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ABSTRACT

Internal waves are continuously being generated and propagating through the ocean and atmosphere.
Internal wave breaking can occur far from generation sites, and the resultant mixing can transport
momentum, heat, and pollutants across isopycnals, maintaining the energy balance in the ocean and
preventing a stagnant deep ocean. But global circulation models cannot resolve these motions and
they must be parameterized. For a completely accurate parameterization, all waves and their possible
ensuing motions due to other waves, bottom topography, vortices, boundaries, etc. must be accounted
for in the computations. Although many interactions are possible as internal waves propagate, evidence
of constant large scale inertial motions in the ocean lead us to study the breaking of internal waves
which propagate both aligned with and in opposition to large scale inertial waves. The results of the
two types of interactions are dynamically different: one is a time-dependent critical level and the other a
caustic interaction. These different types of interactions can lead to wave-breaking pre-or post-maturely
due to the time-dependence of the inertial waves. The interaction is modeled through integration of the
fully nonlinear, inviscid, Boussinesq equations of motion. In general, breaking is found to occur within
a particular region of the inertial wave, which shifts for small scale waves that approach the interaction
with different group velocities. Small-scale internal waves with the largest vertical wavelengths are
most likely to break immediately as they enter an inertial wave propagating in the opposite direction,
where the smallest vertical scale waves are more likely to break in-between strong refraction sites, if at
all. When propagating the same direction, the scale separation between the waves is also important in
determining breaking probability although in this case larger separation results in a higher probability
of breaking. Wentzel-Kramers-Brillouin (WKB) ray tracing is used to supplement the fully nonlinear
numerical model. These statistics expand the reach of calculations from the simulations and compare
well with not only which waves are expected to break due to the time dependence, but also where
they would be expected to break within the inertial wave, dependent on their properties. Results of the
models also compare well with observations from the Hawaiian Ocean Mixing Experiment (HOME).

1. Introduction

Internal waves are ubiquitous in the ocean and can
carry and dissipate energy throughout the ocean. In-
teractions with other flows can lead to internal wave
steepening to a point of breaking, resulting in mix-
ing of organisms, heat, and pollutants. This break-
ing and mixing must occur to keep the deep oceans
from being stagnant and to close the basic energy bal-
ance. But locations of strong dissipation are not well
known, nor are the specific mechanisms by which they
occur. Vanderhoff, Nomura, Rottman, and Macaskill
(2008) found small scale waves that propagate through
larger scale inertial frequency waves with an initially
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slow upward vertical group speed (slower than the up-
ward phase speed of the long wave) and large vertical
wavenumber have regions of greatly increased wave
action during strong refraction. Breaking regions were
not parameterized as a part of the study, though.

It is conjectured that mixing does not occur uni-
formly over the entire ocean, which has been supported
by recent measurements which show an increase in
mixing over topography (Polzin, Toole, Ledwell, and
Schmitt (1997)). The Hawaiian Ocean-Mixing Ex-
periment, HOME, (Pinkel, Munk, Worcester, Cor-
nuelle, Rudnick, Sherman, Filloux, Dushaw, Howe,
Sanford, Lee, Kunze, Gregg, Miller, Moum, Caldwell,
Levine, an G. D. Egbert, Merrifield, Luther, Firing,
Brainard, Flament, and Chave (2000), Pinkel and Rud-
nick (2006)) was conducted to examine the processes
that lead to ocean mixing at a site of strong baro-
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clinic tidal generation (Noble, Cacchione, and Schwab
(1988), Holloway and Merrifield (1999)). HOME had
both observational and computational components.
Through satellite altimetry, HOME researchers Zaron
and Egbert (2006) found that 26 gigawatts of tidal en-
ergy is dissipated in the region of the Hawaiian Ridge.
Some fraction of this radiates to the deep sea as low
mode baroclinic waves while the remainder is dissi-
pated locally (Rainville and Pinkel (2006a,b), Mer-
rifield and Holloway (2002)). HOME observations
demonstrated intense baroclinic wave generation, with
high levels of turbulence in the lower 1500 m of the
water column. Turbulent mixing rates decayed off-
shore, and by 60 km away the rates had fallen to typi-
cal open-ocean values. Documenting the cascade pro-
cess, by which barotropic tidal energy is transferred
across a range of scales to eventual turbulent mix-
ing, is a principal goal of HOME (Klymak, Moum,
Nash, Kunze, Girton, Carter, Lee, Sanford, and Gregg
(2006), Lee, Kunze, Sanford, Nash, Merrifield, and
Holloway (2006), Klymak and Moum (2007a,b)).

The interaction of long and short internal waves
plays a role in this process. Even though baroclinic
tidal motions were most energetic at the Nearfield
site, the shear is primarily associated with near iner-
tial waves. Whether these waves are generated by the
local wind, topographic interaction, or by non-linear
interactions with the baroclinic tide is a subject of cur-
rent research. Here, the HOME observations are used
to set the scales of the inertial motions used in ray trac-
ing and fully non-linear simulations of shorter waves
propagating through longer inertial waves. The short
waves are assumed to be pre-existing, with low initial
energy, and their steepness is calculated as they propa-
gate to asses locations of possible wave breaking.

The next section will cover the setup of each of the
studied media: observations, numerical simulations,
and ray tracing. In Section 3 results will be presented.
Section 4 will draw conclusions about these results.

2. Setup

This section will cover the different setups of the ob-
servations, ray tracing calculations and numerical sim-
ulations.

a. Observational Setup

The HOME Nearfield experiment was conducted on
the Kaena Ridge, a submerged extension of the hawai-
ian island of Oahu. The Ridge extends west-north-west
from Oahu for about 60 km, half of the distance to
Kauaii. During September-October, 2002, the FLoat-
ing Instrument Platform, FLIP, was moored as shown

FIG. 1. Site of the 2002 HOME Nearfield Experiment.
The blue circle represents the location of the Research
Platform FLIP, the red circles are the locations of ancil-
lary moorings. The solid lines denote cross-ridge and
along-ridge directions.

in Fig. 1, 21.7◦ North, 158.6◦ West, on the south-west
edge of the Ridge crest. At the location of FLIP the
crest depth is about 1100 meters, with surrounding off-
ridge areas at 5 km depth. Instruments deployed on
FLIP, including an eight-beam, coded-pulse Doppler
sonar that measured velocity from 50-800 m with 4m
vertical resolution. Two CTDs (current-temperature-
depth, Seabird SBE 911 ) profiled vertically from 20
meters to 820 meters depth at 4 minute intervals. The
3.5 m/s profiling speed leads to a resulting 1.1 meter
vertical resolution in temperature, salinity and poten-
tial density. For further information of the setup of the
experiment see Klymak, Pinkel, and Rainville (2007).

Slopes as steep as 1:4 define the north-north-east and
south-south-west sides of the ridge. The ridge is ori-
ented roughly normal to local semi-diurnal barotropic
tidal flow. The S2 (12 hour semidiurnal solar) tidal cur-
rent has amplitude 2.8 cm/s East and 5.2 cm/s North.
The K1 (24 hour diurnal solar) tidal current has am-
plitude 3.2 cm/s East and 4.6 cm/s North. The M2

(semidiurnal lunar - 12 hour 25 minute) tidal current
has amplitude 6.4 cm/s East and 11.7 cm/s North, and
is the dominant tide. It has a pronounced fortnightly
cycle. Above 500 meters, energy and momentum
fluxes are upward and southward (1dyne/cm2 during
spring tide. Below 500 meters the fluxes are upward
and northward. Above the ridge crest, power spectra
of horizontal velocity and vertical displacement have
pronounced D2 (semi-diurnal - 12 hour) peak. There
is little evidence of a D2 peak in the shear, as shown
later. The cruise covered two fortnightly cycles. The
first neap tide was covered from year day 257 (Septem-
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FIG. 2. Observations from sonar data over Kaena
Ridge for one week (year day 260 to year day 267)
over all depths (100 meters to 800 meters). Inertial, di-
urnal, and semidiurnal frequencies are labeled. A line
with slope of −2 is superimposed on the frequency
graph for the velocity. (a) Frequency spectrum for
cross-ridge velocity averaged over all depths (371 data
points). (b) Frequency spectrum for cross-ridge shear,
Uz , averaged over all depths (371 data points).

ber 14, 2002) to year day 261 (September 18, 2002).
The first spring tide was from year day 262 (Septem-
ber 19, 2002) to year day 269 (September 26, 2002).

Cross-ridge velocity and shear frequency spectra
calculated over one week, from year day 260 to year
day 267 for all depths are shown in Fig. 2. Peaks can be
seen in the observations in both the velocity and shear
frequency spectra at the inertial, diurnal, and semidiur-
nal frequencies. The strongest peak in the velocity cor-
responds to the tidal frequency, yet the strongest peak
in the shear spectrum corresponds to the local inertial
frequency - suggesting a strong inertial wave presence.
An approximately −2 high frequency slope and high
vertical wavenumber slope can also be seen.

Preliminary observational data taken on FLIP
present a strong argument for a need to understand
how the squared strainrate field (∂(∂ζ/∂t)/∂z =
∂2ζ/∂z∂t), which is a measure of high frequency

wave activity, is affected by the near-inertial waves.
This can be seen in Fig. 3 a week-long record of the
cross-ridge shear normalized by N and the strainrate
squared, which represents high frequency wave activ-
ity. The sideways chevrons in the shear are characteris-
tic of upward and downward propagating near-inertial
waves, with periods of approximately 24 to 30 hours,
frequency of about f to 1.3f . Later, wave breaking
regions with respect to these regions will be discussed.

b. The idealized problem

In the ray tracing and numerical simulations we con-
sider the case of a packet of short waves approach-
ing a single inertia packet either from above or be-
low, as described in Vanderhoff, Nomura, Rottman,
and Macaskill (2008), where a steady shear may be
present as well. The coordinate system is (x, y, z) with
z positive downward, x positive northward, and y posi-
tive eastward. We assume that the buoyancy frequency
N and the Coriolis parameter f are both constant.

The inertial packet has wavenumber K = (0, 0,M),
whereM = 2π/λi and λi is the vertical wavelength of
the wave. The corresponding velocity field is uniform,
horizontally, u = (u, v, 0), but confined in the vertical
by a Gaussian envelope:

u+ iv = u0 e
−z2/2L2

ei(Mz−ft) (1)

where L and u0 are constants, real and complex re-
spectively. The envelope of the inertia-wave packet
assumed stationary, since the vertical component of
the group velocity vanishes at the inertial frequency.
The phases move vertically through the packet at speed
c = f/M , assumed positive to match the observa-
tions analyzed. The short waves have wavenumber
k = (k, 0,m), with k constant, and intrinsic frequency
ω̂, which is the Doppler-shifted frequency, where

ω̂2 = (N2k2 + f2m2)/(k2 +m2) . (2)

The vertical group velocity cg = ∂ω̂/∂m is negative if
m is positive and positive if m is negative.

The vertical displacement of the short waves is ζ =
ζ0 exp(iθ), from which the wavenumber and wave fre-
quency are given by k = ∇θ and ω = −θt, respec-
tively, and where ω = ω̂ + ku. The wave-energy den-
sity E is related to ζ0 by

E =
1
2
ρ0ζ

2
0N

2

[
1 +

(
fm

Nk

)2
]

(3)

where ρ0 is the mean density of the fluid.
The numerical simulations are initialized at time

t = 0 with a short-wave packet whose vertical dis-
placement field ζ(x, z, t) has the initial form
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FIG. 3. (a) Cross-ridge shear normalized by buoyancy frequency, and presented in a reference frame moving ver-
tically with isopycnal surfaces. (b) Strain rate squared [1/s2] calculated from the profiling CTDs is also presented
in this isopycnal following frame. The dark blue regions (circled) are relatively devoid of high-frequency waves.

ζ(x, z, 0) = Re
{
ζ0 e
−(z−z0)

2/2`2ei(kx+mz)
}

(4)

where ` and z0 are real constants and ζ0 is a complex
constant. The initial vertical position z0 is specified
such that the short-wave packet is above the inertia-
wave packet if cg < 0, and below it if cg > 0. The
vertical derivative of the vertical displacement field is
the wave steepness, derived from the dispersion rela-
tion and (3),

ζz = −m

∣∣∣∣∣
(

2Aω̂
ρ0

)1/2

N−1

∣∣∣∣∣ . (5)

When the wave steepness is greater than unity the short
waves are expected to break.

For the ray tracing and numerical simulation results
shown in this paper, we use the following ocean pa-
rameters, which are defined by the observations: M =
2π/(100 m), k = M/2, f = 10−4 s−1, N/f = 75,
and u0 = 0.05 m/s. For the numerical simulations,
the initial steepness |ζz| = |mζ0| = 0.1, where sub-
script z represents the partial derivative with respect to
z, ML =

√
2π/10, and `/L = 0.75. We will alter

the vertical wavenumber, m, to realize different group
speeds of the short wave.

c. Ray Theory

Using ray theory we can calculate approximately the
behavior of the short wave encounter with the inertial
wave group. To do this we assume that the inertial
wave is both unaffected by the short wave interaction
and has a much larger length scale than that of the short
wave. Also we assume the short wave is determined by
the linear dispersion relation. Then an evolution equa-
tion in characteristic form can be found for k. For fur-
ther detail see Vanderhoff et al. (2008).

1) THE RAY EQUATIONS

The ray-tracing results in this paper are obtained
with the following pair of ray equations, for the vertical
position of the ray path and the vertical wavenumber
respectively:

dz

dt
= cg,

dm

dt
= −k∂u

∂z
. (6)

Here d/dt = ∂/∂t + cg∂/∂z. Because the expres-
sion (1) has no dependence on x or y, the horizon-
tal components (k, 0) of the wavenumber of the short
waves are conserved along the ray.

In a reference frame moving at the inertial-wave
phase speed c, the inertial current appears steady. So-
lutions then exist for which the short-wave frequency
in the inertial-wave reference frame
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Ω = ω̂ + ku− cm ≈ constant. (7)

The trapped solutions have the short-wave group
permanently confined within one wavelength of the
inertia-wave, so that there are regions of the inertia-
wave train where the short-wave group cannot propa-
gate. The boundaries of these regions are called caus-
tics and are the curves in (t, z) where neighboring rays
cross (see Vanderhoff et al. (2008) Fig. 2). For our
idealized model, caustics occur when

cgz = Cz , (8)

where the capitals represent the inertial wave. Critical
levels occur when the relative frequency of the short
wave goes to zero.

d. Numerical Simulations

Numerical results are obtained by integrating the
fully nonlinear inviscid, Boussinesq equations of mo-
tion. In their vorticity-streamfunction form, these are:

∂2ψ

∂x2
+
∂2ψ

∂z2
= q (9)

∂q

∂t
− J(ψ, q)− ∂σ

∂x
− f ∂v

∂z
= 0 (10)

∂v

∂t
− J(ψ, v) + fu = 0 (11)

∂σ

∂t
− J(ψ, σ)−N2w = 0, (12)

where q is the y-component of vorticity and J(ψ, q)
the Jacobian with respect to (x, z). Here the fluid ve-
locity u = (u, v, w), and the stream function ψ is
defined such that u = ∂ψ/∂z, w = −∂ψ/∂x, and
q = ∂u/∂z − ∂w/∂x. The scaled density perturba-
tion due to the presence of internal wave motions is
σ = gρ′/ρ0 where g is the acceleration due to gravity;
the density ρ = ρ′ + ρ0, with ρ0(z) the mean density
profile. Because of rotation, there is a nonzero v field,
but all variables are assumed to be independent of y.

Periodic boundary conditions are imposed in both
the x- and z-directions, and the equations are solved
using a Fourier spectral collocation technique with
Runge-Kutta time stepping. The computational do-
main contains one horizontal wavelength of the short
waves in the horizontal direction and one or more ver-
tical wavelength(s) of the inertia waves in the vertical
direction. There are 512 grid points in the vertical di-
rection, but only 16 grid points in the horizontal di-
rection. The low horizontal resolution suffices for the
wave propagation to an increased steepness, but does
not resolve any breaking.

3. Results

Wave-breaking is defined when isopycnals are ver-
tical, ζz > 1, leading to overturning within the fluid
and resulting turbulence. This can be calculated in
the numerical simulations and observations by finding
∆ζ/∆z. For calculating wave steepness in ray theory
equation (5) is used.

a. Wave Breaking in Observations

The observational results of calculating the break-
ing parameter, ζz , from the CTD data over two days
and 200 meters depth are shown in Fig. 4b. The cor-
responding filtered inertial shear is shown in Fig. 4a.
These results show a strong relationship between
breaking and negative shear. Some of the strongest
wave breaking regions are highlighted in Fig. 4. But
what does the wavefield look like in these regions?

When low-frequency waves are filtered out, the av-
erage Reynolds stress (RS),uw, over two days is shown
by the solid lines in Fig. 5. Upward propagating waves
are on the left, and downward on the right. For upward
propagating waves positive RS corresponds to wave
propagation in negative-x, and for downward propaga-
tion, positive-x. The dashed lines are the average shear
during breaking (x5x103) over the two days. Both RS
are near the same order, but each has a preferred di-
rection during different sign shear breaking regions. In
the upper region, where some of the strongest break-
ing regions occur, the downward waves have positive
RS, corresponding to positive-x traveling waves. This
directionality will become important while discussing
the possible interactions leading to breaking.

Fig. 6 is an average of the RS over time at each depth
multiplied by the shear and shown only in breaking
regions. The data has been filtered to include only
high frequency waves and Fig. 6a is upward propa-
gating waves and Fig. 6b is downward propagating
waves. Here, these are upward propagating waves and
those propagating in the positive (northward) direction
have a negative RS and are expected to break in neg-
ative shear regions (inertial wave horizontal velocity
increasing as the short waves propagates upward), as
well known critical layer theory shows. Those propa-
gating southward have a positive Reynolds stress and
are expected to break in positive shear regions. Thus,
the product of the shear and RS should be positive in
breaking regions. Regions in Fig. 6a where the prod-
uct is negative are not explained by upward propagat-
ing waves interacting with the inertial wave. Thus the
breaking mechanism should be due to downward prop-
agating waves.

The downward propagating waves visualized in
Fig. 6b includes both positive and negative product
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FIG. 4. Observational analysis over Kaena Ridge for two days over 200 meters depth. Circled regions of strongest
breaking, with a line down another region of strong breaking. (a) Inertial shear divided by buoyancy frequency.
(b) Wave breaking map calculated from CTD data. The colorbar represents ζz .

FIG. 5. Observational analysis over Kaena Ridge for two days over 200 meters depth. Reynolds stress, uw,
[m2/s2] (solid line) and shear [1/s] (x5x103) where breaking is occurring (dashed line) are each averaged over
two days. (a) Filtered for upward propagating, high frequency waves only. (b) Filtered for downward propagating,
high frequency waves only.
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FIG. 6. Observational analysis over Kaena Ridge for two days over 200 meters depth. Reynolds stress (uw)
is averaged over two days and multiplied by the shear at each point. Results are only shown where breaking is
occurring. (a) Filtered for upward propagating, high frequency waves only. (b) Filtered for downward propagating,
high frequency waves only. The colorbar represents a positive (white) or negative (black) product.

regions where the product was negative in Fig. 6a
(where the upward traveling waves were not break-
ing). Specifically, the strong breaking region, circled
in Fig. 4b, and the early time region near 460m depth,
the product is negative. Fig. 5b shows in that spatial
region, The RS is positive, meaning small-scale down-
ward propagating waves are dominated by northward
propagation. Although other interactions may also be
occurring, this region was originally singled out due
to the strong inertial wave presence, and thus the main
breaking would be expected to be due to interactions
between small-scale waves present and the large scale
inertial wave. The goal of the next two subsections is
to explain breaking in each region due to small-scale,
high frequency wave interactions with an inertial wave.

Two types of interactions will be analyzed in an ef-
fort to understand the dynamics of the wave interac-
tions in the observations. High-frequency, small-scale
internal waves will interact with a large-scale iner-
tial frequency wave with downward propagating phase
speed, as is seen over depths of 400 meters to about
600 meters as discussed above. The small-scale waves
will approach the inertial wave from above, below, and
propagating in both positive- and negative-x directions.
This should account for the main expected types of in-
teractions in this region.

b. Wave Breaking in Ray Tracing

In an effort to explain the breaking phenomenon
seen in the observations, ray tracing of small-scale in-
ternal waves are set to interact with and an inertial
wave with downward propagating phases.

Fig. 7 shows the ray lines, where locations of strong
refraction are outlined by filled in ellipses, and the
corresponding ζz values for a fast short wave. These
values are estimated at the location of strong refrac-
tion, caustic, with the corrected amplitude. In ray trac-
ing calculations the amplitude of the short wave ap-
proaches infinity as the caustic is approached and an
Airy function relationship is used to estimate the max-
imum amplitude in this region. Locations of positive
and negative shear which border the ellipses is shown
in Fig. 7, where the upper left portion of the ellipse cor-
responds to positive background shear and the lower
right portions correspond to negative background shear
when the rays have a positive horizontal wavenumber,
k. This is opposite for waves traveling in the nega-
tive x-direction (which have negative k values). In the
lower portion of Fig. 7 there is a large increase in wave-
steepness at the caustic, the steepness increases by over
15 times the original. Also, while traveling inbetewen
the phases the steepness reaches almost 15 times its
original value. This first occurs in a region of posi-
tive shear, and thus breaking would first be expected
in a region of positive shear. This results in the sign
of the product of the Reynolds stress and the shear as
positive, for both northward and southward, downward
traveling short waves through an upward traveling in-
ertial wave.

This will not be true for the downward propagating
slower traveling waves in Fig. 8, which do not have the
same first refraction seen in Fig. 7, but their steepness
will begin to increase between the phases of the iner-
tial wave. These waves may break after the first strong
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FIG. 7. Ray paths for a downward propagating short wave with a faster vertical group speed than the vertical
phase speed of the inertial wave, m/k = 3. The waves are propagating in the positive-x direction, resulting in
a positive Reynolds stress. The filled in ellipses are outlined by locations of strong refraction. The positive and
negative signs depict the sign of the background shear at each location; positive above the strong refraction region,
and negative below. Corresponding ζz/ζz0 values along the ray are plotted below. If the initial steepness = 0.1,
then the steepness is greater than 1 when the ratio of steepness to initial steepness = 10, where the horizontal line
is drawn. The interaction is symmetric about the zero shear line (vertical line), but since the short wave reaches
the max steepness in the region of positive shear first it may lose its energy in the positive shear region, leaving
less energy and a smaller probability of breaking in the negative shear region. This is the only asymmetry in the
short wave interactions, where breaking would be initiated. Negative-x traveling waves will have the opposite
asymmetry.

FIG. 8. As in Fig. 7, but for a short wave with a slower vertical group speed than the vertical phase speed of the
inertial wave, m/k = 35.
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refraction, in a positive shear region, or during the sec-
ond in a negative shear region. Thus the product of the
Reynolds stress and background shear during break-
ing may be either positive or negative. These, slower,
small scale waves reaching caustics may explain the
observations showing breaking when the sign of the
Reynolds stress shear product is negative. These are
some of the strongest breaking regions in the observa-
tions.

Waves propagating upward will not reach caus-
tics, but will approach critical levels as they propa-
gate. Steady critical levels have well known properties.
Here, upward, northward traveling waves with a neg-
ative RS will approach a critical level and most likely
break in regions of negative shear. Southward traveling
waves have the opposite result, and therefore the same
final product sign, positive. Thus, upward propagating
waves are not expected to explain the regions in the
observations which show a negative RS, shear product.

Short waves, approaching an inertial wave propagat-
ing in the same vertical direction, will most likely be-
gin to break in a region where the horizontal velocity
of the background increases in the direction of the hor-
izontal short wave group speed as the short wave prop-
agates vertically (critical level interaction). Thus if the
z-direction is positive downwards, and short waves are
propagating in the positive x-direction, as the back-
ground velocity becomes more positive as the short
waves propagate in negative-z the short waves may
break. This is a region of negative shear for a nega-
tive RS value. Fig. 9 displays the shear values when the
breaking threshold is reached for 400 rays for fast (left)
and slow (right) short waves. Short wave steepness is
calculated and if it is greater than the threshold (steep-
ness = 1) we assume it breaks and cut the amplitude
down to 80% of the maximum for breaking. We let the
waves propagate into the breaking region and cut them
off at their maximum steepness. Then we kept this per-
cent loss and calculated the total lost over the life of the
wave. Sometimes it would break more than once. Note
the product of the shear and Reynolds stress will be
positive for all except case Fig. 9d. As expected from
the theory and discussion of Fig. 5, slowly traveling
downward, northward propagating waves with caustic
interactions can explain the strong breaking regions in
the observations.

c. Wave Breaking in Numerical Simulations

A wave breaking map for the numerical simulation
of a small-scale, fast propagating wave approaching
an inertial wave from below is shown in Fig. 10b,
where the initial wave steepness is ζz = 0.8. Next
to it, Fig. 10a, is the corresponding background wave

shear field. In this setup, where the short waves are
traveling upward in the positive x-direction (negative
Reynolds stress), breaking will be in regions where
the background shear is decreasing with increasing
depth (negative shear): the region within the back-
ground phase where a critical level begins to be ap-
proached. These waves are the same type as in Fig. 9a.
Slowly traveling waves (as in Fig. 9b) have the same
result, although the approach to the critical level occurs
sooner. Testing a few different waves, allowing the
maximum background velocity and the initial steep-
ness to change, about 70-90% of breaking for occurs
in the expected negative shear, resulting in a positive
shear, RS product. Since short-waves traveling upward
in the negative-x direction (positive RS) break in posi-
tive shear regions, they also have the most breaking in
regions of a positive shear, RS product. They are not
shown here because the propagation dynamics are the
same.

Fig. 11 shows the interaction when fast traveling
downward propagating short waves interact with the
inertial wave. Completely different dynamics are oc-
curring where strong refraction dominates the interac-
tion instead of critical levels (Vanderhoff et al. (2008),
Sartelet (2003a,b)). An estimate of breaking from this
interaction shows 90% of the breaking is occurring
in regions of positive shear. This again results in a
positive shear, RS product, and can describe some of
the breaking regions in Fig. 6b with positive products
which corresponded to negative products in Fig. 6a (re-
gions where upward propagating waves most likely do
not support breaking). Again, signs are opposite when
short waves are propagating in the negative-x direction,
thus the dynamics and final product sign are the same.
Although this explains more of the breaking regions
within the inertial wave, breaking occurring during the
negative sign product of shear and RS has not yet been
described.

The final possibility for breaking in these regions
(assuming the main interactions here are between
small-scale high-frequency waves and a large scale in-
ertial wave) is the slowly traveling downward propa-
gating waves of Fig. 9d and Fig. 5. Numerical simula-
tions of this interaction are shown in Fig. 12. Breaking
here occurs partially in regions of positive shear, and
partially in regions of negative shear. Initially breaking
is in regions of positive shear, but as the wave contin-
ues through the interaction it begins to break in neg-
ative shear regions as well. This interaction can de-
scribe the final breaking regions within the observa-
tions, where the product of the shear and RS is neg-
ative. In the region of strong breaking, RS was posi-
tive from Fig. 5 (downward, positive-x traveling as in
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FIG. 9. Small-scale waves propagating through an inertial wave with phases propagating downward as in the ocean
region. Shear values when breaking threshold is reached (open circle), at the max of the breaking region (cross),
and at the final location of breaking (asterisk), for different values of initial steepness, (Ak/ω̂)1/2. After breaking
the short wave has 80% of the energy it had when it reached the breaking threshold. If the shear is positive it
is assigned a value of +1 and if negative it is -1. These values are averaged over 400 rays started at different
initial slopes and depths. All small-scale waves are propagating in the positive-x direction. (a) Small-scale waves
propagating upward with fast vertical group speed. Reynolds stress is negative. (b) Small-scale waves propagating
upward with slow vertical group speed. Reynolds stress is negative. (c) Small-scale waves propagating downward
with fast vertical group speed. Reynolds stress is positive. (d) Small-scale waves propagating downward with slow
vertical group speed. RS is positive. Note the product of the shear and Reynolds stress will be positive for all
except case (d)
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FIG. 10. Numerical simulation of a small-scale wave approaching an inertial wave from below. The vertical group
speed of the small-scale wave is much faster than the downward vertical phase speed of the inertial wave, initially
m/k = −3 (negative RS), and ζz = 0.8. (a) Background shear [1/days]. (b) Possible breaking map. The colorbar
represents ζz . Notice most of the breaking occurs in regions of negative shear.

FIG. 11. As in Fig. 10, but short wave approaching from above, RS positive.
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FIG. 12. As in Fig. 11, but short wave approaching slowly from above, RS positive.

Fig. 12) and shear was negative, resulting in a neg-
ative product and the same type of waves seen here.
Fig. 2 also shows the frequency spectrum, where there
is more wave energy at lower, high-frequencies, which
are these slower traveling waves.

4. Discussion

The results shown here have given us insight into
one of the possible mechanisms of short wave break-
ing in the ocean. This is when small-scale, high-
frequency internal waves propagate upward and down-
ward through the ocean and interact with constantly
present large-scale inertial waves. Observations have
shown these phenomenon occurring, and this analysis
of small-scale, large-scale wave-wave interactions can
describe the breaking phenomenon seen. Strong break-
ing was found in regions of negative shear. Small-scale
waves propagating in all directions were present, with
the lowest of the high-frequency waves being promi-
nent. Locations where upward traveling waves can-
not explain the shear at breaking locations, downward
traveling waves are dominated by northward propagat-
ing waves which explain breaking in negative shear re-
gions due to strong refraction zones only found within
a propagating inertial wave. Other locations of break-
ing unexplainable by a conventional critical level anal-
ysis can be explained by downward propagating waves
in the southward direction strongly refracting in neg-
ative shear locations. Ray tracing supports the analy-
sis through a statistical analysis of many representative
wave-wave interactions.

These types of wave-wave interactions may oc-

cur anywhere in the ocean where small-scale internal
waves and inertial waves are present. Although in the
region studied here, just over topography, there is much
high-frequency internal wave activity due to the tidal
flow over the topography, internal waves can be present
in any area where the ocean is stratified (all but the up-
per mixed layer mainly). Inertial waves are large scale
and have been observed as a regular phenomeon. Thus
breaking due to these interactions may also provide in-
sight into mixing occurring in the deep ocean and far
from strong internal wave generation sites.

More analysis of other specific observational regions
is suggested for a more full understanding of the pro-
cesses dominating the breaking. These results were
calculated with two-dimensional simulations and the-
ory, yet three-dimensional simulations would be more
accurate as the short waves begin to become unstable
and are necessary to quantify wave breaking. It is also
noted that the argument put forth here is not stating
these are the only types of interactions occurring, but
that they are highly probable and comparable.
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