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1.  INTRODUCTION 

     Communicating uncertainty in weather forecasts is 

becoming more important as decision makers become 

better able to apply uncertainty in their businesses 

practices and operations.  Probabilistic precipitation 

forecasts have effectively communicated useful 

uncertainty for many decades.  The National Weather 

Service Forecast Office in Tulsa, Oklahoma (NWS WFO 

Tulsa) is now studying how probabilities may be applied 

to maximum and minimum (max/min) temperature 

forecasts and how those uncertainties may be 

communicated to customers.  Several approaches are 

available and are presented from the WFO perspective 

as a proof of concept.  

     It is common at forecast offices to hear forecasters 

describe a variety of scenarios the weather presents for 

the following days.  Temperature forecasting can 

present a particularly difficult issue when the speed of a 

cold front is in question or when precipitation duration 

may limit the diurnal heating on a particular day.  In 

these cases, the forecast maximum temperature might 

be 90°F or 75°F.  Today at WFOs, a forecaster must 

pick one number or the other, or try to minimize his or 

her potential error by picking a number in the middle 

which has even less likelihood of being correct.  

Unfortunately, that single forecast value fails to 

communicate the range of possible max/min 

temperatures known to the forecaster. 

     It would be desirable to communicate an appropriate 

degree of uncertainty while not simply communicating 

every possible model outcome.  How best to do that is 

the issue.   

     After forecasters review and assess the model fields 

in preparation to make their temperature forecasts, they 

finally review and assess the MOS and previous official 

forecasts for each forecast period.  In their process, two 

thoughts are generally considered: 1) the change if any 

from the previous forecast, 2) inter-agreement between 

the new MOS and their own forecast idea.  A third 

consideration might be the general performance 

accuracy of the particular forecaster.  Although  
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potentially important, it will not be addressed here.  

     This paper is an investigation of how uncertainty in 

max/min temperatures might be accomplished at a 

typical WFO today, given the forecast process identified 

above.  The concept is straight-forward and gives 

forecasters maximum control over the final probabilistic 

temperature forecast product.  At this level, only limited 

tools would be required and additional workload on the 

forecaster could be minimal.  Inputs for this investigation 

included Model Output Statistics (MOS) from the Global 

Forecast System (GFS MAV MOS) and the North 

American Model (NAM MET MOS) and the WFO official 

forecast (CCF).  

     The method to estimate the final probability 

distribution assumes that each individual forecast (MAV, 

MET, CCF, etc) represents the mean temperature of a 

Gaussian distribution that might be expected from an 

infinite number of similar events.  Appropriate standard 

deviation for each forecast (MAV, MET and CCF) can 

be determined from previous seasonal forecast 

accuracy, from the inter-consistency of the guidance 

products and CCF forecasts, or from the MOS and CCF 

consistency from one forecast cycle to the next.  The 

resulting individual distributions may then be 

appropriately combined, with or without additional 

weighting, to arrive at the final expected distribution of 

the forecast temperature.  The question then becomes 

how to determine the appropriate standard deviations 

for individual guidance products and the CCF.   

     One method of combining a variety of forecast 

distributions has been developed by Wilks (2005) and 

employed by Glahn (2009) in the development of 

Ensemble-Kernel Density-MOS also known as 

EKDMOS.  That method is far superior to anything that 

could be presented here. Therefore, only simple 

averaging was used in this paper to illustrate samples of 

possible forecast distributions.   

     The method to create forecast temperature 

distributions suggested in this paper includes 

forecasters’ judgment into the final product, thereby 

allowing them to weight or completely discard selected 

MOS or model forecasts for all or part of their forecast 

area.  Standard deviations were generally based on 

typical forecast errors and model consistencies, not a 

variety of perturbed model runs.  



     The results of this proof of concept i

uncertainty of max/min temperature forecasts can be 

addressed very well from the WFO perspective

Equipped with their knowledge, experience

guidance, forecasters can easily 

uncertainty than that derived from the 

range.  Yet, forecasters can still 

considerable uncertainty for appropriate forecast 

periods where model solutions are quite varied and 

forecaster uncertainty is high.  Most of the tools are 

currently available at WFOs to make probabilistic 

temperatures forecasts now.  The question then 

becomes whether to proceed or not.    

 

2.  COMPUTED MEANS AND STANDARD 

DEVIATIONS  

 

 

Figure 1. Forecast errors by category for TUL from 1 January 2004 through 31 December 2008.
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OMPUTED MEANS AND STANDARD 

     Computed means and standard deviations provide 

sufficient information to start making 

temperature forecasts.  The climatological 

observed temperatures about a mean for the specific 

date and the distribution of forecast errors about th

observed temperature suggest a Gaussian distribution 

is appropriate.  However, combining individual Gaussian 

distributions will normally yield a non

An analysis of forecast errors from 2004 through 2008

at WFO Tulsa indicates that forecaster 

are generally distributed evenly at the two primary 

forecast verification sites for WFO Tulsa 

These data include all forecast cycles for the entire 

period of time, therefore may not be as representative 

for the extreme seasons of summer and winter. 

However, the error distributions indicate only a small 

bias, so it seemed reasonable to assume 

forecasts will have near-Gaussian distribution
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Figure 2. Same as Figure 1 but for FSM.

 

     Figures 3 and 4 show the climatologically

maximum temperature distribution for January 

June 30, respectively, at TUL (Tulsa International 

Airport).  These distributions were computed from 

twelve years of data from 1996 through 2008.  

each date were increased by including fo

either side of the date.   This provided a smoother 

transition in the daily means and resulted in a better 

approximation of the means and standard deviations. 

Figure 3. Climatological probability of minimum temperature 

was from 1996 through 2008.   

. Same as Figure 1 but for FSM. 

the climatologically expected 

maximum temperature distribution for January 1 and 

at TUL (Tulsa International 

were computed from 

through 2008.  Data for 

each date were increased by including four days on 

either side of the date.   This provided a smoother 

in the daily means and resulted in a better 

approximation of the means and standard deviations.   

     The standard deviation about the mean 

is over 13°F while it is only 5°F on June 30

system should be developed to narrow this 

climatological uncertainty, yet provide an appropriate 

level of uncertainty that will be useful to customers and 

partners.  

Climatological probability of minimum temperature computed for January 1 for TUL. 

 

the mean on January 1 

on June 30.  Clearly, a 

be developed to narrow this degree of 

yet provide an appropriate 

level of uncertainty that will be useful to customers and 

 

for January 1 for TUL. Period of data 



 

 

Figure 4. Climatological probability of maximum temperature computed for June 30 for TUL. Period of data 

was from 1996 through 2008. 

 

3.  STANDARD DEVIATIONS BASED ON 

VERIFICATION ERRORS 

     At the WFO, key components in providing the 

appropriate level of uncertainty in a temperature 

forecast would be the MOS guidance and the previous 

cycle’s CCF.  These provide the forecaster with not only 

a good first approximation of the expected max/min 

temperature, but often the final number used in the 

official forecast.  Standard deviations can be computed 

from the errors of the MOS and CCF to estimate a 

baseline uncertainty.  However, standard deviations can 

also be computed based on how well the CCF and MOS 

guidances agree.   

     Table 1 contains standard deviations (Std Devs) and 

Mean Absolute Errors (MAEs) for the short term CCF 

and guidance for periods one through five.  As expected 

these show increases in both statistics at greater 

forecast ranges.  Such information would provide a 

reasonable first approximation for uncertainty if desired.  

 

May 2008 – April 2009 Pd 1 Pd 2 Pd 3 Pd 4 Pd 5 

CCF     Std Dev   (MAE) 3.1  (2.3) 3.5   (2.7) 3.8  (2.9) 4.2  (3.2)  4.5  (3.4) 

MAV   Std Dev   (MAE) 3.6  (2.9) 4.0   (3.2) 4.3  (3.3) 4.7  (3.6) 5.1  (3.9) 

MET   Std Dev   (MAE) 3.4  (2.6) 3.9   (3.0) 4.3  (3.3) 4.7  (3.6) 5.2  (4.1) 

UKMET  Std Dev   (MAE) 4.1  (3.0) 4.4   (3.3) 4.7  (3.5) 4.8  (3.7) 5.2  (4.0) 

Table 1. MAEs and standard deviations for periods 1-5 for CCF, MAV, MET and UKMET forecast maximum 

temperature. Data set is from 5/1/2008 through 4/30/ 2009 for highs and lows combined.    

     Table 2 shows seasonal standard deviations for the 

indicated forecasts and guidance (MAEs omitted).  The 

statistics for the Dec-Jan-Feb periods are similar to 

those for the Mar-Apr-May period, indicating the strong 

variability of the weather at TUL and also the uncertainty 

of the forecasts and guidances.  However, those 

standard deviations drop significantly in the summer and 

fall seasons, indicating the higher degree of forecast 

and guidance certainty

.   
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MONTH Dec-Jan-Feb Mar-Apr-May Jun-Jul-Aug Sep-Oct-Nov 

CCF Std Dev 3.6 3.6 2.5 2.5 

MAV Std Dev 4.2 4.1 2.9 2.8 

MET Std Dev 4.0 3.8 2.7 2.8 

UKMET Std Dev 5.3 4.1 3.0 3.7 

Table 2. MAEs and standard deviations for representative months for CCF forecast temperatures. Data set is 

for first period forecasts only, from 5/1/2008 through 4/30/2009 for highs and lows combined.  

 

     Tables 3 and 4 show standard deviations computed 

from one full year of max/min data for the period 

5/1/2008 through 4/30/2009. These data compare the 

standard deviations of the CCF/MAV and CCF/MET for 

periods one and five based on how closely the CCF 

matches either of the two guidance products.  For Table 

3, the first row shows standard deviations when the 

CCF and MAV guidance either matched or differed by 

only one degree.  The second row shows the standard 

deviations when the CCF/MAV difference was five 

degrees or greater.  Table 4 presents the same 

computations but for the CCF and MET guidance.  

     The point to be made with the information in Tables 3 

and 4 is that meteorologists’ input into the forecast 

process can have a positive effect on the resulting 

standard deviations and therefore the uncertainty of a 

final probabilistic temperature product.  The differences 

in standard deviation for the CCF and MAV for period 1 

are not dramatic, but the differences in standard 

deviations from period one to period five are significant 

for both the CCF/MAV and also for the CCF/MET.  

 

CCF/MAV 
differences 

Pd 1 - CCF Pd 1 - MAV Pd 5 - CCF Pd 5 - MAV 

|CCF-MAV|    = 0,1 2.99 3.06 4.32 4.37 

|CCF-MAV| > =5 4.74 5.25 5.72 8.49 

Table 3.  Standard deviations based on CCF/MAV agreement.  Data set is from 5/1/2008 through 4/30/2009 for 

period one and period five forecasts.   

CCF/MET 
differences 

Pd 1 - CCF Pd 1 - MET Pd 5 - CCF Pd 5 - MET 

|CCF-MET|    = 0,1 2.97 3.06 4.30 4.38 

|CCF-MET| > =5 3.76 5.32 5.29 6.79 

Table 4. MAEs and standard deviations based on error for representative months for official WFO minimum 

temperature.  Data set is from 2001 through 2008. 

 

4. Forecaster Inputs to Uncertainty 

 

     Unfortunately, forecasters are frequently forced to 

choose a specific maximum or minimum temperature 

forecast even though that forecaster may feel the range 

of outcomes could be potentially large.  In contrast, a 

forecaster may have high confidence in the particular 

forecast.  Without a means to convey that information, 

the forecaster leaves the public or other customers 

without benefit of his/her knowledge.  The basic 

mechanics of a system to convey that knowledge are 

already available at WFOs.  

     In the current forecasting process, meteorologists 

effectively weight the models and MOS in their effort to 

arrive at a final temperature forecast.  Frequently, 

forecasters will simply average MOS guidance or “lean” 

more heavily toward one or the other for a variety of 

reasons.  These might include knowledge of model or 

MOS biases, data that may have arrived too late for 

input to the model, or other reasons.  

     Sometimes, a meteorologist may find the weather to 

be in a relatively stagnant pattern with very similar 

maximum and minimum temperatures for several days.  

He or she may also find that the MOS guidance has 

been very accurate for several days and is also 



relatively unchanged for the next periods’ forecasts.  

Perhaps the MOS guidance simply agrees with the 

current official forecast.  In such instances, the 

meteorologists may have very high confidence in the 

forecast.  

     At other times, two separate models may simply 

differ on the forecast solution, implying a higher degree 

of uncertainty.  The resulting MOS differences are a 

primary factor in forecaster uncertainty.  The differences 

may be due to the speed at which different models 

move a synoptic system, or a variety of other factors.  

These MOS differences are easily interpreted.  A 

forecaster can combine and/or weight the MAV and 

MET guidances where necessary to better depict the 

uncertainty of a forecast and its range of possible 

outcomes.  The Gridded Forecast Editor or GFE (Global 

Systems Division, http://www-md.fsl.noaa.gov/eft/) 

provides several graphical user interfaces (GUIs) to 

assign weights to forecasts.  These GUIs are used 

routinely at most WFOs and are shown in Figures 5 

through 7.  These GFE GUIs not only allow 

meteorologists to create forecasts by selecting and 

assigning weights to MOS and model guidance but can 

also be used in creating the final of probability 

distributions.  

 
Figure 5. GFE Model blender GUI or “slider bar” can 

be used to assign weights to the current official 

forecast or MOS or model values.  

 



 
Figure 6. Another GFE model blender tool with 

slider bars to assign specific weights to model, 

MOS and official forecasts.  

 
Figure 7. GFE model/MOS blender that assigns 

equal weights to each selection. 

 

5. More on Standard Deviations 

 

     The value of the standard deviations used in 

calculating the temperature probabilities is critical in 

determining the uncertainty of the final forecast. 

Examples of standard deviations based on CCF and 

MOS forecast accuracy were presented in Tables 1 and 

2 while those based on CCF/MOS agreement were 

shown in Tables 3 and 4.  However, the certainty of a 

forecast may one day be estimated by other factors.  At 

present, using error-derived standard deviations to 

estimate uncertainty appears most practicable while still 

allowing forecasters to add value through the GFE 

GUIs.   

 

5.1 Standard deviations from guidance and forecast 

 

     Perhaps the most straight-forward method to 

estimate uncertainty is to compute the standard 

deviation from the differences between MOS and/or 

model guidance products for the period in question.  

Table 6 is an example of two different forecasts, one for 

highs in the lower 80s, and another for lows in the 40s.  

This technique could easily be automated and used as a 

default unless the meteorologist wished to make 

changes or assign weights.  

     The example in Table 6 shows a set of forecasts 

from the CCF and four guidance products.  Means and 

standard deviations were computed using a 

spreadsheet.  The standard deviations appear smaller 

than what might be suggested from the data in Tables 1 

and 2 above.  Table 7 shows examples of standard 

deviations for a sampling of forecast ranges above and 

below 5°F.  The differences in Table 6 and Table 7 

suggest that simply calculating standard deviations from 

the range of CCF and guidance products for a given day 

may underestimate of uncertainty.  

  



CCF MAV MET UKMET Mean Forecast range Standard Deviation 

82 84 81 81 82.0 3 1.225 

46 44 49 41 45.0 8 2.915 

Table 6. Example of single period forecasts to derive the mean and standard deviation of CCF and guidance 

shown.  The range of forecast values implies high certainty.  

Period 1 Forecasts CCF Std Dev MAV Std Dev MET Std Dev UKMET Std Dev 

Total Fcst range <5°F 2.55 3.08 3.02 3.03 

Total Fcst range  ≥5°F 3.53 4.51 3.98 5.53 

Table 7. Standard Deviations computed from forecast errors when the total range of CCF and guidance 

products were less than 5°F and equal to or greater  than 5°F.  

 

5.2 Other possibilities for calculating standard 

deviations  

 

     Sometimes, a meteorologist may find the weather to 

be in a relatively stagnant pattern with very similar 

maximum and minimum temperatures for several days.  

He or she may also find that the MOS guidance has 

been very accurate for several days and is also 

relatively unchanged for the next periods’ forecasts.   

The forecaster may find that the MOS guidance agrees 

with the current official forecast.  In such instances, the 

meteorologists may have very high confidence in his/her 

predictions.  

     Table 8 shows first period standard deviations 

computed from first period errors.  These were stratified 

based on the consistency of the forecasts from period 5 

through period 1.  The high and low forecasts from 

period 5 through period one determine the “delta range.”  

If the forecast remained constant, regardless of 

accuracy, the delta range would be zero.  If the forecast 

swung from 52 to 58, the delta range would be 6.  Two 

sets of computations were made for each the CCF and 

MAV with delta ranges of zero through two and also six 

through 10.  

 

6. Examples of Combined Distributions 

 

     Three keys assumptions must be made to allow 

WFO forecasters to create probabilistic temperature 

forecasts.  First, it must be assumed that the CCF and 

guidance will be the mean that one might expect from 

 CCF Std Dev MAV Std Dev 

Delta range 0, 1, 2 2.94 3.08 

Delta range 5-10 3.53 3.81 

Table 8. Standard deviations for first period errors 

when the cycle-to-cycle "delta range" was as shown 

on left. 

 
an infinite number of similar events, and that the 

distribution around that mean is Gaussian.  Second, 

appropriate standard deviations will be required for each 

forecast period, based on such inputs as forecaster and 

model error, consistency of CCF and guidance per 

period and from one cycle to the next.  Third, 

information from the GFE GUIs should supply 

forecaster-determined weights into the computation of 

the final distribution.  Several simple Excel spreadsheet 

examples are shown here to illustrate some of the 

possibilities.  

     Figure 8 shows an example of a probabilistic 

maximum temperature forecast that might be expected, 

given the MOS guidance (MAV and MET) and the CCF, 

for what might be a common, relatively stagnant 

weather pattern.  For this example, each forecast was 

assigned the same standard deviation.  The Gaussian 

distributions were then calculated and averaged to 

arrive at the final expected distribution.



   

Figure 8. Simple individual and mean 

This might represent a quiescent weather pattern

 

     A more diverse case is shown in Figure 

there is more disagreement among the guidance 

Figure 9. Same as Figure 5 but for a broader range of MOS and CCF solutions.

equal 1. 

ndividual and mean distributions for high temperature forecast. CCF is the WFO forecast. 

This might represent a quiescent weather pattern 

A more diverse case is shown in Figure 9 where 

there is more disagreement among the guidance 

products.  The resulting forecast has less certainty as

indicated by the broader relative distribution. 

. Same as Figure 5 but for a broader range of MOS and CCF solutions.  Standard deviations (

 

for high temperature forecast. CCF is the WFO forecast.  

The resulting forecast has less certainty as 

distribution.  

 

Standard deviations (σ) all 



     Figure 10 is an interesting example where there is 

significant model disagreement, but

apparently prefers the warmer guidance.

distribution is bimodal, indicating to the astute u

there are two distinctly different outcomes

Figure 10.  Simple example where the MET differs considerably from the MAV and CCF.

     Figure 11 is an example where weighting factors 

were used.  In this example, the forecaster double

weight of his/her own forecast, and halve

Figure 11. This depiction allows the forecaster to

MAF and halve the weight of the MET

 

interesting example where there is 

but the forecaster 

apparently prefers the warmer guidance.  The resultant 

distribution is bimodal, indicating to the astute user that 

outcomes possible in 

this forecast.  This particular case might 

one model’s development of a convective complex that 

will keep temperatures much cooler than the other 

model.  The CCF indicates the forecaster hedged but 

preferred the warmer forecast.   

xample where the MET differs considerably from the MAV and CCF.  

weighting factors 

, the forecaster doubled the 

his/her own forecast, and halved the weight on 

the MET MOS, leaving the MAV with a weighting factor 

of 1.   

. This depiction allows the forecaster to "double-weight" his/her own forecast, single weight the 

MAF and halve the weight of the MET.  

might be the result of 

a convective complex that 

ooler than the other 

model.  The CCF indicates the forecaster hedged but 

the MET MOS, leaving the MAV with a weighting factor 

, single weight the 



     Figure 12 is an example where the standard 

deviations for CCF and guidance are different.  This 

generates a more complex distribution.  It is interesting 

Figure 12. The standard deviations (σ

in a noticeably different shape to the final mean probability curve. 

7. Conclusion  

 

     This WFO approach to computing the uncertainty of 

forecast temperatures assumes each contributing 

forecast (MOS, model, or CCF) has a Gaussian 

distribution and that each contributing forecast is for the 

mean of that distribution.  The standard deviation

those distributions are unique and can be 

with relative accuracy by a variety of means

forecast distributions can then be combined, with or 

without forecaster-assigned weights, 

final expected distribution of max/min temperature. 

     The method shown here suggests that uncertainty 

could be based on standard deviations derived from 

general seasonal forecast error, MOS/CCF differences 

for a specific forecast, and the degree to which 

forecasts and MOS guidance change from one cycle to 

the next.  In addition, it may be important to

include the specific error-derived standard deviations of 

each forecaster, given that some forecasters are more 

skillful than others.  

     The overall concept provides forecasters with 

much or as little control over the final forecast 

distribution as they wish.  This is importa

most forecasters routinely add value to guidance 

products.  Also, forecasters must deal with sub

forecast issues which may be below the scale an 

Figure 12 is an example where the standard 

deviations for CCF and guidance are different.  This 

.  It is interesting 

to note that both guidance products are warmer than the 

CCF, resulting in a distribution that 

temperature may be expected.   

(σ) are different in this example and are as shown in the graphic

in a noticeably different shape to the final mean probability curve.  

the uncertainty of 

forecast temperatures assumes each contributing 

has a Gaussian 

and that each contributing forecast is for the 

standard deviations of 

can be approximated 

by a variety of means.  The 

then be combined, with or 

 to estimate the 

final expected distribution of max/min temperature.  

The method shown here suggests that uncertainty 

be based on standard deviations derived from 

general seasonal forecast error, MOS/CCF differences 

for a specific forecast, and the degree to which CCF 

change from one cycle to 

important to identify and 

standard deviations of 

each forecaster, given that some forecasters are more 

concept provides forecasters with as 

control over the final forecast 

.  This is important because 

add value to guidance 

Also, forecasters must deal with sub-synoptic 

forecast issues which may be below the scale an 

ensemble approach could address.  

also apply local biases, on the sub-

ensemble members might not resolve. 

     Forecaster control is also important because they

often able to discern which model(s)

be accurate, which may not always include the GFS or 

NAM or their ensemble members.  Max

forecasts are also available from the European Centre

for Medium-Range Weather Forecasts,

Kingdom Meteorological Office model and 

run models and others.  With WFO local control, a

all of these could be ingested into the Gridded Forecast 

Editor and used to compute the final expected 

temperature distributions.   

     The current configuration at NWS WFOs should be 

sufficient to allow the method described 

be implemented.  The Gridded Forecast Editor contains 

most, if not all of the “tools” required.  Forecasters have 

already learned to use weighting techniques such as 

“slider bars” and have effectively been 

forecasts since they began using MOS.  

     Communicating maximum and minimum temperature 

forecasts continues to be problematic in that only one 

number is currently provided.  This is unfortunate since 

meteorologists are frequently aware 

uncertainty from one forecast 

Probabilistic temperature forecasts 

to note that both guidance products are warmer than the 

CCF, resulting in a distribution that suggests higher 

 

shown in the graphic, resulting 

ensemble approach could address.  Forecasters can 

synoptic scale which 

not resolve.  

Forecaster control is also important because they are 

(s) are more likely to 

always include the GFS or 

Max/min temperature 

ailable from the European Centre 

Range Weather Forecasts, the United 

model and WFO locally 

ith WFO local control, any or 

all of these could be ingested into the Gridded Forecast 

Editor and used to compute the final expected 

The current configuration at NWS WFOs should be 

sufficient to allow the method described in this paper to 

The Gridded Forecast Editor contains 

most, if not all of the “tools” required.  Forecasters have 

already learned to use weighting techniques such as 

effectively been weighting 

sing MOS.     

Communicating maximum and minimum temperature 

forecasts continues to be problematic in that only one 

.  This is unfortunate since 

aware of the changing 

one forecast period to another.  

Probabilistic temperature forecasts should allow 



meteorologists to convey that uncertainty in addition to a 

“best guess” number.  Graphical depictions, such as 

those shown here could be made available through 

internet web sites for the discerning partner or 

customer.  The method described here is practicable, 

efficient, and could be implemented with relative ease.  
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