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1. INTRODUCTION 
 
One of the primary purposes of weather 
forecasting is to reduce losses due to 
weather related events. Research on the 
economic value and cost-loss concepts 
associated with weather spans nearly 50 
years (Murphy 1966, Murphy, 1977, 
Murphy 1978, Murphy 1985, and 
Murphy 1986). The more generalized 
concept of a decision support system 
(DSS)1,a computer-based system 
emerged much later. Sage (1991) 
presented the components of a DSS. The 
main components included the user, a 
relational database system, and a 
modeling system.  The critical concept is 
to facilitate cost-effective decision 
making.  
 
Critical to any DSS is a realistic 
methodology to address risk assessment 
and to manage problems related to 
decision making (Haimes 2004). Though 
extremely important, it would be 
prohibitive to cover the components of 
designing a realistic DSS within this 
short paper. A simple example is 
provided in section 3 to illustrate this 
problem. 
   
Developing cost-loss models requires 
probabilistic forecast information and 
knowledge of cost/loss (C/L) ratio 
(Mylne 1999).  Relatively accurate 
ensemble forecast systems (EFS: Atger, 
1999) can provide probabilistic forecast 
                                                                                                 
1 The National Weather Service approaches this 
from a Decision Support Services aspect. 

information with regard to a wide range 
of forecast parameters.  
In addition to the probabilities, 
ensembles can provide information 
about uncertainty (Toth et al. 2001).  A 
single deterministic model cannot 
readily provide information about 
uncertainty nor can it provide 
probabilistic information2.  Current use 
of EFS data tends to separate uncertainty 
information from probabilistic 
information though the two are not 
independent. Therefore, it is difficult to 
use a single model in decision making 
activities as the forecasts are binary.  
 
Ensemble prediction systems can 
provide important information which can 
be of value to decision-makers, 
including derived probabilistic and 
uncertainty products.. These data can 
reveal both the high probability of a 
significant event, such as heavy rain or 
snow, or the low probability event with 
potentially high impacts and costs, such 
as a land falling tropical storm. Decision 
makers need to be aware of the both 
event types. 
 
The uncertainty information, based on 
the spread, can provide additional 
information to the forecaster as 
demonstrated by (Toth et al. 2001).  
Their study revealed that in general, 
when forecasts converged (low spread) 
they tended to be more accurate than 
when the forecasts diverged (high 

 
2 Post processing of these data facilitates the use 
linear regression to derive probabilities.  



spread). Thus, in addition probabilistic 
information, the spread in the EFS can 
be used to gage a measure of confidence 
in the forecast. Though relative measure 
of predictability (RMOP: Toth et al 
2001) data are not provided here, the 
concept is useful in forecasting to gage 
the confidence in the forecast. 
 
This paper will examine the use of an 
ensemble prediction system to aid in 
decision making. The focus is on how 
forecasters can leverage probabilistic 
and uncertainty information provided by 
ensemble prediction system to assist 
decision makers. Clearly, there is a need 
to establish cost-loss models for both a 
wide range of weather events and wide 
range decision makers. Decision makers 
are loosely defined as those who would 
make decisions based on meteorological 
forecasts or information.The goals 
include making forecasters more aware 
of the value of ensembles in the forecast 
process and of the value of 
understanding simple C/L models. 
 
2. METHODS 
 
Data from the NCEP NAM, GFS, and SREF 
are presented here. The data were available 
in GRIB format for use in this paper. The 
focus will be on SREF products related to 
forecasting quantitative precipitation 
amounts and types. At the conference, data 
related to the meteorological setting will 
also be presented. 
 
For the NAM and GFS, the data is limited to 
a point near State College, PA for a 
December 2008 winter event. At this point, 
the instantaneous QPF is shown (Figs. 1 and 
2) and the accumulated precipitation by 
model forecast precipitation type is also 
shown. A color key is included with each 
image, where snow is depicted as blue and 
rain as green.  
 

For the SREF, a plume diagram is provided 
at the same point used to produce the NAM 
and GFS images (Fig. 3). The SREF has 21 
members and thus there are 21 lines on each 
chart. Each SREF members’ 3-hour QPF is 
shown (gray) and the accumulated 
precipitation color coded by precipitation 
type. 
 
In addition to the plume diagrams, SREF 
probabilities of precipitation type are 
depicted in plan view (Figs. 4-7). These are 
raw uncalibrated probabilities based on the 
total number of members and the number 
that forecast rain, snow, ice pellets, or 
freezing rain respectively. These 
probabilities are plotted with the 3-hour 
ensemble mean QPF. 
 
All times will be referred to as 12/0000 UTC 
for 12 December 2008. All the images were 
produced using NCEP gridded data and 
were displayed using GrADS (Doty and 
Kinter 1995). 
 
3. CASE EXAMPLE 
 
i. Overview of the problem 
 
This case is taken from a true example. 
The basic problem was the potential for 
7.5 to 12.5 cm (3-5 inches) of snow. 
This amount of snow would cause 
problems forcing an institution to close 
if the snow blocked roads and parking 
fields. Total costs of closing due to the 
snowfall were in excess of 1 million 
dollars (loss). The main cost to protect, 
if the snow were to fall overnight, which 
in this event was the case, was about 3 to 
4 thousand dollars in overtime (cost to 
protect).  
 
The cost-loss ratio (C/L) here was 0.004, 
suggesting that it was extremely cheap to 
protect ($3-4K) verse the loss of not 
protecting ($1M). Cleary, most decision 
makers, armed with this information 
would chose to protect with a very low 



probability of 7.5 to 12.5 mm of 
snowfall.  This situation is quite similar 
to why homeowners have an incentive to 
insure their homes; the relative cost of 
insurance is cheap compared to the 
replacement cost of a house.  
 
Those in charge of budgets would of 
course desire to save the $3000-$4000 
whenever possible and would like as 
accurate a forecast as possible to avoid 

spending any additional funds. Those 
providing the forecasts are likely 
unaware of the true cost verse the loss 
and want to provide as accurate a 
forecast as possible.  
 
In this event, the forecast called for 7.5 
to 12.5 cm of snow overnight which did 
not occur. The forecaster felt he had 
failed, however upon comparing the C/L 
and the forecasts it became clear this 

a) b) 

c) 

Figure 1 NAM forecasts of quantitative precipitation (inches) from forecasts initialized at ((a)  0600 UTC (b) 1200 UTC and 
(c) 1800 UTC 11 December 2008 The gray lines show the 3-hourly instantaneous precipitation (inches). The color coded li
show the accumulated precipitation color coded by the dominant precipitation type. 

nes 



Figure 2. As in Figure 1 except showing the GFS forecasts of 6-hourly precipitation and accumulated 
precipitation by precipitation type for (a) 0600 UTC and (b) 1200 UTC.

was likely a very cost-effective forecast. 
The forecasts are addressed in the 
following section. 

 
Forecasts and the C/L associated with 
them must be understood by users and to 



Figure 3. As in Figure 1 except SREF forecasts initialized at (a) 0900 UTC and (b) 1500 
UTC11 December 2008. Data are shown for each of the 21 SREF members. 

some degree, by forecasters. Clearly, 
every user has unique requirements and 

their own unique C/L models.  Thus, as 
outlined by Haimes (2004), there is a 



requirement to systematically address 
risk and manage decision making.  The 
DSS concepts outlined by Sage (1991) 
could help users determine C/L ratios. 
 
Continuing with the snow example, a 
wide range of users must take action to 
prepare for the potential snowfall. 
Airport managers may need to pre-
position crews to clear runways and de-
ice planes. Municipalities may be 
required to get trucks and crews ready to 
plow and treat roads. School systems 
must decide whether to close or remain 
open. All of these activities have 
associated cost-loss ratios. Each users 
C/L ratio may require action at a 

different threshold probability. 
 
National Weather Service (NWS) 
forecasts of snow amounts for advisories 
and warnings are tied to discrete 
amounts and probabilities of occurrence. 
In general, a longer fused watch is a 
50% outcome event while a shorter-
fused advisory or warning is expected to 
verify at about 80%. There is slight 
disconnect here as the user probabilities 
are nearly a continuous spectrum while 
the NWS forecasts are discrete. Private 
companies that can fill the gap in this 
area are for higher end users with 
significant C/L issues and knowledge. 
 

Figure 4. SREF forecasts initialized at 0900 UTC 11 December showing the ensemble mean precipitation (black 
contours:inches) and clockwise from upper left, the probability of the precipitation type being rain, snow,  ice 
pellets, or freezing rain. Probabilities are in percent as noted at the right of each image. Precipitation contours are 
black showing 0.05, 0.10, 0.20, 0.30,0.40 and 0.50 inch contours.



A critical point in this process is how to 
arrive at probabilities and information 
about uncertainty from forecast 
guidance. Single forecasts, from the 
NAM or GFS, provide no probabilistic 
or uncertainty information. This type of 
information, however, can be derived 
from an ensemble of models or from an 
EFS.   
 
The next section shows how ensembles 
can be used toward this means. This 
approach, though presented 
simplistically is similar to the concepts 
presented by Mylne (1999 and 2001) and 
Toth et al. (2001). 
 
ii. Deterministic Forecasts 
 
The evolution of the snow potential with 
the 12/2008  event was slow. Initially, 
the precipitation amounts, falling as 
snow, were quite low. The 11/0600 UTC 
NAM (Fig. 1a) showed about 0.06 
inches of QPF falling as snow by 
12/1800 UTC. The model initialized 12-
hours (Fig 1b.) later showed about 0.60 
inches of QPF falling as snow. The 
NAM initialized at 11/1800 UTC (Fig. 
1c) showed less QPF than the more 
aggressive 11/1200 UTC run (Fig. 1b) 
with about 0.30 inches of QPF to be in 
the form of snow. 
 
The lower resolution GFS forecast 
initialized at 11/0600 UTC (Fig. 2a) 
showed just over 0.10 inches of QPF 
falling as snow. Similar to the NAM, the 
11/1200 UTC run (Fig. 2b) was more 
aggressive, showing 0.60 inches of the 
QPF falling as snow, though it showed 
some rain and snow issues. 
 
iii. SREF forecasts 
 

The SREF plumes (Fig. 3) showed the 
complex nature of the event with regard 
to precipitation type, amounts, and 
timing. The SREF initialized at 11/0900 
UTC (Fig. 3a) showed the potential for 
rain, freezing rain, or snow during most 
of the event, with the precipitation 
ending as a brief period of snow. Most 
of the members showed little significant 
snowfall. One member did show as 
much as 0.92 inches of the QPF falling 
as snow. The mean was around 0.25 
inches of the QPF falling as snow. 
 
The SREF initialized at 11/1500 UTC 
(Fig. 3b) showed a similar scenario, with 
the precipitation possibly ending as 
snow. The overall snow fall was slightly 
less than depicted in the previous 
forecast cycle and the maximum 
snowfall QPF amount was nearly 0.30 
inches lower. 
 
Plan view images from the 11/0900 UTC 
SREF showing probability of 
precipitation by precipitation types are 
shown in Figures 4-7. These data show 
that prior to 12/0900 UTC fewer than 40 
percent of the members predicted the 
QPF to fall as snow.  This increased to 
60-80% of the members showing snow 
by 12/1200 UTC. The probabilities 
dropped off after this time due to the 
number of members forecasting any 
QPF. Thus, snow was only briefly the 
primary precipitation type. 
 
The 11/1500 UTC SREF was less 
aggressive with the snow as seen in the 
plume diagrams and as displayed in 
Figures 7 & 8. These data show about a 
40% chance that snow is the main 
precipitation type by 12/0900 UTC and a 
90% chance of snow by 12/1200 UTC. 
By the time the precipitation was mainly 
snow, the mean QPF was around 0.10 



inches. Due to a decrease in the number 
of members predicting any QPF, by 
12/1500 UTC the probability of snow 
was around 40% (not shown). 
 
4. SUMMARY AND 

CONCLUSIONS 
 
The forecast of 3 to 5 inches of snow 
predicted over central Pennsylvania, to 
include State College, was not observed. 
Observations suggest that about 1 inch 
of snow was observed in and around 
State College on the morning of 12 
December 2008. A minor ice storm was 
observed on the 11th.  
 
With the notable exception of run-to-run 
inconsistencies, the data presented here 
suggest that neither the NAM nor the 
GFS presented any information with 
regard to uncertainty. It is also evident 
that forecasts of 3 to 5 inches of snowfall 
were biased toward the 11/1200 UTC 
forecast cycle and the deterministic 
models. The 11/0900 UTC SREF 
indicated that snow was not a high 
probability forecast until the very end of 
the event and the mean snowfall was 
under 0.20 of QPF.  
 
The NAM and GFS snowfall forecasts 
decreased after 11/1200 UTC. The 
11/1500 UTC SREF showed the same 
trend, with decreased overall snowfall 
and a decrease in the ensemble mean 
amount of QPF falling as snow.  
 
From a traditional forecast perspective 
the forecasts of 3 to 5 inches of snow 
were biased toward QPF produced by 
the deterministic operational models. 
The SREF forecasts clearly indicated 
snow, and accumulations over 1 to 2 
inches were low probability outcomes.  
 

This case clearly shows some of the 
limitations of plume diagrams. It is 
difficult to get at the probabilities. Thus, 
the plumes are good for some 
generalized statistics and they clearly 
convey information about uncertainty, 
but they lack good probabilistic data. 
Thus the precipitation plumes are good 
for timing, amounts, maximum amounts, 
and uncertainty information. However, a 
new plume concept needs to be 
developed to exploit the probabilistic 
nature of these data. 
 
It is also evident, comparing Figures 1 
and 2 that neither the NAM nor the GFS 
can convey any uncertainty information. 
The uncertainty information from these 
single models was derived from the run-
to-run inconsistencies. 
 
From a decision support perspective the 
forecasts of 3-5 inches of snow were 
good forecasts. Despite being a low 
probability outcome event, the chance of 
over 3 inches of snow was 
approximately 40%.  This is a 
conditional probability given all the 
precipitation falls as snow. However, for 
a user with a cheap cost to protect (3-
4K) and a large potential loss if no 
action was taken (1M) it pays to protect 
if the event is a low probability outcome.  
 
To some forecasters this might not sound 
correct, but for a user with a small C/L 
ratio it was a good forecast. Both the 
forecaster and the user require some 
level of knowledge of the C/L ratios. 
Budgetary concerns might have leaned 
toward the fact that a 40% outcome cost 
about 3K to protect and thus 3K was 
lost. However, one event where 1M is 
lost quickly mitigates the few losses of 
3K when 3 to 5 inches of snow is low 
probability forecast. 



Figure 5. As in Figure 4 except valid at 1200 UTC 12 December 2008. 

 
A continuous set of probabilities of an 
event needs to be produced. Users need 
to know their C/L so they can exploit the 
probabilities to make good decisions. 
This simple illustrates this point making 
the connection between the user and the 
forecaster. 
 
It should be noted that each user has 
unique C/L ratios. In our simple snow 
example, a ski lift operation may make 
decisions related snow production based 
on the forecasts for of 3-5 inches of new 
snow. In this case, the ski resort could 
reduce or cease snow making to save 
some money on energy costs related to 
snow making. Thus some organizations, 
in particular those with potentially large 

risk, require specific forecasts from 
forecast services while others could use 
forecasts based on continuous 
probabilities and their known C/L ratios.  
The latter group could use forecasts 
where the forecaster only needs to 
convey information about uncertainty 
and the probability of an outcome. 
However, the former group requires that 
the forecaster and the user know 
information about the specific users C/L 
ratio. 
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Figure 6. As in Figure 4 except for SREF initialized at 1500 UTC 11 December 2008 valid at 0900 UTC 12 
December 2008. 
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