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1 Introduction

The stationary two-dimensional approximation
to the atmospheric vortex is a useful theoret-
ical laboratory, making available results that
can be compared with observations. There is
another reason of interest for this approxima-
tion: the atmospheric vortex can be seen as a
cuasi-coherent structure and it is known that
a 2D fluid evolves at relaxation to states of
self-organization that have these characteristic,
a fact that is strongly supported by experi-
ments and numerical simulations. A theoret-
ical model of the asymptotic stationary states
of fluids cannot be based on only the conser-
vation laws (density, momentum, energy, etc.)
since they allow for a large class of functions
that could represent the final flow pattern. A
natural approach is to first identify functionals
of the fluid’s state and apply variational pro-
cedures. The two-dimensional geometry of the
fluid flow makes this possible. The 2D ideal
incompressible fluid (Euler) can be represented
as a discrete system of point-like vortices inter-
acting by a long range potential [1]. The 2D
atmosphere and plasma are equivalent with a
discrete system of point-like vortices interacting
by a short range potential [2]. These are well-
known models that have been used in various
applications. A fundamental property of these
models consists of the fact that they formulate
the dynamics in terms of matter, field and in-
teraction. We then look again to the continuum
limit of these models but preserving this struc-
ture. In both cases we obtain a classical field
theory for the matter field (the density of point-
like vortices) the gauge field (the long or short
range potential) and interaction. The essential
benefit of this approch is that it provides a La-
grangian density, whose integral on 2D space
and time is the action functional.

2 The Euler fluid

For the 2D ideal fluid the Euler equation
dω/dt = 0 is expressed for the discrete

system of point-like vortices as dri
k/dt =

εij ∂

∂r
j

k

∑N
n=1,n6=k ω0G (rk − rn), where ri ≡

(x, y), ω0 is the elementary vorticity carried
by each point-like vortex and εij is the an-
tisymmetric tensor. The potential is long
range G (r, r′) ≈ − (2π)

−1
ln (|r − r

′| /L) where
L is the spatial extension of the flow. The
continuum limit leads to a Lagrangian den-
sity expressed in terms of two fields: Aµ is
the ( ”gauge”) field representing the poten-
tial between vortices, φ is the complex scalar
(”matter”) field representing the increase or
decrease of local vorticity (equivalently: in-
crease/decrease of density of vortices). The
fields Aµ and φ are 2×2 matrices with complex
entries that belong to su (2), as required by the
spin-like nature of the point vortices. Looking
for the extremum of the action S =

∫
d2xdtL

we are guided by the observation that the as-
ymptotic states of the fluid are coherent struc-
tures, possibly integrable. Since all known in-
tegrable structures (including solitons, instan-
tons) are obtained at ”self-duality” we look for
this property of S. In practical terms this
means to write S as a sum of squares plus a
topological term. Indeed S for the Euler fluid
has this property (the topological term is zero)
and S can be minimised by taking to zero the
square terms. This leads to two equations (the
”self-duality” equations) which, with an alge-
braic ansatz, lead to the sinh-Poisson equation
[3]. The latter is known to describe the asymp-
totic structures reached by the Euler fluid at
stationarity [4].

3 The 2D stationary at-

mospheric vortex

For the atmosphere the interaction between
point-like vortices is short-range: G ∼
K0 (|rk − rn| /ρg) where K0 is the modified
Bessel function and ρg is the Rossby radius.
The Lagrangian,

L = −tr
[
(Dµφ)

†
(Dµφ)

]
(1)
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−κεµνρtr

(
∂µAνAρ +

2

3
AµAνAρ

)

−V
(
φ, φ†

)

similar to the Euler fluid case, consists of the
kinetic term for the φ field, the Chern-Simons
term of the Aµ field and the potential V for the
self-interaction of the scalar field. The latter is
essentially different from the Euler case: it pro-
vides to the system precisely the short-range
required by the discrete model (G ∼ K0 above)
by giving a ”mass” to the Aµ-particle (”pho-
ton”) [5], [6]. As sugested by the Euler model
we look for self-duality and write the action S
as a sum of squares and an additional term.
However it is not possible to find for the latter
a topological meaning, when the fields φ and
Aµ belong to su (2). This leaves a certain am-
biguity in the separation into squares and the
ground (called ”vacuum”) energy [7]. Taking
to zero the square terms we derive the reduced
set of equations [8]. Under the same algebraic
ansatz we find

∆ψ +
1

2p2
sinhψ (coshψ − p) = 0 (2)

where p is a positive constant and ψ is the
streamfunction of the flow, i.e. v = −∇ψ×êz,
with êz the versor perpendicular on the plane.
Physical quantities are normalised using the
Rossby radius ρg and the Coriolis frequency f0.

4 Numerical studies

Eq.(2) has been solved on spatial domains,
L = Lphys/ρg in the range 0.3 < L < 15.
The large number of numerical experiments al-
lows us to obtain an approximative idea about
the structure of the space of solutions and its
neighborhood, i.e. the functions that are cuasi-
solutions, verifying Eq.(2) within a lower pre-
cision. The strongly nonlinear character of
Eq.(2) is manifested in the fact that some sub-
set of solutions is accessed with difficulty by the
integration procedure (with no intrinsic physi-
cal meaning). The trivial solution (ψ = 0) is
obtained in most of the cases. The nontrivial
solutions are of three types: (1) smooth sym-
metric vortices; (2) highly localised vortices,
with almost zero vorticity everywhere, except
a small central region; (3) crystals of vortices.
The smooth vortices are obtained with appar-
ently arbitrary precision, while the strongly lo-
calised vortices arise in families of neighboring
configurations of flow, for most of them the

precision of verification of Eq.(2) is lower. We
have defined an ” error” functional to represent
the degree of departure of a flow configuration
from being an exact solution. Exploring a large
set of results (solutions and ”cuasi-solutions”)
we identify the structure of the space of func-
tions around the extremum of the action (i.e.
Eq.(2)). This shows the existence of degener-
ate directions, explaining the fact that an exact
solution is connected along paths in function
space with quasi-solutions with similar shape,
and reaching at a limit the class of highly lo-
calised vortices. The physical meaning of such
structure should be considered in depth, since
a small external factor may drive the system
along this path and this can represent an easier
way for thermodinamical processes that lead to
vorticity concentration.

5 Physical conclusions on

cases relevant for the

tropical cyclone

Systematically, the smooth solution of Eq.(2)
has the morphology of the tropical cyclone [9],
as shown in Fig.(1). We have identified two re-
lationships between the main parameters: the
maximum radial extension of the atmospheric
vortex, Rmax, the radius of the eye-wallRw and
the maximum azimuthal wind vmax:

vmax (L) ≃ e2

2

[
α exp

( √
2

Rmax

)
− 1

]
(3)

Rw

Rmax

=
1

4

[
1 − exp

(
−Rmax

2

)]
(4)

valid for the region 0 < L = Rmax/
√

2 < 6,
where e is the basis of natural logarithm and
α = 0.97. They compare well with observations
and are useful for approximative evaluation of
one of the parameters, when two of them are
known from observations.

The field theoretical formulation provides
an interesting physical result. The states of
the fields φ and Aµ are formally associated to
the notion of particles, although we only need
to think of them in terms of stationary vortex.
The theory provides the masses of these parti-
cles and the result that the two kind of particles
have equal masses. Or, in physical terms, one
of the masses (of the field Aµ, the ”photon”)
is the Rossby radius. The other mass (of the
field φ, called the Higgs particle) is the spatial
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distance on which the field φ decays to zero,
i.e. approximately the spatial extension of the
atmospheric vortex. The equality means that
the radial extension of the atmospheric vortex
is approximately equal with the Rossby radius.

6 The 2D annular vortex

A configuration of flow consisting of a plane
ring vortex is not an exact solution of the
Eq.(2). However the search for the extremum
of the action functional reveals an interesting
state. Applying the standard Bogomolnyi pro-
cedure of writting the action as a sum of squares
plus an additional term and looking for the con-
dition that this additional term is topological
(i.e. expressed in terms of the total vorticity in
the field, which is a conserved quantity for the
ideal case), we are led to assume a particular
algebraic ansatz, where only one of the ladder
generators of su (2) is retained. The result is a
new differential equation

∆ψ = exp (ψ) [exp (ψ) − 1] (5)

for stationary states. The solutions of (5) con-
sists this time precisely in vortices with annular
shape, with spatial extension comparable with
the Rossy radius. They are stable since their
energy is the lower bound of the action at sta-
tionarity and this bound is topological (inde-
structible in the absence of dissipation). The
solutions of Eq.(2) and of Eq.(5) are classes of
functions that are accessible to the system when
it starts its time evolution from different classes
of initial conditions.
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Figure 1: The azimuthal velocity of the vortex flow of the typical solution of Eq.(2).
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