-level fields have 
increasing mixed-physics variance contributions with 
increasing forecast lead time.  By far, the highest mixed-
physics variance contributions occur with PREC, which 
is not surprising because, overall, the physics 
parameterizations are particularly active in association 

Figure 6 Scatter plots of ensemble variance vs. 
mean-square-error of the ensemble mean from 
ENS4 (black dots) for the raw fields a) 500-, c) 700-
, and e) 850-hPa geopotential height, g) mean-sea-
level pressure, i) 2-meter temperature, k) 2-meter 
dewpoint, m) 850-hPa wind magnitude, o) 850-hPa 
temperature, q) 850-hPa dewpoint, s) 1-hrly 
accumulated precipitation, u) most unstable CAPE, 
w) magnitude of 500-hPa to 10-m shear vector.  b), 
d), f), h), j), l), n), p), r), t), v), and x) same as a), c), 
e), g), i), k), m), o), q), s), u), and w) except for 
ENS20 (grey dots).  Correlation coefficients are 
provided in the right-top corner of each panel and 
rank histograms for ENS4 (black outline) and 
ENS20 (grey shaded) for forecast hours 09 and 33 
are displayed in the bottom-right corner of the 
ENS20 plots.  The lines overlaying the scatters 
connect the average variance-MSE points for each 
forecast hour (―x‖ indicates hour 1 and ―o‖ indicates 
hour 33).       
 
 



with precipitation and two of the parameterizations 
(cumulus and microphysics schemes) are directly 
associated with precipitation production.  Similar to the 
growth rates for low-level fields, model biases may be 
having an impact on the mixed-physics variance 
contributions. 
 
3.4 Variance-MSE relationship and statistical 
consistency 
 

 Ideally, in a skillful ensemble that accurately 
accounts for all sources of forecast uncertainty, the 
ensemble variance should be a reliable predictor of the 
forecast skill (e.g., Grimit and Mass 2007).  To quantify 
the variance-MSE relationship, past works have used 
linear correlations (e.g., Jones et al. 2007).  This study 
also employs variance-MSE linear correlations, but care 
should be taken interpreting the correlation coefficients 
because, as shown by Grimit and Mass (2007), error 
statistics tend to exhibit increasing variance with 
increasing ensemble spread so that the variance-MSE 
relationship cannot be assumed to be linear.  Thus, as 
noted in a similar analysis conducted by Jones et al. 
(2007), the linear correlation coefficients only provide an 
estimate of the predictability of ensemble skill.  For more 
details on the spread-error relationship in ensemble 
prediction systems, Grimit and Mass (2007) provide a 
thorough literature review.  
 Statistical consistency describes how well the 
ensemble variance matches the MSE when averaged 
over many cases (Talagrand et al. 1999; Eckel and 
Mass 2005).  Thus, unlike the variance-MSE 
relationship, the amount of correlation is not considered.  
A statistical consistency analysis can also provide 
information on whether an ensemble system is over- or 
under-dispersive.  In an under-dispersive (over-
dispersive) ensemble the average MSE is larger 
(smaller) than the ensemble variance.  In this study, the 
variance-MSE and statistical consistency analyses are 
used as a simple method for examining the impacts of 
the different spread growth rates on the quality of the 
ensemble forecasts (as inferred from the 
aforementioned ―spread-skill‖ metrics).   
 To illustrate the variance-MSE relationship and 
statistical consistency in the ENS4 and ENS20 
ensembles for the different fields examined, scatterplots 
of ensemble variance vs. MSE are displayed in Figure 
6.  Each panel in Fig. 6 contains variance-MSE points 
for each case and for each forecast hour (20 cases x 33 
times = 660 points for each panel), correlation 
coefficients indicate the degree of correspondence 
between ensemble variance and MSE (i.e. the reliability 
of ensemble variance as a predictor of forecast skill), 
and lines overlaying the scatters connect average 
variance-MSE points for each forecast hour (―x‖ marks 
forecast hour 1 and ―o‖ marks forecast hour 33) 
indicating statistical consistency.  The diagonal lines 
drawn from the bottom left to the upper right of each 
panel indicate ―perfect‖ statistical consistency.  Rank 
histograms (e.g., Hamill 2001) provided in Figure 6 valid 
at forecast lead times of 09 and 33 also provide 
information regarding representation of forecast 

uncertainty: flat rank histograms imply an accurate 
depiction of forecast uncertainty, U-shaped (n-shaped) 
rank histograms imply over-dispersion (under-
dispersion), and right (left) skewness indicates a 
tendency for over-prediction (under-prediction).  To 
allow for a more convenient comparison between ENS4 
and ENS20, the 16 bins composing the ENS20 rank 
histograms were regrouped into 6 bins which each 
contain an equal portion of the original 16 bins.  This 
―regrouping‖ technique has also been used in Clark et 
al. (2009).   
 For the mass-related fields (Figs. 6a-h), the 
variance-MSE correlations in ENS4 and ENS20 are very 
low suggesting that ensemble variance is not a reliable 
indicator of forecast skill for these fields.  The highest 
correlations occur for the MSLP forecasts from ENS4 
(R

2 
= 0.19). Considering previous work that has also 

found small spread-error correlations for fields like mid-
tropospheric geopotential height (e.g., Buizza 1997), 
these results are not surprising.  However, there are 
noticeable differences in the distribution of variance-
MSE points for the mass-related fields: in ENS4 there 
are more points to the right of the diagonal than in 
ENS20 indicating that ensemble variance is greater than 
MSE more frequently in ENS4.  Furthermore, the 
variance-MSE points in ENS20 appear to be positioned 
in a vertically oriented ―plume‖, while those in ENS4 
veer towards the right (i.e. higher values of ensemble 
variance).  These results are reflected by the statistical 
consistency lines in Figs. 6a-h, with ENS4 statistical 
consistency lines generally oriented along and slightly to 
the right of the diagonal implying slight over-dispersion, 
while the ENS20 lines are more erratic and tend to veer 
toward the left of the diagonal implying more noticeable 
under-dispersion.  Finally, the results for the mass-
related fields are also consistent with the higher spread 
growth rates found in ENS4 relative to ENS20 shown in 
Figure 3, and imply that the greater ENS4 spread for 
mass-related fields may result in over-dispersion.   
 Rank histograms for the mass-related fields (Figs. 
6b, d, f, and h) imply that as forecast lead time 
increases from hour 09 to 33, ENS20 goes from 
overpredicting to underpredicting forecast uncertainty.  
Thus, it appears that the perturbations applied to the 
ENS20 ICs initially encompass the observed 
atmospheric state, but as lead time increases, the 
perturbations do not grow (or grow very slowly) and the 
observed atmospheric state begins to diverge away 
from the ENS20 members.  For ENS4, it is difficult to 
see the implied depiction of forecast uncertainty from 
the rank histograms because of their left-skewness 
which implies underprediction of the mass-related fields.  
This underprediction is an interesting result and was 
also verified by an analysis of domain averaged 
geopotential heights for all cases.  The underprediction 
could possibly result from a general cool bias in the 
lower part of the troposphere or perhaps stronger 
synoptic-scale storm systems in ENS4 members; 
however, a further examination is beyond the scope of 
this study.      
 For the low-level fields (Figs. 6i-x), the variance-
MSE correlations in ENS4 and ENS20 are quite variable 



depending on the field examined with 850W (Figs. 6m-
n), PREC (Figs. 6s-t), MUCAPE (Figs. 6u-v), and 
WSHR (Figs. 6w-x) having the highest values.  
Furthermore, the rank histograms indicate that ENS4 
and ENS20 both suffer from systematic biases and/or 
underdispersion for most of the low-level fields.  For 
example, warm T2 biases and dry Td2 biases are 
revealed from the right and left skewed rank histograms, 
respectively, in Figs. 6i-l.  Also, the U-shaped rank 
histograms for 850Td (Fig. 6q) imply underdispersion.  
The statistical consistency lines in ENS4 and ENS20 for 
the low-level fields are also variable, but exhibit 
similarities depending on the type of field examined.  
For example, the temperature and dewpoint fields [T2 
(Figs. 6i-j), Td2 (Figs. 6k-l), 850T (Figs. 6o-p), and 
850Td (Figs. 6q-r)] behave quite similarly and indicate 
underdispersion for both ENS4 and ENS20, and also 
indicate that there are not distinctive differences 
between ENS4 and ENS20.  The variables dependent 
on wind fields [850WMAG (Figs. 6m-n) and WSHR 
(Figs. 6w-x)] also behave similarly and have better 
statistical consistency than the temperature and 
dewpoint fields.  Furthermore, for the wind fields, the 
ENS20 statistical consistency lines tend to veer to the 
left of the diagonal with increasing forecast lead time 
indicating increasing underdispersion, while those from 
ENS4 tend to veer toward the diagonal indicating 
improved statistical consistency.  For the wind fields, the 
better statistical consistency in ENS4 relative to ENS20 
at the later forecast lead times is reflected in the rank 
histograms which are flatter at forecast hour 33 in ENS4 
(Figs. 6n and x).  For PREC and MUCAPE fields in 
ENS4 and ENS20 (Figs. 6s-t and 6u-v, respectively), 
under-dispersion is generally indicated except for in the 
ENS4 PREC field (Fig. 6s) which indicates 
overdispersion.   
 Generally, the variance-MSE relationships and 
statistical consistency lines indicate better statistical 
consistency in ENS4 relative to ENS20 for the mass-
related fields, no noticeable differences in statistical 
consistency for temperature and dewpoint fields as well 
as PREC and MUCAPE fields, and better statistical 
consistency in ENS4 for wind-fields (850WMAG and 
WSHR) at later forecast lead times. 
 
4. CONCLUSIONS 
 

 Generally, the results from this study could be 
interpreted as encouraging for future convection-
allowing ensemble systems simply because statistical 
consistency analyses indicate that faster spread growth 
should lead to more reliable forecasts in the convection-
allowing ensembles when considering mass-related and 
wind-related fields.  However, the higher resolution of 
ENS4 did not seem to improve spread-error metrics for 
temperature and dewpoint fields.  However, further work 
needs to analyze larger sets of cases for different 
periods and further assess whether the increased 
dispersion does truly improve probabilistic forecasts.  
Finally, the behavior of ensemble variance observed in 
this study should be helpful for future ensemble design, 
and recognition of systematic model biases should 

provide motivation for improving the physics 
parameterizations used with convection-allowing grid-
spacing. 
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