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Abstract

The Kelvin wave is the lowest eigenmode of Laplace’s Tidal Equation
and is widely observed in both the ocean and the atmosphere. In this
work, we neglect mean currents and continuous stratification, but instead
include the full effects of the earth’s sphericity and the wave dispersion it
induces in a one-and-a-half-layer model. In the first part, we derive a new
asymptotic approximations for linear Kelvin waves on the sphere when
ε (Lamb’s parameter/nondimensional reciprocal depth) and integer zonal
wavenumber s are of similar magnitude; we show that for large s, the
Kelvin wave is equatorially-confined even in the barotropic limit (ε = 0).
In the second part, through a mix of perturbation theory and numeri-
cal computations using a Fourier/Newton iteration/continuation method,
we show that for sufficiently small amplitude, there are Kelvin traveling
waves (cnoidal waves). As the amplitude increases, the branch of trav-
eling waves terminates in a so-called “corner wave” with a discontinuous
first derivative. All waves larger than the corner wave evolve to fronts
and break. The singularity is a point singularity in which only the lon-
gitudinal derivative is discontinuous. As we solve the nonlinear shallow
water equations on the sphere with increasing ε (“Lamb’s parameter”),
dispersion weakens, the amplitude of the corner wave decreases rapidly,
and the longitudinal profile of the corner wave narrows dramatically.
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1 Introduction

This extended abstract is a summary of our recent article in the Journal of Fluid
Mechanics [14] and also our earlier note on linear Kelvin waves in the Journal of
the Atmospheric Sciences [15]. This extended abstract includes color versions
of figures that were published in black-and-white.

The free oscillations of a layer of homogeneous fluid and uniform depth on a
rotating, spherical earth are governed by a trio of nonlinear partial differential
equations, the “Laplace Tidal Equations”, also known as the “nonlinear shallow
water wave equations”. When linearized about a state of rest, these equations
have eigenmodes which are commonly called “Hough” functions [25]. The slow-
est eastward-traveling wave has been given the special name of the “Kelvin
wave”. This mode is the lowest latitudinal Hough function for each longitudinal
wavenumber s. The nonlinear self-interaction of Kelvin waves has been studied
by [1, 2, 5, 7],[17], [29], [34, 35], [24], [18], [20], [28], [22], [30]. In spite of this
work, there are still significant gaps in both linear and nonlinear theory. Some
of the linear lacunae have recently been filled by [12] and [15].

The nonlinear shallow water wave equations also describe the baroclinic
mode of a two-layer model in the limit that the lower layer depth is infinite,
in which case motion is confined to the upper layer, a so-called “one-and-a-
half-layer” model (Gill, 1982). (This is a decent first approximation to the
ocean, especially in the tropics.) The only modification is that the actual mean
depth is replaced by the “equivalent depth”, which is the product of the mean
depth with the fractional density difference between the two layers (Pedlosky,
1987) . As explained in [29] and other references cited there, the shallow water
equations also model the baroclinic modes of a continuously stratified fluid as
first observed by G. I. Taylor seventy-five years ago; the main effect of continuous
stratification is to slightly weaken the nonlinearity because of coupling between
different vertical modes.

We extended the existing nonlinear shallow water equations theory of the
Kelvin wave in a couple of ways. First, instead of using the equatorial beta-
plane, which corresponds to the limit of a very thin ocean, we explicitly included
the effects of the earth’s sphericity and finite depth (i. e., finite “Lamb’s pa-
rameter”.) We then derived new asymptotics for the structure and frequency of
linear Kelvin waves on the sphere.

Next, we studied nonlinear Kelvin waves in the sphere. In the equatorial
beta-plane approximation (large Lamb’s parameter), nonlinear Kelvin travel-
ing waves can be approximated by applying the method of multiple scales to
derive the Korteweg-deVries (KdV) equation (with mean currents) or the invis-
cid Burgers equation (neglecting mean currents) and then invoking the known
analytic traveling waves of these models. On the sphere, it is impossible to
derive a KdV model. However, a mixture of perturbation theory (for small am-
plitude) and a continuation/Fourier-Galerkin/Newton iteration algorithm (for
larger amplitude) allows us to describe the nonlinear Kelvin wave on the sphere.
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1.1 The Cnoidal/Corner/Breaking Scenario

The nonlinear Kelvin wave exhibits three regimes. For small amplitude, there
are solitons and cnoidal waves whose latitude-and-depth structure is the same as
for infinitesimal amplitude waves and whose dependence on longitude and time
is described by the Korteweg-deVries (KdV) equation [2, 3]. For large amplitude,
the wave steepens (“frontogenesis”) and then turns over (“breaking”). (Such a
roll-over can be prevented by adding the right sort of damping as elaborated in
[18], but it is possible the Kelvin wave becomes multi-valued in the same way
as surface gravity waves breaking on a beach, or in a two-layer model.)

The largest traveling wave, which is the parameteric boundary between soli-
tons and breaking, is a “corner wave” in which the wave crest has a discontinuous
slope. The JFM article is focused on the structure and dynamics of the Kelvin
corner wave using both perturbation theory and numerical computations and
also on longitudinally-periodic traveling waves of lower amplitude.

Much is known about the CCB Scenario as reviewed in [9], [8], [10] and [21].
Pioneering work was done by Stokes [38], Ostrovsky [32] and Shrira [36, 37].
Near-corner waves are described through matched asymptotic expansions in
[26] and [11].

Our recent JFM article is primarily about the corner wave. Before discussing
it, we review the other two regimes.
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1.2 Frontogenesis and Breaking

Although we shall not compute initial-value solutions here, the statement that
large amplitude Kelvin waves break is demonstrated in earlier articles by Long
and Chen [24], Boyd [13, 9] and Boyd and Chen [17]. Kelvin breaking has been
discussed by Boyd [1, 7], Ripa [34, 35] amd Chen and Boyd [17], Fedorov and
Melville [18] and Le Sommer, Reznik and Zeitlin [22].

On the equatorial beta-plane without mean currents, the linear Kelvin wave
is completely nondispersive. Weakly nonlinear, nonresonant perturbation theory
yields an approximation which has the same latitude-and-depth structure as the
linear Kelvin wave, but the longitude-and-time dependence is described by the
inviscid form of Burgers’ equation [1, 34], also known as the One-Dimensional
Advection equation.

This theory is a successful lowest-order approximation, but it predicts that
the Kelvin front will be oriented north-south — that is, the maximum longitu-
dinal gradients at each latitude will share a common meridian. In reality the
Kelvin front curves westward away from the equator as illustrated in Fig. 2.
Boyd [7] and Fedorov and Melville [18] showed the frontal curvature is due to
resonance between the Kelvin wave and eastward-propagating gravity waves.

However, even the nonresonant theory has never been extended to the sphere,
which remains a problem for the future.
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Figure 2: Contours of φ with the values [0, .1, .2, .3, .4, .5, .6, .7., .8, 0.9,
1] for the Kelvin wave on the equatorial beta-plane . u(x, y, 0) = φ(x, y, 0) =
sech2(x) exp(−0.5y2). Only the northern hemisphere is shown because the wave
is symmetric with respect to the equator, y = 0.
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1.3 Kelvin Cnoidal Waves and Solitary Waves

Boyd showed that mean currents make the Kelvin wave dispersive even on the
equatorial beta-plane [2]. To lowest order in perturbation theory, the approx-
imation has the same latitude-and-depth structure as the linear Kelvin wave,
but the longitude-and-time dependence is described by the Korteweg-deVries
equation — identical to the One-Dimensional Advection equation except for
an extra term proportional to the third derivative with respect to longitude.
The KdV model predicts the existence of Kelvin solitary waves and cnoidal
waves for small amplitude; instead of breaking, solitons and cnoidal waves form
spontaneously. Initial value experiments confirm the KdV prediction (Fig. 3).

However, the KdV theory implies that the frequency of an infinitesimal am-
plitude Kelvin wave will be a parabola, growing as the square of the zonal
wavenumber k without bound. In reality, numerical solutions for an infinitesi-
mal Kelvin wave in a shear flow show that the Kelvin mode is nondispersive —
not infinitely dispersive — in the “short wave limit” that k → ∞ (Fig. 4.)

The KdV model fails for moderate amplitude. An open problem is to develop
a small-amplitude theory that more realistically accounts for dispersion when
the east-west scale is not small.
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2 Parameters and a New Asymptotic Approxi-
mation for Linear Kelvin Waves

The Kelvin wave depends on two parameters. The zonal wavenumber s is always
a positive integer. (The case of s = 0 is a nonpropagating mode which is not
relevant here; note that we used a different symbol k for the zonal wavenumber
in the previous section where the wavenumber was scaled in the usual equatorial
way and not restricted to an integer.)

Lamb’s parameter ε is a nondimensional mean reciprocal depth which is
explicitly

ε =
4Ω2a2

gH
(1)

where Ω is the angular frequency of the earth’s rotation in radians per second,
a is the radius of the planet, H is the mean depth of the fluid, and g is the grav-
itational constant, which is 9.8 m/s2 for earth . As explained in [16], [27] and
[29], the shallow water equations can be profitably employed for continuously-
stratified (rather than homogeneous) fluids if the depth H is interpreted as the
“equivalent depth” of a given baroclinic mode. Thus, to describe all possible
varieties of Kelvin waves in a three-dimensional stratified ocean or atmosphere,
one needs to solve Laplace’s Tidal Equations for a very wide range of ε ranging
from very small (for the “barotropic” or nearly-barotropic waves) to very large
(for high order baroclinic modes) as illustrated in Table 1.

Table 1: Lamb’s Parameter
ε Description Source

0.012 External mode: Venus Lindzen (1970)
6.5 External mode: Mars Zurek (1976)
12.0 External mode: Earth (7.5 km equivalent depth) Lindzen (1970)
2.6 Jupiter: simulate Galileo data Williams (1996)
21.5 Jupiter Williams (1996)
43.0 Jupiter Williams (1996)
260 Jupiter Williams (1996)
2600 Jupiter Williams and Wilson (1988)

87,000 ocean: first baroclinic mode (1 m equiv. depth) Moore & Philander (1977)
> 100, 000 ocean: higher baroclinic modes Moore & Philander (1977)

Fig. 5 shows the two-dimensional parameter space and its distinct regimes:

1. When s and ε are both small [bottom left in the figure], the Kelvin wave
fills the entire globe from pole to pole.

2. When ε is large and much greater than s2, the Kelvin wave is well-
approximated by the equatorial beta-plane [bottom right].
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Figure 5: The Kelvin wave lives in a two-dimensional parameter space where
the horizontal axis is the square root of Lamb’s parameter ε and the vertical
axis is the zonal wavenumber s. When s and ε are both small, the Kelvin
wave is global. When r ≡

√
s2 + ε is large compared to one, the Kelvin wave

is equatorially-trapped, proportional to exp(−(1/2)rµ2) where µ is the sine of
latitude. The horizontal axis is

√
ε rather than ε itself so that r is just dis-

tance from the origin in this map of the parameter space. When ε is large and
much greater than s2, the Kelvin wave is well-approximated by the equatorial
beta-plane. When s >>

√
ε (and not necessarily large), the velocity potential

χ ≈ exp(isλ)P s
s (µ) = coss(latitude) where P s

s is the usual associated Legendre
function and the frequency σ ≈

√
s(s + 1)/

√
ε. The new asymptotic approxima-

tion derived in Boyd and Zhou (2007) fills the wedge-shaped gap between these
two previously-known limits. However, the new approximation is not merely
valid in this region, but is uniformly valid whenever either s or ε or both is
large compared to one. This region of validity is shaded.
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3. When s >>
√

ε (and not necessarily large), the zonal velocity is u ≈
exp(isλ)P s

s (µ) where P s
s is the usual associated Legendre function and

the frequency is σ ≈
√

s(s + 1)/
√

ε [top right].

4. When the parameter combination r ≡
√

s2 + ε is large compared to one,
the Kelvin wave is equatorially-trapped, proportional to exp(−(1/2)rµ2)
where µ is the sine of latitude. [wedge between the dotted rays].

Boyd and Zhou derived a new asymptotic to describe linear Kelvin waves
(in the absence of meaan currents) to fill the gap between the three previously-
known limits [15]. In the equatorial beta-plane approximation, all equatorial
confinement comes from a term proportional to ε, independent of the zonal
wavenumber s. Boyd showed twenty-five years ago [4] that on the sphere, equa-
torial confinement for Rossby waves is proportional to the parameter

r =
√

s2 + ε (2)

Boyd and Zhou showed that the same is true for Kelvin waves. For ε = 0,
the barotropic case (infinite depth) in which ε provides no latitudinal trapping,
Kelvin waves with s ≥ 5 nonetheless have most of their amplitude concentrated
in the tropics as illustrated in Fig. 6.

Fig. 7 shows that the new asymptotic approximation is much superior to the
standard beta-plane approximation where the Boyd-Zhou approximation is

φ ≈ (1 − µ2)s/2 exp(−(1/2)
{√

ε + s2 − s
}

µ2) (3)

where µ = sin(latitude).
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3 Nonlinear Kelvin Traveling Waves

3.1 Traveling Wave Equations

Initial value experiments reported in [9] are consistent with the CCB Scenario.
However, initial value experiments are a crude tool for traveling waves; although
solitons form spontaneously and make dominate the evolved solution, a simple
initial condition like a sine wave in longitude with the linear structure of a Kelvin
wave will inevitably generate flows in which a few percent of the energy resides
in non-Kelvin modes. In [14], we therefore calculated traveling waves directly
by assuming that the dependence on longitude and time is solely through the
combination x ≡ λ − ct In the rest of this article, we summarize this work.

The usual nondimensionalization and derivation of the traveling wave equa-
tions is given in [14]. Define δ ≡ √

ε. The shallow water equations become,
without approximation,

(
c(1 − µ2) − δu

) ∂u

∂x
− δ(1 − µ2)v

∂u

∂µ
− (1 − µ2)

∂φ

∂x
+ δµ(1 − µ2)v = 0 (4)

(c(1 − µ2) − δu)
∂v

∂x
− δ(1 − µ2)v

∂v

∂µ
− (1 − µ2)2

∂φ

∂µ
− δµ

{
u2 + v2 + (1 − µ2)u

}
= 0 (5)

(c(1 − µ2) − δu)
∂φ

∂x
− δ(1 − µ2)v

∂φ

∂µ
− (1 + δφ)

(
∂u

∂x
+ (1 − µ2)

∂v

∂µ

)
= 0 (6)

where µ is the sine of latitude (cosine of colatitude) and u and v are the Mar-
gulus’ velocities defined in [14]. This trio of equations is a nonlinear eigenvalue
problem.

3.2 Omissions

Our study has two important restrictions:

1. Continuous vertical stratification is replaced by the shallow water/one-
and-a-half layer model.

2. Mean currents are neglected.

The first restriction is not so bad. Ripa [35] and Marshall and Boyd [29]
have studied the effects of vertical stratification on nonlinear equatorial waves.
Nonlinearity is slightly weakened because in a continuously stratified model, an
initial pulse in the first baroclinic mode no longer has nonlinear interactions that
project solely on that mode, but instead some of the nonlinearity projects onto
other modes. The barotropic mode is not equatorially-trapped, so energy in
this mode leaks away from the tropics; an equatorial Kelvin soliton is “weakly
nonlocal” in the parlance of Boyd’s monograph [6]. A future problem is to
calculate this leakage into the barotropic mode, but it seems likely to be small.

The second restriction is more serious because the mean currents alter the
dispersion of linear Kelvin waves; on the equatorial beta-plane, they are the sole
source of dispersion.
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3.3 Low-wavenumber Emphasis

We concentrate on small zonal wavenumbers; most explicit results are restricted
to s = 1 and s = 2. As illustrated in [15], Kelvin waves of moderate and large s
are equatorial rather than global modes and are therefore well-modeled by the
equatorial beta-plane studies of previous work [7, 13]. The spheerical effects are
most pronounced for small s.

3.4 Perturbation Theory

Our first line of attack was perturbation theory. The simplest procedure would
be a univariate expansion in the wave amplitude A. This fails because the linear
Kelvin wave on the sphere, which is the lowest order of such an expansion, is
known analytically only in the asymptotic limits ε → 0 and ε → ∞. We therefore
employed a double expansion is both A and ε. It is not possible to do a similar
expansion in 1/ε because the linear Kelvin is nondispersive in the limit ε → ∞
(equatorial beta-plane).

The details are messy and will not be repeated here. The inhomogeneous
ordinary differential equation which must be solved at each order is Legendre’s
equation. The good news is that the explicit solution can be found in closed
form at each order.

The perturbation series is useful in two ways. First, it displays Kelvin cnoidal
waves in explicit form. Second, it provides the initialization for the Newton-
Galerkin-continuation numerical method.

3.5 Numerical Method

Perturbation theory is useful only for small amplitude. One can insert any
arbitrary amplitude into the perturbation series, even for amplitudes far beyond
the corner wave limit. Perturbation theory diverges at the corner wave, and
probably for some amplitudes less than the corner wave.

It is a severe numerical challenge to track the entire branch of traveling
waves up to and including the corner wave. In the corner wave limit, the wave
will have a discontinuous x-derivative at the peak of the wave. The convergence
rate of the Fourier coefficients of functions with a slope discontinuity is only
O(K−2), where K is the degree of the Fourier terms. By employing the Kepler
mapping developed in [13], the convergence rate can be improved to O(K−4)
[14].

The traveling wave equations were expanded in Fourier series in latitude and
the moving longitudinal coordinate x = λ− ct. The assumption that the travel-
ing waves are symmetric in both latitude and longitude reduces the number of
Fourier terms required by a factor of four, and also suppresses the translational
degree of freedom.

The resulting system of nonlinear algebraic equations is solved by Newton’s
method. The traveling waves form a one-parameter family. To obtain a unique
solution, it is necessary to impose one constraint on the Fourier basis. We chose
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to fix φ00, which is the equatorial height at the crest of the wave, φ(x = 0, θ =
π/2), as the amplitude parameter (though other choices are possible).

Newton’s iteration requires an initialization or “first guess”. Parameter con-
tinuation provided the required first guess. To trace a complete branch of so-
lutions, we marched from small amplitude (where the initialization is provided
by perturbation theory) to large amplitude while keeping all other parameters
fixed. The continuation strategy is to march in small steps of the amplitude
parameter. The computed solution for the j-th value of φ00 is used as the ini-
tialization for Newton’s iteration to compute the Fourier coefficients 
a for the
(j + 1)-st value of φ00.

3.6 Detecting the Corner Wave

The branch of traveling waves ends abruptly at the corner wave: there are no
solutions for larger amplitude. (Instead, all waves larger than the corner wave
break.) The corner wave is a sort of anti-bifurcation point in the sense that no
additional branches are born at the corner wave, but rather the branch simply
dies [9].

A branch of solutions to a system of algebraic equations, however, can never
simply stop. Consequently, the branch of solutions to the Galerkin discretiza-
tion does not end at the corner wave, but continues to larger amplitude. The
signature of the spurious solutions beyond the corner wave is that the Fourier
series ceases to converge; the spurious “solutions” oscillate rapidly in space as
typical of underresolved solutions.

Fig. 8 shows how the corner wave can be identified through a zoom plot of
numerical solutions near the crest at x = 0 . An unresolved issue is to obtain a
less subjective quantitative criteria. See [13] for a fuller discussion.
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Figure 8: Traveling Kelvin wave solutions with s = 1 and ε = 1. Left: equatorial
section of φ for φ00 = 0.1705, 0.1755, 0.1805, 0.1855 and 0.1905, respectively.
φ(x, θ = π/2) steepens with the increasing φ00. When φ00 = 0.1905, φ(x, π/2) is
the corner wave, discontinuous in its first derivative at the crest. Right: A zoom
in plot of φ(x, π/2) with φ00 = 0.1755, 0.1805, 0.1855, 0.1905, 0.1955, 0.2005. The
heavy curve is for φ00 = 0.1905. Note that this graph includes two values of φ00

larger than that of the corner wave (colored & dashed); these are unphysical
as indicated by their rapid oscillations near x = 0. The interval in longitude is
from 0 to 0.1, which is about 1.6% of the total width. (Note that the plot is in
the physical longitudinal coordinate x; the circles on each curve show the points
of the grid, which is evenly spaced in the computational coordinate z, but very
heavily concentrated by the Kepler mapping in x near x = 0.) This graph shows
that the corner wave is easily distinguished by eye from near-corner waves with
a zoom plot.
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4 Spatial Structure of the Corner Wave

We computed steadily-propagating Kelvin waves of s = 1 (longitudinal period
of 2π) and s = 2 (longitudinal period π) for various Lamb’s parameter ε using
the numerical methods described in the previous section.
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Figure 9: φ of the corner wave for s = 1 and ε = 1 on sphere; left and right
differ only in viewing angle. The peak value of φ00 is 0.1905. The comparison
shows that only the longitudinal derivative is discontinuous at the peak.

Surface mesh plots φ for the corner wave limit are shown in Figure 9. One
question is: Are both components of the gradient of φ discontinuous at the
peak, or only one? We visually answered this question by plotting φ twice
from different viewing angles. The left diagram shows that the longitudinal
derivative is (at least visually) discontinuous. However, rotating the viewing
angle by roughly a quarter-turn shows only a smooth, rounded crest: the north-
south derivative shows no signs of discontinuity.

Figure 10 displays line graphs that, for two different values of ε, make the
same point. In each, the solid curve is a longitudinal cross-section at the equator
while the dashed curve shows φ(0, y). The x-derivative is discontinuous, but the
latitudinal derivative is smooth.

Just as for infinitesimal amplitude Kelvin waves, u of the corner wave is
graphically indistinguishable from φ and so is not plotted. The first derivative
of the northward velocity v is everywhere continuous, so v is not plotted.

Another interesting question is how far does the slope discontinuity extend
from the equator to the poles? To answer this question, we calculated dφ/dx.
Figure 11 shows φx at several latitudes, shown on the full longitudinal range at
left and as a zoom plot on the right. A finite spectral series must always impose
a truncation-dependent smoothing on a discontinuity. Even so, it is clear the
slope rapidly diminishes away from the equator. It seems likely that the Kelvin
wave is discontinuous only at the equator.
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φ(x = 0, latitude). In both panels, the longitudinal derivative (solid) is clearly
discontinuous at the crest whereas the north-south derivative shows not the
slightest hint of non-smoothness.

Figure 12 compares φ(x, y = 0), normalized by dividing by φ00, for many
different ε. As ε increases, the corner wave becomes narrower and narrower in
longitude. This trend is also evident by comparing the left and right panels of
Fig. 10. Dispersion and the height of the corner wave both diminish rapidly
as ε increases; it is remarkable that the corner wave becomes narrower, more
focused in longitude, in this same limit. The latitudinal width, not shown, be-
comes narrower and narrower as captured by the equatorial beta-plane approx-
imation, φ(x, θ) ∼ A(x) exp

(
−√

ε(θ − π/2)2
)
. However, the latitudinal width

is controlled by linear dynamics whereas the longitudinal focusing is caused
entirely by nonlinearity : when the amplitude is much smaller than the corner
wave, the longitudinal structure of the Kelvin mode is approximately cos(sλ).

The graphs for s = 2 were so similar to those for s = 1 that they are omitted,
but will appear in Zhou’s forthcoming thesis. However, the maximum equatorial
height φ00(ε) and phase speed c(ε) for the corner wave are discussed for both
s = 1 and s = 2 in the next section.
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Figure 11: The derivative of φ of the corner wave solution of s = 1 and ε = 0.01
case with respect to the longitude x. Left:φx at latitudes 0, π

64 , π
32 , π

16 , π
8 , π

4 ,
plotted on the full global domain. Right: same, but a zoom plot with a much
smaller range.
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22



5 Variations of Phase Speed and Corner Height

The parameters of the corner wave for different ε are summarized in Table 2
[s = 1] and Table 3 [zonal wavenumber two]. From the table,we can see both
φ00 and phase speed c decrease as ε increases. This is as expected: because the
dispersion due to the earth’s sphericity decreases rapidly with ε (as known from
Longuet-Higgins’ large ε asymptotic expansion of the linear phase speed), it is
plausible that nonlinearity will overwhelm dispersion, giving breaking instead of
traveling waves, at lower and lower values of the wave amplitude φ00 as ε → ∞.

ε 0.01 0.1 0.5 1 3 5 15 30

Phase speed c 1.4327 1.3792 1.3008 1.2551 1.1758 1.141 1.082 1.0572

φ00 3.5 0.95 0.32 0.19 0.074 0.045 0.0145 0.0071

(c2 − 1)/(3
√

ε) 3.5088 0.9510 0.3262 0.1918 0.0736 0.0450 0.0147 0.0072

h00 ≡ φ00
√

ε 0.3500 0.3004 0.2263 0.1900 0.1282 0.1006 0.0562 0.0389

Table 2: Parameters in the corner wave limit for s=1 case

ε 0.01 0.1 0.5 1 3 5 15 30

Phase speed 1.2349 1.2169 1.1883 1.1698 1.1327 1.1135 1.0739 1.0537

φ00 1.75 0.5 0.192 0.12 0.053 0.036 0.0129 0.0067

(c2 − 1)/(3
√

ε) 1.7499 0.5069 0.1942 0.1228 0.0545 0.0358 0.0132 0.0067

h00 ≡ φ00
√

ε 0.1750 0.1581 0.1358 0.1200 0.0918 0.0805 0.0500 0.0367

Table 3: Parameters in the corner wave limit for s=2 case

The tables also list the quantity

h00 ≡
√

ε φ00 (7)

This gives the maximum perturbative height of the Kelvin corner wave relative
to the mean depth H, that is, the maximum perturbative height is h00 H in
meters. We have listed this quantity because it decreases more slowly with
increasing ε than does φ00 itself.

Fig. 13 compares the equatorial height of the corner wave versus ε for both
s = 1 and s = 2. The results are very similar for the two wavenumbers. As ε
increases, the dispersion due to the sphericity of the earth decays very rapidly.
Consequently, the height h00 of the corner wave diminishes very rapidly, too. On
a log-log plot, a power law asymptotes to a straight line; the dashed guideline
here suggests that h00 ≈ 0.2/

√
ε for both wavenumbers one and two. The

graph suggests that the corner wave maximum height is independent of zonal
wavenumber s in the equatorial beta-plane limit that ε → ∞.
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this log-log plot shows that h00 decays asymptotically proportional to 1/
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ε as

ε → ∞.
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The tables also show an interesting empirical relationship between the phase
speed and maximum height of the corner wave:

φ00 ≈ c2 − 1
3
√

ε
(8)

By matching discontinuities in the x-derivatives of u and φ, we can derive
the diagnostic relationship (c−u00

√
ε)2 = 1+h00 at the crest of the corner wave.

(We thank a reviewer for suggesting this.) Unfortunately, it is not possible to
extend this further: the rest of our study is based on perturbation series and
computations.

6 Summary and Conclusions

The computations confirm the results of simplified models and equatorial beta-
plane computations: the traveling waves of the Kelvin mode terminate in a
corner wave of finite height. The amplitude of the corner wave diminishes
very rapidly with ε when the mean flow is neglected. In the real ocean or
atmosphere, our results for large ε are quantitatively suspect because the very
weak dispersion due to spherical geometry would likely be overwhelmed by the
stronger dispersion due to the mean zonal currents.

As ε increases, the longitudinal profile of the corner wave becomes very
narrow whereas the corner waves for small ε span the whole equator.

In two space dimensions, slope discontinuities may take the form of a cone
(with discontinuities in both x and y derivatives at the peak), a crease with a
curve or line of discontinuous slope extending away from the equator into both
hemispheres, or a point singularity in which only one derivative is discontinuous,
and that only at a single point. All previous studies of corner waves have been
limited to one horizontal dimension and therefore furnish no guidance. Although
it is impossible to prove theorems through inexact numerical computations, our
graphs strongly suggest that the third possibility is true of the Kelvin corner
wave: the height and velocity fields are singular only at the peak, and only
through a discontinuity in the direction of propagation, longitude.

Although we performed detailed computations only for zonal wavenumbers
s = 1 and s = 2, there was so little qualitative difference that it appears that
these conclusions are independent of zonal wavenumber s at least for small s. As
illustrated in [15], Kelvin waves of moderate and large s are equatorially-trapped.
Therefore, short Kelvin waves are well-described by the equatorial beta-plane
theory and computations in [7, 13].

Our computations cannot exclude the possibility that there may be non-
linear Kelvin branches which are not continguous with small-amplitude, linear
Kelvin waves. This is not a difficulty peculiar to Kelvin waves, but rather is a
generic worry when computing the roots of any system of nonlinear algebraic or
transcendental equations, whether resulting from the discretization of traveling
waves or not; the peril of the “missed solution branch” is ubiquitous. How-
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ever, no such additional branches have been detected in numerous initial-value
experiments: all Kelvin modes bigger than the corresponding corner wave break.
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