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Statement of Research

What brings about the warm-to-cold thermal transition 
as a tropical cyclone (TC) undergoes extratropical 
transition (ET)?

Displayed: cyclone phase space 
diagram (Hart 2003) of lower 

tropospheric thermal wind (-Vt
L) 

versus lower tropospheric thickness 
asymmetry (B) for North Atlantic 

TC Bonnie (1998).



Why study the thermal evolution?

□ Thermal structure a key determining factor of cyclone intensity 
and overall structure 
□ Hart et al. (2006) – cold-core versus warm seclusion cyclones
□ Evans and Hart (2008) – cooling inside radius of maximum winds 

(RMW) leads to its outward movement

□ Significant heat energy transport directly or indirectly affects 
many larger-scale features
□ Degradation of model forecasts (Jones et al. 2003, Harr et al. 

2008, Anwender et al. 2008)
□ Impacts upon hemispheric weekly to seasonal weather patterns 

(e.g. McTaggart-Cowan et al. 2007, Hart 2009)
□ Maintenance or restoration of atmospheric balances
□ Implications toward global energy balance

□ Relatively little comprehensive study has been performed 
upon the topic to date



Previous Works and Hypotheses

□ Main work: Sinclair (1993)
□ Thermodynamic budget of ETing S. Pacific TC Patsy (1986) 

using 2.5° ECMWF analyses
□ Diabatic heating (convective heating early, saturated 

ascent late) almost exactly offset by adiabatic cooling
□ Horizontal advection suggested to drive evolution with net 

cooling due to translation into a colder environment

□ Other works:
□ McTaggart-Cowan et al. (2003, 2004): suggest horizontal 

advective processes important with preferred advection 
patterns between the polar jet and TC

□ Hart et al. (2006), Evans and Hart (2008): hypothesize about 
role of adiabatic cooling in observed evolution



Methodology
□ Case study analysis: North 

Atlantic TC Bonnie (1998)
□ Benign cold-core ET
□ No merger, post-ET 

reintensification, or land 
interaction

□ Analysis method: numerical 
modeling
□ Used MM5 V3.7.4
□ 36/12/4 km, 30 half-sigma levels
□ 1200 UTC 28 Aug.-1200 UTC 31 

Aug. 1998 (before to after ET)
□ Output frequency: 15 minutes
□ Model evolution found to be 

qualitatively similar to 
observations (not shown)

(NOAA OSEI)

(NRL-Monterey)

Near ET

Peak TC



Budget Formulation
□ Directly obtained thermodynamic time tendency terms (Dudhia 1993) 

from MM5 during execution:

where “parameterizations” accounts for tendencies due to PBL, 
convective, shallow cumulus, radiational, diffusive, and microphysical 
processes.

□ All terms are directly obtained from MM5 integration every 15 
simulated minutes
□ No residuals: all terms are directly computed, including the parameterized terms
□ Uses native model data for analysis, but only as accurate as the model is itself!

□ Budgets computed in native model coordinate system following the 
storm, focusing within 500 km radius
□ Dynamical components: advective and divergence terms (three in total)
□ Physical components: all parameterized terms (six in total)
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Evidence of Cooling

Significant cooling observed starting early in the ET process 
□ ~10 K day-1 maximum along radial band (within 100 km)
□ ~2 K day-1 average within 500 km radius
□ Primarily observed within the expanding RMW (‘inner’ core)



Contributors to Cooling

□ Net cooling a superposition of opposing factors
□ Dynamical (parameterized) components produce significant 

net cooling (warming) at increasingly large radii
□ Averaged: dynamical: ~8-11 K day-1, parameterized: ~6-8 K day-1

□ What are the contributing factors to these fields?

Dynamical Parameterized



Dynamical Contributors

□ Amalgam of opposing factors observed…
□ Horizontal advection: significant cooling (warming) in inner (outer) core (left)
□ Vertical advection: significant warming (cooling) in inner (outer) core (right)
□ Divergence: weaker factor; in phase with vertical advection (not shown)

□ Implication of hydrostatic balance given canceling effect between 
the fields

Horizontal Advection Vertical Advection



Parameterized Contributors

□ Primary contributors: microphysics (left) and radiation (right)
□ Microphysics – phase changes in primary convection/precipitation banding features
□ Radiation – agrees with commonly accepted values and accounts for approx. 50% of 

total cooling observed

□ Radiation only primary parameterized contributor within the ‘inner’ 
core

RadiationMicrophysics



Summary Thus Far
□ Primary factors in ‘inner’ core: advection and radiation, both 

accounting for approx. 50% of the observed 3-4 K day-1 cooling
□ Loss of heat to outer space via radiative processes
□ Net horizontal import of cooler air into near-center volume

□ Evolution appears to be in hydrostatic balance given near 
cancelation of the horizontal and vertical advection terms at all radii

□ Inner versus outer core evolution seems to be apparent
□ Near-total cancelation seen outside RMW, but net cooling inside
□ Outer core evolution is perhaps a consequence of the structural evolution 

of the cyclone
□ Parameterized tendencies maximized near radii of convective features
□ Dynamical tendencies maximized near frontal and conveyor belt features
□ Further analysis is needed, however!

□ Next, let’s analyze what happens in the region outside the RMW 
vertically as well as spatially.



Vertical Budget Structure
□ Note: 0-500 km averaged fields

□ Dynamical contribution is always 
cooling (~10-15 K day-1).
□ Maximized: upper troposphere and PBL
□ Components show very similar results to 

vertically integrated fields (not shown)

□ Parameterized contribution is always 
warming (~10 K day-1).
□ Maximized: middle troposphere and PBL

□ Net cooling intensifies when 
parameterized contributions weaken



Parameterized Vertical Evolution



Spatial Budget Structure

-0.944 K day-1 0-500 km Avg. -3.612 K day-1 0-500 km Avg.



Spatial Budget Structure
-10.637 
K day-1

-9.778 
K day-1

+9.693 
K day-1

+6.166 
K day-1

Dynamical
Horizontal 
advection 
outweighs vertical 
advection and 
divergence terms.

Parameterized
Microphysical and 
convective 
heating processes 
drive this 
downstream 
evolution.



Spatial Budget Structure

□ Spatial pattern is largely driven by two physical features…
□ Dynamical components largely tied to conveyor belts that 

develop within the transitioning cyclone (left)
□ Parameterized components largely tied to heating processes in 

the ‘delta rain’ warm frontogenetical region (right)

□ Like the vertical evolution, this primarily captures the outer 
core thermodynamic factors and their evolution

(Klein et al. 2000, Fig. 5) (Jones et al. 2003, Fig. 12d)



Conclusions
□ ET thermal evolution can be partitioned into inner and outer 

core components…
□ Inner core: net cooling occurs due to horizontal advection and 

radiational processes
□ Outer core: thermal balance maintained by dynamical factors 

counterbalancing microphysical and convective tendencies
□ Results are fairly consistent vertically at all radii

□ Evolution largely appears to be hydrostatic in nature 

□ Some agreement with prior works
□ Results closely resemble those of Sinclair (1993) and affirm 

hypothesis of McTaggart-Cowan et al. (2003, 2004)
□ No evidence noted to support Hart et al. (2006) hypothesis



Conclusions
□ ET thermal evolution is driven by larger-scale structural 

changes within the cyclone
□ Dynamically: conveyor belt development
□ Physically: precipitation and phase change processes within 

warm frontogenetical delta rain region
□ Loss of surface heat fluxes and latent heat release during ET 

allows radiative cooling and advective processes to dominate 
the evolution

□ Results raise some questions regarding model predictability…
□ How well can a model represent the timing and intensity of the 

non-linear interaction between a TC and the trough that causes it 
to undergo ET?

□ How well can the model represent important convective and 
microphysical heating processes that provide a “brake” upon the 
observed cooling during ET?

□ How well can the model represent the processes that occur 
within the RMW on short wavelengths?



Future Work
□ Further refine physical explanations and linkages detailed here

□ Analyze sensitivity of results to horizontal resolution (36 vs. 12 vs. 4 km)

□ Refine implications toward predictability on all scales

□ Sensitivity to post-transition thermal evolution
□ How do warm seclusion events differ from cold-core ones?

□ Understand the impacts of the larger-scale thermodynamic evolution 
□ What factors modulate poleward heat transport and energy balance and 

what are their magnitudes?

□ Ultimate goal: how does the inner and outer core thermodynamic 
evolution modulate our weather-climate system as a whole and how 
well can we capture it?
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