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Abstract 

 
Different techniques for obtaining probabilistic quantitative precipitation forecasts (PQPFs) over South 
America are tested during the 2002-2003 warm season. Some of the techniques are based on a 
parametric representation of the conditional probability of precipitation over a particular threshold given a 
certain value of forecasted precipitation and the other uses a non-parametric estimation of the 
probabilities. The results are also compared with the calibration algorithm based on the rank histogram. A 
number of experiments were performed to compute a reasonable size for the training period. 
The PQPFs of a short range ensemble forecast system (SREF) based on the WRF model and the 
breeding technique were calibrated using the different approaches and the resulting PQPFs scores were 
compared. 
The calibration is performed using two different data sets, one derived from a high resolution rain gauge 
network and the other one based on passive microwave satellite estimates. This is done in order to 
evaluate if the use of satellite derived rainfall produces a significant degradation of PQPFs reliability and 
resolution. 
 
 
1. INTRODUCTION 
 

Quantitative precipitation forecast (QPF) 
is one of the most difficult and least accurate 
products available from numerical weather 
prediction (NWP) (Ebert 2001). Continuous 
efforts are devoted to improve forecast quality, 
ensemble forecasting being an example of one 
possible strategy to deal with errors arising from 
uncertainties in the initial and boundary 
conditions. An interesting characteristic of 
ensemble systems is that probability forecasts 
can easily be created, leading to the generation 
of PQPFs. 

Different methodologies for obtaining 
PQPFs, and corresponding measures to quantify 
their usefulness, have been developed. Of 
particular interest is how to obtain a reliable 
PQPF i.e., a system where the forecasted 
frequency of a particular weather phenomenon 
is close to the observed probability. The 
importance of PQPF reliability is directly related 
to its effect upon the economic value of the 
forecast, as discussed by Zhu et al. (2002). 

Several techniques have been 
developed to generate reliable PQPFs. For 
example, Hamill and Colucci (1998), Gallus et al.  
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2007, Stensrud and Yussouf 2007, Sloughter et al 
(2007) (hereafter S2007) among many others 
introduced different techniques for forecast 
calibration with the aim of improving forecast quality. 

The main objective of this work is to 
evaluate the skill of different calibration algorithms 
over South America. In a former study (Ruiz et al. 
2008), some of these strategies have been tested 
for a regional ensemble based on the SLAF 
technique and on a multi model ensemble. Yet, 
there were other alternatives that we wanted to test 
–both for ensemble generation and calibration- and 
also use a denser precipitation network for validation 
and calibration that became available after that 
previous work. Accordingly, this work progresses on 
the previous one, including more methods for PQPF 
calibration (i.e. the one based on the paper of 
S2007) applied to an alternate regional ensemble 
system as will be explained subsequently. 

To compare the skill of the different 
calibration strategies, 2 months of accumulated 
precipitation obtained from 48-hr ensemble forecasts 
have been analyzed. The ensemble system is a 
regional ensemble with perturbations in the initial 
conditions obtained trought the Breeding of the 
Growing Modes method (Toth and Kalnay, 1993). 

PQPFs obtained via the combination of the 
above mentioned calibration techniques are 
analyzed through the computation of the Brier Skill 
Score (hereafter BSS) and its components (Wilks 
1995) which also allows for comparison with results 
obtained in previous works.  
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 Even though a large amount of 
precipitation data from the SALLJEX experiment 
raingauge network (Vera et al., 2006) and from 
the Brazilian Water Agency was available for the 
present study, the lack of enough rain gauge 
precipitation data is the main constrain for the 
operational implementation of calibration 
algorithms. However, in the last decade, 
precipitation datasets such as CMORPH (Joyce 
et al. 2004), which combine microwave 
estimates of precipitation with high temporal 
resolution IR estimates of cloud motion, have 
become available. CMORPH has a 
homogeneous regional coverage, and high 
spatial as well as temporal resolution (30 min-
accumulated precipitation). For this reason, we 
have explored the potential of using CMORPH 
data for PQPF calibration, since it could be an 
interesting alternative for PQPF calibration over 
this and other regions where the gauge network 
is too coarse. 
 
2. METODOLOGY 
 
2.1 ENSEMBLE GENERATION  
 

Global and regional short range 
ensemble systems are used in this work. The 
global ensemble uses the MRF (Medium Range 
Forecasts) model with T62L28 resolution 
(approximately 2.5º horizontal resolution). The 
breeding of the growing modes technique 
(hereafter breeding) (Toth and Kalnay 1993) is 
used to introduce perturbations in the initial 
conditions with a rescaling period of 6 hours. 
The ensemble consists of 11 members (5 pairs 
of perturbed members and a control run) 
integrated up to 48-hour lead time. 

This global ensemble is used to provide 
initial and boundary conditions to a regional 
ensemble based on the WRF model version 2.0 
(Skamarock et al. 2005) which has been run with 
40 km horizontal resolution and 31 sigma 
vertical levels. The convective parameterization 
selected is Kain-Fritsch (Kain 2004), the 
boundary layer parameterization is the Yonsei 
University scheme (Hong and Pan 1996), and 
the surface processes are modeled using the 
NOAH surface model (Dudhia 2001).The 
regional ensemble has the same number of 
members as the global one, and each member 
of the regional model is nested in its 
corresponding global ensemble member and is 
integrated to obtain 48.hr forecasts. 

Both ensembles were initialized twice a 
day at 00 and 12 UTC: the global ensemble 

uses NCEP-NCAR Reanalysis (Kalnay et al. 1996) 
as unperturbed initial condition while the regional 
ensemble uses the Global Data Assimilation System 
analysis with a resolution of 1ºx1º. The experiment 
starts on 15

th
 December 2002 and ends on 15

th
 

February 2003. 
The results presented in this paper 

correspond to the regional (WRF based) ensemble 
forecasts. 
 
2.2 DATA 
 
 In this work rain gauge data and passive 
microwave precipitation estimates were used for 
forecast calibration. On the other hand, in the case 
of forecast verification, only rain gauge stations were 
taken into account.  
 The rain gauge network used in this work is 
a combination of the South America Low Level Jet 
Experiment (SALLJEX) and the Brazilian Water 
Agency (ANA) rain gauge networks. This network is 
far denser than the operational precipitation network, 
particularly over Argentina. For this reason this 
period is particularly interesting to conduct this kind 
of experiments. A quality control has been 
performed over SALLJEX data as described in 
Penalba et. al (2004). 
   

 
Figure 1: Total number of observations 
available for each grid box between 15

th
 

December 2002 and 15
th

 February 2003. 
(White means no data available for that grid 
box) The blue squares shows the location of 
the regions discussed in the text. 
 To compare model forecasts with 
observations, rain gauge data was interpolated to 
the model grid using box averaging, with boxes 
centered on each model grid point. Figure 1 shows 
the number of observations available for the whole 
period under consideration at each 40km by 40 km 
box: it can be seen that, in many places, there are 
less than 100 observations, indicating grid boxes 

1 2 

3 



with only one rain gauge station in this case the 
box averaging technique is equivalent to a 
nearest neighbor interpolation from the model 
grid to the rain gauge station. 

For calibration and verification purposes 
the region has been subdivided into 3 sub 
regions (Figure 1): Region 1, northern and 
central Argentina, Region 2, South Eastern 
Brazil and Region 3 Northern South America. 
The main reason for this sub-division is to 
evaluate the impact of forecast calibration over 
regions with different precipitation regime and to 
assess the sensitivity of forecast skill to the 
considered region. 
 
 
2.3 CALIBRATION METHODS 
 
 Several calibration methods are 
compared in this work. A parametric calibration 
method similar to that used by S2007, a non 
parametric method based on the methodology 
proposed by Gallus et al. (2007) and two 
versions of the algoritm based on the rank 
histogram (Hamill and Colucci 1998) 
 
Rank histogram algorithm: 
 
 This method was first introduced by 
Hamill and Colucci (1998) and uses the rank 
histogram of a variable to compute the 
probability of occurrence of precipitation above a 
certain threshold. The implementation adopted 
here is very similar to the one described in 
Hamill and Colucci (1998). 
 
Parametric algorithm: 
 
 To apply this method, precipitation 
values are first transformed by raising them to a 
power. In this work a power of 1/3 is used 
following the previous works of S2007 and 
Hamill (2007). The model is very similar to that 
proposed by S2007: the probability of having 
precipitation above a certain threshold is 
calculated considering the probability of the 
observed precipitation being cero and the 
probability of having precipitation above a 
certain threshold given that the precipitation is 
greater than cero The relationship 
between the conditional probability of having a 
cero in the observed precipitation given the 
forecasted precipitation is modeled through a 
logistic regression approach as in S2007 
(Equation 1). In this expression fk is the power 
transformed ensemble mean forecast, P(y=0| fk) 

is the conditional probability of the observation being 
0 given that the ensemble mean forecast is fk. The 
case where fk is 0 is not considered for the logistic 
regression (and is not used in the model). This is 
considered trough the variable δk which is 0 if fk is 0 
and one is fk is greater than 0. The variable y 
represents the observed value and ao, a1 and a2 are 
constants. 
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 On the other hand to compute the 
probability of having precipitation above a certain 
threshold it is assumed that given that the observed 
precipitation is not equal to 0 then the PDF of the 
observed precipitation is a Gamma and that the 
parameters of the distributions are a function of the 
forecasted precipitation. Equation 2, shows the 
functional form of the relationship between the 
distribution parameters and the ensemble mean 
forecast. 
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where mean and sigma are the mean and standard 
deviation of the fitted gamma distribution. The mean 
is assumed to be a linear function of the power 
transformed ensemble mean as in S2007 (where mp 
and mb are computed through linear regression 
between the ensemble mean and the observed 
precipitation). The standard deviation is assumed to 
be a function of the logarithm of the power 
transformed ensemble mean. This part of the model 
is different from that developed by S2007. In this 
case some tests were performed to asses the 
relationship between sigma and the forecasted 
precipitation and the proposed relationship gives a 
better fit. To explore this relationship the forecasted 
precipitation range was divided into several bins 
(each bin has approximately the same amount of 
elements). At each bin the standard deviation of the 
gamma distribution fitted to the observed 
precipitation corresponding to that bin was 
computed. The results are shown in Figure 2. As 
can be seen in this Figure the proposed relationship 
produces good results particularly for low 
precipitation values. For larger values the fit is not so 



good and the values of standard deviation are 
almost independent of the forecasted 
precipitation. For this range of values the shape 
of the probability density function also is closer 
to a normal distribution (not shown). As can be 
seen there is also a difference between the 
computed standard deviation and the fitted 
gamma standard deviation which is usually 
higher. 

 
Figure 2: Standard deviation of the fitted 
gamma as a function of the forecasted 
precipitation (red circles), standard deviation 
of the observations as a function of the 
forecasted precipitation (blue circles), 
logarithmic fit to the Gamma standard 
deviation (red line) and linear fit to the 
Gamma standard deviation (dashed red line). 
 
 The above procedure is also used to 
determine sp and sb (from Equation 2) in the 
calibration process.  

When the relationship between the 
mean forecasted precipitation and the mean of 
the gamma distribution fitted to the observations 
is computed using the approach above 
described, the results obtained are similar to that 
obtained in the case were the relationship is 
computed as the regression between the 
transformed forecasted precipitation and the 
observed precipitation. This suggests that the 
present implementation could be a good 
alternative for the computation of the regression 
between forecasted precipitation and standard 
deviation of the fitted gamma distribution. 

S2007 applied this model to each 
ensemble member of an ensemble system 
based on different models. In our case, as all the 
members are based on the same model and 
only the initial conditions are perturbed then little 
differences are observed if the model is applied 

individually to each ensemble member or only to the 
ensemble mean. 
 
Non-parametric algorithm: 
 

 This method is based on the work of Gallus 
et al. (2007). The range of the forecasted 
precipitation is divided in several bins. At each bin 
the probability of having precipitation above a certain 
threshold is computed directly from the observations 
without fitting a PDF to the data. This probability is 
assumed to take place at the center of the 
corresponding bin. Probabilities for other forecasted 
precipitation values are computed through linear 
interpolation.  
 Figure 3, shows an example of the 
computed relationship between the ensemble mean 
forecasted precipitation and the probability of 
precipitation occurrence above 2.5 mm. 
 

 
Figure 3: Relationship between the 
ensemble mean forecasted precipitation and 
the probability of occurrence of 
precipitation above 2.5 mm.  
 
 The main difference between this algorithm 
and the parametric one is that in this case the shape 
of the PDF is not assumed to be a gamma. Although 
the fit of the gamma distribution to the transformed 
precipitation observations is very good, it has been 
observed that for high forecasted precipitation 
amounts the shape of the distribution is closer to a 
normal distribution which suggests that better results 
can be obtained with a more general approach. 
More over, when these algorithms are used in a 
multi model ensemble, both algorithms can be easily 
applied independently to each ensemble member to 
take into account the bias of each model. However, 
in the case of the parametric algorithms, it is easier 
to compute weights associated to each ensemble 
member in order to calculate a Bayesian average of 
the probability associated with each ensemble 
member. 



 In the case of the algorithms based on 
the rank histograms, it should be remarked that 
they are not adequate for a multi model 
ensemble system, since they can’t take into 
account the individual bias of each ensemble 
member.    
 
3. RESULTS 
 
Estimation of the calibration training period: 
 

To estimate the length -in days- of the 
optimum training period, two different 
approaches were taken into account. First the 
dispersion of the distribution of the estimated 
parameters was evaluated as a function of the 
length of the training period. To explore this 

relationship, one hundred groups for each length –
N- days were randomly selected, and the 
parameters were estimated for each group. Then the 
parameter mean and standard deviation was 
computed for each value of N. Figure 4 shows the 
results for the estimation of the parameters mp and 
mb from Equation 2. The estimation of the 
parameters became more stable for training periods 
larger than 20 days. The uncertainty in this 
estimation is, however, not the same for the three 
regions: for example at region 1 the uncertainty in 
the parameter estimation is larger, what can be due 
to a stronger temporal variability of the precipitation 
over this region or perhaps due to the size of this 
region which is smaller than the two others. 
 

 
Figure 4: Mean slope (mp) as a function of training period length (days) (red line): mean plus and 
minus one standard deviation (blue line) estimated from the rain gauge data (solid lines) and 
CMORPH estimates (doted lines) at region 1 (left panel), 2 (center panel) and 3 (right panel). 

 
Figure 5: Brier Skill Score as a function of the length of the training period over regions one (left) 
and two (right) for different thresholds: 1 mm (blue line), 2.5 mm (red line), 6.3 mm (green line) and 
12.7 mm (pink line). 
 



 
The impact of the training period length 

upon the probabilistic forecast skill was also 
analyzed. The BSS was computed for forecasts 
calibrated using different training period lengths 
(both calibration and verification were performed 
using rain gauge data only), keeping the 
verification period the same for all the 
experiments. Figure 5 shows the relationship 
between the Brier skill score and the size of the 
verification sample at region 1 and 2. As 
expected, the brier skill score gets larger as the 
size of the training period increases, however 
some noise in the estimation of the BSS as a 
function of the verification period length has 
been observed. Some experiments were also 
performed randomly choosing the verification 
period. In this case the result was even noisier 
and the variability associated with the increase 
in the length of the training period was hard to 
detect, given the variability associated with 
different model skill over different periods. 

 

 
Figure 6:  Upper panel: Reliability diagram 
for the 2.5 mm threshold over region 2. 
Uncalibrated forecast (red solid line) and its 
confidence intervals (red dashed line), rank 
histogram calibration (blue solid line), 
parametric calibration (green solid line) and 
non-parametric calibration (grey solid line). 
The lower panel shows the frequency of 
occurrence of each probability range in the 
forecast.  

Based on the results discussed so far, the 
subsequent experiments have a 20 days  training 
period length, which seem to provide a reasonable 
stability of the estimated parameters while little 
improvement is observed in the Brier skill score for 
values larger than those. Also, as the length of the 
experiment is relatively short (around 2 months) a 
training period larger than 20 days would 
significantly reduce the length of the period available 
for verification. 
 
Comparison between different calibration 
strategies 
 
 As stated before, three different types of 
calibration strategies have been tested in this work. 
The performance of these algorithms has been  
tested over the three selected regions. 
 Figure 6 shows the reliability diagram for the 
2.5 threshold over region 2. As can be seen, all the 
strategies reduce the amount of overestimation of 
the probability of having rainfall above this threshold. 
In the case of the algorithm based on the rank 
histogram, there is still an overestimation of the 
probability, particularly for high values. This over 
estimation is mainly due to the fact that the cases 
where the observed precipitation is 0 usually fall in 
the lower ranks of the histogram, producing higher 
forecasted probabilities when the selected threshold 
falls in the firsts ranks. In the lower panel of Figure 
6, it can be seen that all the calibration strategies 
significantly reduce the frequency of forecasted 
probabilityes near 1, however the algorithm based 
on the rank histogram shows a higher frequency of 
this forecasts that the other two. 

On the other hand, the parametric and non-
parametric algorithms described before exhibit a 
similar behavior as can be seen in both panels of 
Figure 6. 

Figure 7 shows the BSS and its reliability 
and resolution components for the different 
calibration strategies over the three regions. The 
best results in terms of the BSS are obtained over 
region 2 where the rain gauge network used for 
verification and calibration is denser, the worst 
results are observed over region 3 where the 
precipitation regime is more tropical. The parametric 
and non-parametric calibration approaches give 
similar results over the three regions. The non-
parametric approach seems to be slightly better than 
the parametric one over regions 1 and 2 but the 
differences are non significant. Moreover, at 48-hour 
forecast length the result is the opposite (not 
shown). Mainly, the improvement of the BSS 
through calibration algorithms is explained by an 



increase in the reliability of the forecasts. The 
methodology based on the rank histogram 
shows less reliability than the other two 
approaches. 
  
Use of CMORPH estimates for forecast 
calibration: 
 
 One of the main problems for the 
implementation of this type of forecast 
calibration over South America is the lack of a 
dense rain gauge network. Most of the 
precipitation data used in this work is not part of 
the operative precipitation network, meaning that 
the data quality control performed over this data 
is not regularly done and so the data is not 
available in real time. 
 Consequently, the use of precipitation 
estimates from satellites could provide denser 

and more homogeneous data distribution for 
parameter estimation. The caveat of using these 
products is that they have errors. In the past 
decades, estimations based on passive microwave 
sensors has been developed. These algorithms are 
based in the relationship between the microwave 
emitted radiance at different wave lengths and the 
content of liquid water and ice in clouds. In particular 
the CMORPH algorithm (Joyce et al. 2004) uses 
passive microwave radiances for precipitation rate 
estimations and geostationary satellites for tracking 
precipitating systems. The skill of CMORPH 
precipitation estimates has been assessed over 
North America by Joyce et al. (2004) and over South 
America by Ruiz (2009). In the later, also a 
statistically based calibration is proposed to reduce 
CMORPH systematic errors as a function of the 
estimated precipitation amounts.  

 

 
Figure 7: BSS as a function of precipitation threshold (mm) first column. Second column: as in 
the first column but for the reliability component of the BSS. Third column: as in the first column 
but for the resolution component of the BSS. The first row is for region 1, the second for region 2 
and the third for region 3. 

 
 The impact of using CMORPH in the 
calibration process was estimated in Ruiz et al. 
2009, using only CMORPH estimates 
interpolated to the rain gauge locations. This 

procedure does not take advantage of the larger 
number of precipitation estimates available in 
CMORPH data for locations where no rain gauges 
are present. In order to obtain a better measure of 



increased data availability through CMORPH 
data, we now used the full CMORPH estimates 
for forecast calibration. 

 

 

 
Figure 8: Observed distribution (bars) and 
fitted distribution (solid lines) for  observed 
rainfall when the mean forecast is (a) 
between 0 and 0.01 mm and (b) between 5 
and 10 mm over region 1. Rain gauge data in 
blue, CMORPH raw estimates in green and 
CMORPH calibrated estimates in red. 

 
Figure 4 shows the parameter 

estimation from CMORPH data as a function of 
the length of the training period. Results are 
quite similar over region 2, but differ over region 
1 and 3. This difference is due to differences 
between the PDF of CMORPH and rain gauges. 
The difference is larger for cases where the 
forecasted precipitation is small as can be seen 
comparing Figures 8a and 8b. CMORPH data, 
both calibrated and uncalibrated, show higher 
frequencies at small precipitation amounts 
(around 1 mm), although the calibrated 
estimates distribution is closer to the observed 
one, as could be expected. When the 
comparison between the two distributions is 
performed taking into account only the grid 
points where both rain gauge data and 
CMORPH estimates are available the 

distributions are much closer (not shown). This 
suggests that the differences observed in Figure 8 
between the calibrated CMORPH and the rain 
gauge data is mainly due to the spatial variability of 
the rainfall within region 1 which is poorly 
represented by the rain gauge network. Over region 
2, where the rain gauge network is denser, the 
differences between the PDF for the observed data 
and the CMORPH estimates is smaller as suggested 
by Figure 4 and also from the comparison of the 
PDFs (not shown). 

 

 

 
Figure 9: BSS (upper panel) and its 
resolution component (lower panel) over 
region 1 for the 24 hour forecast using rain 
gauge data (dark red), raw CMORPH (blue) 
and calibrated CMORPH (green) as training 
data. 

The impact of CMORPH data upon 
probabilistic forecast skill is assessed using the 
BSS. Figure 9 shows the BSS computed over region 
1 using the parametric algorithm for probability 
calibration with the rain gauge data, the raw 
CMORPH estimates and the calibrated CMORPH 
estimates. The verification is performed using the 
rain gauge data in all the cases. As can be seen, the 
performance of both calibrated and raw CMORPH 
are quite close to the case where only rain gauges 
are used. Similar results where obtained over the 
other 2 regions and also in the case where the non-
parametric algorithm was used (not shown). 



In some cases, raw CMORPH estimates 
produce a degradation of the forecasts for 
thresholds over 25 mm (not shown), what might 
be due to the systematic errors in the CMORPH 
estimates over these regions which tend to over 
estimate high precipitation events. These results 
suggest that, even though there are differences 
between the PDF of CMORPH data and the rain 
gauge data, this estimate can be used for 
forecast calibration without loosing skill. 
 
CONCLUSIONS 
 
 Three methods for probabilistic forecast 
calibration have been evaluated over South 
America. The best results have been obtained 
with methods that attempt to describe the 
conditional PDF of the observed rainfall given 
the amount of forecasted precipitation (both 
parametric and non-parametric) by the ensemble 
mean. In this case as the entire ensemble 
members are based on the same model, the use 
of the ensemble mean gives the same results as 
the mean of the probabilities forecasted for each 
ensemble members. 
 No difference has been observed 
between the parametric and non-parametric 
algorithms suggesting that the fit to a gamma 
distribution is quite good to compute the 
calibrated probabilities. 
 The use of CMORPH estimates produce 
little impact upon forecast skill. This is 
particularly important over this region because 
the operational rain gauge network is far coarser 
than the one used in this work for forecast 
calibration and verification. The calibration of 
CMORPH estimates produces a distribution that 
is closer to the observed one. Still, the impact 
upon forecast skill is small. 
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