
1.   MOTIVATION AND GOAL 
  
Since the dawn in 1955 of operational numerical 
weather prediction (NWP) in the United States 
(Shuman 1989), forecast models have, for the 
most part1, been run on fixed time schedules, and 
in fixed configurations (e.g., geographic region, 
grid spacing), using dedicated computational 
resources.  This strategy has numerous 
advantages for forecasters, particularly because it 
affords an ability, via repeated examination of 
results from the same model configuration over 
long periods of time, to identify and account for 
situation-dependent model idiosyncrasies.  
 Ironically, such a static framework that is 
independent of the weather occurring or being 
predicted is incongruent with the dynamic nature 
of the atmosphere, especially on the mesoscale, 
where events such as tornadoes, flash floods, hail, 
lightning, intense straight-line winds and localized 
winter storms are characterized by a high degree 
of locality as well as rapid onset and evolution.  In 
light of operational models now boasting near-
cloud-resolving grid spacing (e.g., Kain et al. 
2008), a potentially more effective and, indeed, 
natural approach to operational NWP involves 
having forecast models and their associated 
infrastructure (data acquisition, storage and 
assimilation systems, IT networks, high 
performance computers, and data output 
frameworks) change their configuration 
automatically, or with minimal human intervention, 
to produce the “best” prediction possible for a 
given weather situation and available 

                                                 
∗ Corresponding Author Address:  Prof. Kelvin K. Droegemeier, 
University of Oklahoma, 120 David L. Boren Boulevard, Suite 
5900, Norman, OK  73072.  Email:  kkd@ou.edu.  Visit LEAD 
on the web at http://portal.leadproject.org. 
1 The exception in the US is hurricane models, run in domains 
that follow hurricanes with time (e.g., Davis et al. 2008); the 
high resolution window of the National Weather Service 
Weather Research and Forecast (WRF) model (Skamarock et 
al. 2008); and the UK Meteorological Office model, windowed 
domains of which can be configured by forecasters to run on 
demand.) 

computational resources (Droegemeier et al. 
2005, 2009; Plale et al. 2006).  
 This so-called dynamically adaptive NWP 
strategy is the focus of the present paper and the 
principal foundation of Linked Environments for 
Atmospheric Discovery (LEAD), a five-year Large 
Information Technology Research (ITR) grant 
funded by the National Science Foundation (NSF). 
LEAD has created an integrated, scalable 
framework in which meteorological analysis tools, 
forecast models, and data repositories can 
operate as dynamically adaptive, on-demand, grid-
enabled systems that a) change configuration 
rapidly and automatically in response to weather; 
b) respond to decision-driven inputs from users; c) 
initiate other processes automatically; and d) steer 
remote observing technologies to optimize data 
collection for the problem at hand (e.g., 
Droegemeier 2009).  Although mesoscale 
meteorology is the particular science domain to 
which these concepts have been applied in LEAD, 
the methodologies and infrastructures developed 
are extensible to other domains including 
medicine, ecology, hydrology, geology, 
oceanography and biology.   
 We take in this paper a first step toward 
answering the following fundamental question 
regarding dynamically adaptive NWP:  For a given 
weather event or situation, what configuration of a 
cloud-resolving numerical prediction system yields 
the “best” (defined appropriately) solution under 
specified computational resource and other 
constraints? Stated another way, what is the most 
effective way to utilize a given set of computational 
resources (e.g., as measured by total CPU time) 
among choices such as a single fine-grid forecast 
in a small domain, a single medium-grid forecast 
in a larger domain, nested grids, ensembles, etc? 
  
2.  DYNAMIC ADAPTATION TO WEATHER 
 
a. Objective and Strategies 
 
Dynamic adaptation can take many forms but in all 
cases, the objective of dynamically adaptive 

14A.1      
 

DYNAMICALLY ADAPTIVE NUMERICAL WEATHER PREDICTION:  MODELS, 
OBSERVATIONS AND CYBERINFRASTRUCTURE RESPONDING TO THE 

ATMOSPHERE 
 

∗1,2Kelvin K. Droegemeier and 2Yunheng Wang 
1Center for Analysis and Prediction of Storms and 2School of Meteorology 

University of Oklahoma 
Norman, Oklahoma 

 



systems is to improve upon their static 
counterparts in some manner, ideally one that 
formally optimizes or at least quantitatively 
improves upon certain aspect(s) of performance 
(Droegemeier et al. 2007).  In the case of NWP, 
systems or components may adapt in time (e.g., 
rapid update cycling, where new forecasts are 
launched in rapid sequence, perhaps overlapping 
in time), space (e.g., adaptive nesting as a means 
of reducing local error or increasing fidelity e.g., 
Dietachmayer and Droegemeier 1992; Skamarock 
and Klemp 1993), modality (e.g., ensembles of a 
particular number or configuration), or via adaptive 
observations (e.g., Morss et al. 2001, Brotzge et 
al. 2006; Plale et al. 2006).   
 Adaptation can be automated, manual, 
objective, or heuristic and can occur in a variety of 
locations within the system, at multiple levels and 
in highly connected, nonlinear ways.  Finally, 
cyberinfrastructure is an important but often 
overlooked component of dynamically adaptive 
systems.  For example, networks, high 
performance computers, data bases, and other 
cyber elements must be able to change 
configuration quickly, and in a coordinated, fault-
tolerant manner, in response to a given situation 
(e.g., Marru et al. 2008) in order to accommodate 
the severe quality of service demands associated 
with operational NWP.  It is this latter aspect of 
dynamic adaptation that presents among the 
greatest challenges, especially given the long 
history of batch-operated computing systems, 
which are not designed for interrupt-driven, on-
demand operations.  
 
b. Key Questions 
 
Because dynamic adaptation is a complex, multi-
disciplinary problem, associated with it are a 
number of challenging questions, including but not 
limited to the following: 
 
• When is adaptation useful and can the costs 

and benefits of adaptation be quantified? 
• What types of adaptation are possible and 

most effective and how can they be chosen 
and combined? 

• How is adaptivity triggered/controlled? 
• What elements of the system can or should 

adapt? 
• How can one deal with loss of resources or 

less than ideal availability to achieve the 
required adaptation? 

• What metrics can be used to measure the 
effectiveness of adaptation and can “optimal” 
adaptivity be defined? 

• What negative consequences exist to 
adaptation? 

• What are the time scales of adaptivity and 
what controls them? 

• Do adaptivity and on-demand functionality 
need to be pre-scheduled to any extent? 

• What triggers the decision to adapt and how is 
the decision communicated across the 
system? 

• What does quality of service mean in an 
adaptive system? 

• In the context of NWP, how might adaptation 
impact predictability? 

 
c. Canonical Example of Adaptive NWP 
 
A canonical example of adaptation is shown in 
Figure 1 from Droegemeier (2009).  The far left 
side of the figure depicts observations transmitted 
by a variety of observing systems, including the 
NEXRAD operational and CASA (Brotzge et al. 
2006) experimental Doppler radar networks, as 
well as forecast model output. These data can be 
processed, separately or in parallel, by a data 
mining system (marker 1), within which exists a 
persistent agent that searches for user-defined 
atmospheric conditions associated with the 
development of deep convection (e.g. instability, 
precipitation on radar of a certain intensity or 
vertical extent). Alternatively, the observations and 
model output can be assimilated using algorithms, 
such as ensemble Kalman filtering (e.g. Tong & 
Xue 2005) or four-dimensional variational methods 
(e.g. Rihan et al. 2005), to produce gridded fields 
of all relevant atmospheric quantities.  
 The mining agent can then be applied to the 
resulting quantities to search for specified values 
or patterns indicative of convection. If such 
conditions or features are found, LEAD 
automatically triggers a WRF numerical forecast 
(marker 2), the specific grid spacing, domain size, 
forecast duration and allowable wall clock time of 
which are communicated by a brokering agent to 
the TeraGrid (marker 3; www.teragrid.org). If 
resources available within the TeraGrid at that 
time are insufficient, LEAD adjusts model 
parameters based upon user-assigned priorities 
until the job can be run and output returned 
sufficiently quickly. Such an output (marker 4) is 
analysed by the same data mining engine used 
previously in an attempt to identify regions in 
which targeted observations might improve 
forecast quality (this operation could be performed 
on sensitivity fields as well; e.g. Errico & Vukicevic 
1992; Park & Droegemeier 2000).  If such regions 
are found, an agent communicates with an 
adaptive observing system, such as the radars 
being developed by the US National Science 
Foundation (NSF) Center for the Collaborative 
Adaptive Sensing of the  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Atmosphere (Brotzge et al. 2006; Plale et al. 
2006), and new targeted observations are 
collected. The process then repeats or is modified 
automatically if other specified criteria are met. 
 
d. Potential Benefits and Drawbacks 
 
The potential benefits of a dynamically adaptive 
approach to NWP are many.  First and foremost is 
that the prediction system has the ability to 
differentiate among weather events or 
atmospheric scenarios, thus potentially providing a 
“best” solution in a given situation rather than 
“good” solutions across all situations.  Second, the 
adaptive approach potentially makes optimal use 
of available data and computational resources, 
adjusting model grid spacing and other 
parameters, for example, to provide necessary 
capability when and where needed. Third, as 
shown by Brewster et al. (2008), a dynamic 
approach allows operational forecasters to launch 
predictions themselves, in anticipation of specific 
events such as deep convective storms, thus 
providing direct control in generating the specific 
information needed to make informed decisions.   
 Likewise, the dynamically adaptive approach 
also has a number of potential drawbacks.  For 
example, in operational forecasting, the evaluation 
of a model operated daily in the same 
configuration allows forecasters to identify 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
idosyncracies that can be factored into output 
analysis.  If, as is the case in a dynamically 
adaptive system, the forecast configuration 
changes frequently in response to  changing 
weather, the skill obtained through repeated 
examination of output in a static framework would 
be diminished or perhaps lost.   The extent to 
which this drawback is overwhelmed by benefits of 
increased accuracy and reliability owing to 
dynamic adaptation is a dual research-operations 
question that is being addressed in part by the 
NOAA Hazardous Weather Test Bed (Brewster et 
al. 2008).   
 
3.  EXPERIMENT DESIGN 
 
a. Model Description and Parameter Settings 
 
We utilize Version 3.0 of the Weather Research 
and Forecast (WRF; http://wrf-model.org) model to 
begin assessing the question posed in §1, namely, 
for a given weather event or situation, what 
configuration of a cloud-resolving numerical 
prediction model yields the “best” solution under 
specified computational resource and other 
constraints? To develop an initial understanding of 
the many complex components of dynamically 
adaptive NWP, we keep these initial experiments 
as simple as possible.  Specifically, we simulate 
the evolution, over three hours, of an isolated 

Figure 1.  Sample closed-loop dynamically adaptive weather analysis and prediction scenario 
enabled by LEAD. See text for further details.  (From Droegemeier 2009) 



supercell storm in an idealized, initially horizontally 
uniform, conditionally unstable environment using 
only basic cloud and precipitation physics.  The 
case chosen is the default supercell test scenario 
in WRF for which the environment is characterized 
by a wind hodograph that turns through a quarter-
circle.  The storm is initiated by a warm thermal 
impulse placed within the boundary-layer at the 
center of the model domain (see §3b). 
 A total of 51 vertical levels are used with 
exponential stretching, and an average storm 
speed is subtracted from the environment to keep 
the principal right-moving storm of interest near 
the center of the domain.  Cloud and precipitation 
processes are represented using the Kessler 
(1969) warm-rain parameterization and no 
radiation, surface physics or terrain effects are 
included.  All other parameters represent WRF 
default values unless otherwise specified. 
 
b. Domain Configuration  
 
To mimic a routine forecast from a marginally 
cloud-resolving operational model, we create a 
baseline forecast (we use the terms forecast and 
simulation synonymously) at 5 km grid spacing in 
a domain having an area 1000 x 1000 km2 (outer, 
black box in Figure 2). It is upon this forecast we 
wish to improve via the application of simple 
adaptation strategies. A “truth” or “nature” 
simulation, against which all other experiments are 
compared, is created in the same domain as the 
baseline forecast (Figure 2) though using a 
uniform horizontal grid spacing of 250 m.  
 Each of our adaptation experiments consists 
of a single two-way nested grid placed within the 
baseline grid.  The size and grid spacing of the 
particular nest used (Figure 2) is determined, for 
the principal set of experiments, by its nesting ratio 
(i.e., ratio of grid spacing between the baseline 
forecast and the single nest) under the constraint 
that all nests must utilize a nearly fixed amount of 
computing time2.  Consequently, as shown in 
Table 1, grid spacing varies in proportion to 
domain size, and because only a single nested 
grid is used in each experiment, the nesting ratio 
varies inversely with grid spacing.  Shaded 
diagonals of Tables 1 and 2 show experiments in 
which computing time is constrained.  For 
experiments below (above) the diagonal, less 
(more) computer time is required for a fixed grid 
spacing because smaller (larger) domains are 
used.   
 
 

                                                 
2 Computing time as used here is the sum of dedicated CPU 
and shared I/O time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 In reality, adaptation may be triggered by an 
atmospheric event (e.g., first echo on radar or first 
towering cumulus on satellite), or well in advance  
based upon expected regions of convective 
initiation (Brewster et al. 2008). In the present 
experiments, all forecasts are run for three hours 
and all nests are initiated at t = 0.  In the future, 
nests will be initiated later in time and also will be 
repositioned as the forecast proceeds.   
 
4.  RESULTS 
 
a. Methodology 
 
Owing to the spatial structure of deep convective 
storms, traditional measures of forecast skill (e.g., 
equitable threat, RMS error) designed for fields 
having global structure, and that measure broad 
overlap between prediction and verification, are 
less effective (e.g., Brown et al. 2004; Ebert 2008) 
because small temporal or spatial errors in storms 
can yield poor scores when, in reality, the forecast 
is reasonably “similar” to the actual event.  
Consequently, we utilize here a relatively simple 
measure of agreement between forecast and 
“truth,” namely, the mean square error, which can 
be expressed as the sum of dissipation 
(amplitude) and dispersion (phase) error (Takacs 
1985).  This approach was used by Hou et al. 
(2001) to verify ensemble forecasts, and errors in 
the present case are computed on each forecast 
grid by interpolating to it values from the nature 
experiment.  Subsequent work will improve upon 
this admittedly limited approach by applying other 
quantitative measures of skill.   
 
 

Figure 2.  Model domains used in the experiments.  
See the text for further details. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. Baseline (Parent) Grid Forecast Errors 
 
Because a two-way nested gridding approach is 
used for all adaptive forecasts, the solution on the 
5 km parent or baseline grid also is impacted.  
Considering surface rainwater mixing ratio, total 
error for the baseline forecast (no nesting) is 0.025 
g kg-1.  The use of nesting is expected to yield a 
smaller error, and Table 3 shows such is the case.  
In general, for a given nested domain size, total 
error on the parent grid decreases as grid spacing 
decreases and nesting ratio increases.  Changes 
generally are small because the parent domain is 
extremely large relative to the size of the storm 
system being represented.   
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 The behavior of total error as a function of 
domain size for a fixed grid spacing (nesting ratio) 
is less regular.  One would expect errors to be 
smaller for smaller nested domains because 
feedback from the fine to coarse grid would be 
occurring over a much smaller fraction of the total 
grid.  This generally appears to be the case for 
grid E, except for a nesting ratio of three (Table 3).   
 From the perspective of a fixed amount of 
computing resource, it is difficult to assess which 
of the four model configurations represented by 
diagonal entries in the table – all of which use 
approximately the same computing time – yields 
the “best” solution for rainwater mixing ratio.  
Because the practical utility of nested grids lies in 
the increased fidelity of the solution on them rather 
than the parent grid, improvements on the latter 
likely  are less relevant in an operational context.   
 Table 4 shows the same information as Table 
3 except for vertical velocity at 4 km altitude.  For 
comparison, the total error for the baseline 
forecast (no nesting) is 0.31 m s-1.  Perhaps not 
surprisingly, given the small size of storm updrafts, 
no terribly clear pattern emerges from the errors 
other than an overall reduction relative to the no-
nest baseline case.  

        Nest Ratio  
Domain 

Baseline 
(Δx = 5 km) 

3  
(Δx = 1.67 km) 

5 
(Δx = 1 km) 

7  
(Δx= 714 m) 

9  
(Δx = 555 m ) 

A (1000 x 1000 km2) 840 s  
B (690 x 690 km2)  5333 s 23,517 s 46,766 s 60,416 s 
C (280 x 280 km2) 1799 s 5306 s 10,565 s 31,387 s 
D (180 x 180 km2) 1440 s 2957 s 5359 s 14,752 s 
E (90 x 90 km2) 1177 s 1520 s 2269 s 5240 s 

        Nest Ratio  
Domain 

Baseline 
(Δx = 5 km) 

3  
(Δx = 1.67 km) 

5 
(Δx = 1 km) 

7  
(Δx= 714 m) 

9  
(Δx = 555 m ) 

A (1000 x 1000 km2) 201 x 201  
B (690 x 690 km2)  415 x 415 691 x 691 967 x 967 1243 x 1243 
C (280 x 280 km2) 169 x 169 281 x 281 393 x 393 505 x 505 
D (180 x 180 km2) 109 x 109 181 x 181 253 x 253 325 x 325 
E (90 x 90 km2) 55 x 55 91 x 91 127 x 127 163 x 163 

       Nest Ratio 
                 (Δx) 
Domain 

3  
(1.67 km) 

 

5  
(1 km) 

 

7  
(714 m)  

 

9  
(555 m) 

 
B (6902 km2) 0.017 0.014 0.014 0.014 
C (2802 km2) 0.017 0.014 0.017 0.014 
D (1802 km2) 0.019 0.018 0.017 0.017 
E (902 km2) 0.024 0.013 0.012 0.011 

Table 3.  Total error at 3 hours for surface rainwater 
mixing ratio (g kg-1) for the baseline (parent) grid. 

Table 1.  Relationship among model domain size (left column), grid spacing and nesting ratio (top 
row), and computing time (table cell entries, in seconds) for all experiments.  Domain A is the 

baseline forecast (see Figure 2), and the single nested grid domains are indicated by the letters 
B-E (see also Figure 2).  The shaded diagonal cells show computing time associated with each 

experiment which, for the nested runs, is constrained to be nearly constant. 

Table 2.  As in Table 1 except showing the number of horizontal grid points for each domain. 



 
 
 

 
c. Nested Grid Forecast Errors 
 
Tables 5 and 6 show, for the complete area of 
each nested grid, total error at 3 hours (end of the 
forecast) for surface rainwater mixing ratio and 
vertical velocity at 4 km altitude, respectively.   In 
all experiments, error increases monotonically for 
a given grid spacing (nesting ratio) as domain size 
decreases, indicating both an impact of the nested 
lateral boundaries (at which interpolation occurs 
every time step in the two-way nesting procedure) 
as well as, for the two smallest domains (D and E), 
a partial exit of a portion of the left-moving split 
storm. 
 For a given domain size, however, as the grid 
becomes successively finer, total error decreases, 
reaching a minimum at 714 m spacing (nesting 
ratio of 7) for rainwater (Table 5) and 555 m 
spacing for vertical velocity (Table 6, nesting ratio 
of 9).  The error in all cases is overwhelmingly 
dominated by dispersion, indicating that phase 
error decreases as the grid becomes finer, up to 
the point where the nesting ratio is so large that 
errors associated with interpolation in the two-way 
nesting procedure begin to dominate.   
 An interesting and somewhat anticipated 
result is that, for a fixed amount of computing time 
(diagonal entries), total error is a minimum for the 
largest domain and coarsest grid spacing.  As 
noted previously, the increase in error for the 
smallest two domains as grid spacing decreases 
is to some extent associated with the partial exit of 
the left-moving storm; however, the entire storm 
system is contained within the rather large 
domains B and C, suggesting that nesting ratio is 
the dominant factor in those error trends.  [To 
eliminate this effect, we examine in §4c errors 
computed within the one domain common to all 
experiments, i.e., domain E.] 
 It is important to recognize that, in practice, 
multiply nested grids likely would be used to 
mitigate this behavior, and indeed we are studying 
such configurations now.  However, establishing a 
foundation using a single nest was an important 
first step before attempting to understand more 
complicated scenarios. 
 

 
 
 
 

 
 
 
 
 

 
d. Common Grid Forecast Errors 
 
To deal with the shortcoming, noted above, 
regarding error interpretation given that part of the 
left-moving storm exits the smallest two domains, 
we present statistics computed only over the 
domain (E) that is common to all nested runs. 
Tables 7 and 8 show, over domain E, total error at 
3 hours (end of the forecast) for surface rainwater 
mixing ratio and vertical velocity at 4 km altitude, 
respectively. Corresponding horizontal cross 
sections of forecasts over the same area, arrayed 
identical to the cells in the tables, are shown in 
Figures 3 and 4, respectively, and in Figures 5 and 
6 for the nature or “truth” run, also interpolated to 
domain E. 
 In contrast to the previous discussion, error 
behavior is somewhat more variable as a function 
of domain size and grid spacing (nesting ratio).  In 
particular, error increases as domain size 
decreases for a spacing of 1.67 km (Table 7), but 
for finer grids and other nesting ratios, smaller 
domains sometimes produce smaller errors.  A 
significant decrease in error occurs in rainwater 
mixing ratio for all nested grids (Table 7) when the 
nesting ratio increases from five to seven 
(compare Figures 3 and 5), contrary to the 
behavior noted above when error was computed 
over the entire nested domain.  Interestingly, a 
nesting ratio of seven still appears to be optimal 
for rainwater, and for a fixed amount of computing 
resource (diagonal cells), this ratio also produces  
 
 

       Nest Ratio 
                 (Δx) 
Domain 

3  
(1.67 km) 

 

5  
(1 km) 

 

7  
(714 m)  

 

9  
(555 m) 

 
B (6902 km2) 0.21 0.19 0.19 0.20 
C (2802 km2) 0.21 0.19 0.19 0.20 
D (1802 km2) 0.23 0.21 0.22 0.22 
E (902 km2) 0.25 0.19 0.19 0.18 

       Nest Ratio
                 (Δx) 
Domain 

3  
(1.67 km) 

 

5  
(1 km) 

 

7  
(714 m)  

 

9  
(555 m) 

 
B (6902 km2) 0.052 0.049 0.048 0.052 
C (2802 km2) 0.315 0.296 0.293 0.315 
D (1802 km2) 0.489 0.434 0.356 0.365 
E (902 km2) 1.156 1.020 0.786 0.871 

       Nest Ratio
                 (Δx) 
Domain 

3  
(1.67 km) 

 

5  
(1 km) 

 

7  
(714 m)  

 

9  
(555 m) 

 
B (6902 km2) 0.56 0.57 0.60 0.60 
C (2802 km2) 3.36 3.44 3.64 3.61 
D (1802 km2) 5.76 5.62 6.05 6.00 
E (902 km2) 16.01 15.47 14.40 13.78 

Table 6.  Total error at 3 hours for vertical velocity 
(m s-1) at 4 km altitude computed over the complete 

domain of the nested grids shown. 

Table 4.  Total error at 3 hours for vertical velocity  
(m s-1) at 4 km altitude for the baseline (parent) grid. 

Table 5.  Total error at 3 hours for surface rainwater 
mixing ratio (g kg-1) computed over the complete 

domain of the nested grids shown. 



 
 
 

 
 
 
 

 
the best overall solution.   Consequently, in a 
dynamically adaptive NWP scenario when 
available computing time is limited to ~5300 s and 
a single nested grid is inserted within the 5 km 
operational forecast, the best model configuration 
with respect to rainwater at 3 hours would be a 
nest having an area of 180 x 180 km2 and using 
714 m grid spacing.  The manner in which this 
choice is actually made for a given weather 
scenario is a component of our ongoing research 
(see §5) given that the LEAD infrastructure can 
accommodate exactly this sort of capability. 
 Interestingly, vertical velocity (Table 8, Figures 
4 and 6) does not show a similar marked change 
in error between nesting ratios of five and seven, 
and possible reasons for this behavior continue to 
be evaluated.  Similar abrupt changes have been 
noted in previous studies (e.g., Adlerman and 
Droegemeier 2002; Petch 2006) and may be 
related to differences in dynamical and 
microphysical processes at kilometer to sub-
kilometer grid spacing.  Of the many other fields 
and altitudes examined for the present simulations 
(not shown), only surface rainwater mixing ratio 
shows this abrupt behavior. 
 Recalling Table 1, which shows a wide range 
of computing times across the study parameter 
space, it is clear that substantially large nested 
domains at fine grid spacing do not necessarily 
yield a commensurately more accurate solution (or 
return on investment) for the simple storm case 
and single nested grid configuration used here. 
This likely would not be the case if, for example, a 
substantial portion of the baseline domain were 
filled with convection, in which case a single 

nested grid, while perhaps “good” locally, would 
for some of the configurations shown here be fully 
inadequate by virtue of excluding potentially 
important weather.  Further, such a situation would 
lead to potentially smaller domains relative to 
available computer time because physics 
components of the code would consume a 
proportionally large amount of time. 
 
5.  SUMMARY AND FUTURE WORK 
 
We used the WRF model to examine a very 
simple scenario of dynamically adaptive numerical 
weather prediction in which, under the constraint 
of fixed computing time, a single nested grid of 
variable spacing and size, but fixed location, was 
placed within a baseline or pseudo-operational 
forecast run at 5 km grid spacing.  The case 
examined was an idealized, isolated supercell 
storm with only warm rain microphysics and no 
terrain, radiation or surface physics. 
 We noted that phase error (dispersion) was 
the dominant error in all experiments, and that the 
mean square or total error tended to increase for a 
fixed grid spacing (nesting ratio) as domain size 
decreased.  Not all variables exhibited this 
behavior, and for some the “best” forecast was not 
produced by the largest domain and finest grid 
spacing owing to the influence of the nesting ratio, 
which increased as grid spacing decreased.   
 We are pursuing a variety of additional, much 
more sophisticated experiments to build upon this 
admittedly simple example.  These include 
considerably greater aerial coverage and 
complexity of storms within the “truth” experiment, 
the use of multiple and moving nests, the 
launching of nests at different times, and different 
ways of specifying computational constraints (e.g., 
total processing time, forecast turnaround time).   
 In these experiments, we did not concern 
ourselves with the decision by which any given 
nested grid or other change in model configuration 
might be implemented.  However, the LEAD 
infrastructure has the capability to automatically 
launch multiple forecasts on demand using a 
variety of “triggers,” including but not limited to 
features detected in observations such as radar 
data, regions of the atmosphere identified as 
potentially threatening by humans (e.g., 
mesoscale discussions, watches) or data (e.g., an 
exceedance threshold for CAPE), features 
detected in previous forecasts that might suggest 
areas of refinement, errors established by adjoint 
sensitivity analysis, or manually by humans.   
 As we answer more questions regarding 
dynamically adaptive systems (§2b), we will utilize 
the LEAD infrastructure to test the concept of 
forecast model solution optimization under a 
variety of physical and computational constraints.   

       Nest Ratio 
                 (Δx) 
Domain 

3  
(1.67 km) 

 

5  
(1 km) 

 

7  
(714 m)  

 

9  
(555 m) 

 
B (6902 km2) 1.121 1.130 0.767 0.878 
C (2802 km2) 1.122 1.130 0.763 0.883 
D (1802 km2) 1.124 1.125 0.753 0.871 
E (902 km2) 1.156 1.020 0.786 0.871 

       Nest Ratio 
                 (Δx) 
Domain 

3  
(1.67 km) 

 

5  
(1 km) 

 

7  
(714 m)  

 

9  
(555 m) 

 
B (6902 km2) 2.52 2.16 2.20 2.05 
C (2802 km2) 2.52 2.18 2.18 2.06 
D (1802 km2) 2.51 2.15 2.20 2.10 
E (902 km2) 2.55 2.09 2.01 1.91 

Table 7.  Total error at 3 hours for surface rainwater 
mixing ratio (g kg-1) computed over Domain E for all 

nested grids. 

Table 8.  Total error at 3 hours for vertical velocity 
(m s-1) at 4 km altitude computed over Domain E for 

all nested grids. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Horizontal cross sections, over the area of domain E, of surface rainwater mixing 
ratio for all nested grid experiments. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Horizontal cross sections, over the area of domain E, of vertical velocity at 4 km 
altitude for all nested grid experiments. 
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