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1. INTRODUCTION

NCEP’s Spectral Statistical Interpolation (SSI,
see Parrish and Derber 1992) has recently been re-
placed by a grid-point statistical interpolation (GSI,
see Wu et al. 2002, Kleist et al. 2009) The global
synthesis of background error covariances in the GSI
is presently done by performing recursive filtering
operations (Purser et al. 2003a,b) on three overlap-
ping domains and merging the results. The domains
are:

• a southern polar stereographic domain with
Cartesian grid coordinates;

• a central domain with cylindrical grid coordi-
nates;

• a northern polar stereographic domain similar
to its southern counterpart.

The purpose of dividing the region in this way is
to ensure that the numerical operations of recursive
filters do not encounter coordinate singularities.

The covariances may be generated on each of the
overlapping grids and the results smoothly blended.
However, in the stratosphere and mesosphere, the
horizontal scales of the covariances may be very
large; in this case it is found that width of the grid
overlap is insufficient to prevent a slight distortion
of the final covariances within the blending zones.

In the next section we propose a remedy based
on a very different kind of global gridding which
exploits the full three-dimensional nature of the ge-
ometry, but abandons the usual convention by which
one ‘vertical’ coordinate adheres to approximately
horizontal surfaces.

2. CUBIC GRIDDING

Figure 1: Nested Cartesian grids, of unequal spans

Instead of separating the quasi-horizontal levels
by one ‘vertical’ coordinate and expecting two other
‘horizontal’ coordinates to cover the spherical sur-
face, we transform the three-dimensional spherical
shell occupied by the atmosphere to the interior
of an abstract cube which can then be gridded
in Cartesian fashion to avoid any coordinate sin-
gularity whatsoever. This somewhat radical solu-
tion, while woefully inadequate as a strategy for
modeling, is perfectly satisfactory as a means for
supplying a grid on which anisotropic filtering can
proceed unmolested by singularities (which pose a
greater threat than does the lack of stratification).
Obviously, embedding the atmosphere directly and
without metrical distortion is impractical since the

∗Corresponding author address: R. J. Purser, W/NP2 RM
207, WWBG, 5200 Auth Road, Camp Springs, MD 20746



Figure 2: A non-logarithmic radial transformation
of the nested Cartesian grids of Fig. 1, showing a
vertically nonuniform resolution in both the vertical
and horizontal directions. The horizontal extent of
the nested configuration of grids sketched here is one
quadrant of the Earth; the vertical scaling is linear
in the pseudo-height, log(σ).

atmosphere’s effective thickness is tiny (a few tens
of kilometers) compared to Earth’s radius (a few
thousand kilometers). On the other hand, if we
radially transform the thin atmospheric shell to a
very much thicker one, comparable to the Earth’s
radius, we make fuller use of the cubic grid.

However, if transforming to a very thick image
shell, the lower atmosphere will be resolved rela-
tively poorly (in the horizontal direction) compared
to the upper atmosphere. It would be preferable to
confer on the upper portion of the atmosphere the
lower resolution in the horizontal directions, which
suggests that ‘inverting’ the radial ordering in the
transformation would be a better arrangement.

Another way of exerting control over the resolu-
tion is to refine the inner portion of the cubic grid
where the resolution is otherwise deficient and, if
necessary, to repeat such refinements in ‘telescoping’
fashion to create a hierarchic series of successively
refined grids nested, each one within its predecessor,
like Russian matryoshka dolls.

Trimming the corners, we might then have a cu-
bic grid configuration analogous to the two-dimensional
square grid depiction given in Fig. 1. Note that
the ‘span’ of the grid (the number of its grid spaces
across its width) need not be the same for each
nest. Also, we need not choose simply the loga-
rirthmic radial transformation to obtain the log(σ)

quasi-height in the atmospheric model (which would
lead to approximately uniform vertical resolution
across the succession of nests) but, instead, we may
smoothly vary the radial transformation away from
this ideal, in order to enhance or degrade vertical
resolution in a controlled way at each altitude. The
details of how this might be done are described in
Sato and Purser (2009).

A two-dimensional example of the transforma-
tion of the nested grids corresponding to the con-
figuration of Fig. 1, is shown in Fig. 2, where a
radial transformation has been chosen to enhance
the vertical resolution at the top, where the span
of the finest nesting also gives only relatively poor
horizontal resolution. Each grid can support a fil-
tering operation with a characteristic scale suitable
to that grid and, provided an amplitude-modulating
function causes the amplitude of each grid’s filter
to drop smoothly to zero at or before the grid’s
boundary, the contributions of all the nested grids
can be added up when interpolated back to the
principal overlapping analysis grids used to cover the
globe.

3. TESTING THE NESTED GRIDS IN THE GSI

The approximately ellipsoidal shape of the back-
ground error covariance of a control variable at
any geographical location and altitude can now be
transformed to the corresponding ellipsoidal shape
parameters (‘aspect tensor components’) within the
nested cubic grids. The ability to construct anisotropic
quasi-diffusive smoothing filters by applying the
‘Hexad algorithm’ with recursive filters (Purser et
al. 2003b) to reproduce covariances of any ellip-
soidal shape, regardless of their oblique orientations
relative to the grid, makes the covariance in the
nested grid domains as easy to work with as it is
in the standard three-patch overlapping grids. But
for covariance contributions that have very large
horizontal scales the advantage is that no horizon-
tal overlap intrudes to distort the shapes of these
covariance contributions.

The present operational GSI employs the sim-
pler, horizontally isotropic, form of the recursive
filtering package to generate its quasi-Gaussian co-
variance contributions, but the adaptive anisotropic
covariance operators are available for experiments.
In Fig. 3 the panels on the extreme left show covari-
ances produced by the operational isotropic method,
while the central panels show the corresponding re-
sults formed by the more general anisotropic algo-
rithm, still within the same three-patch grid con-
figuration, but with parameters set to mimic the



Figure 3: Covariance construction test result at log
2
(σ) = −6.24 (13.4mb) with the contour interval of 0.1.

The initial signals are put at (180◦E, 30◦N) (upper panels) and at (0◦E, 60◦S) (lower panels). The left
column shows the standard GSI (isotropic mode) result, the center column shows the anisotropic mode GSI
result, and the right column shows the anisotropic mode GSI with cubic grid results.

Figure 4: Same as Fig. 3 but at log
2
(σ) = −2.23 (216mb).
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Figure 5: Weighting functions for the each cubic grid
space and original three patch system. The square-
sum of the weighting function is one.

isotropic results. The impulses forcing these re-
sponses lie at 13.4mb and at (180◦E, 30◦N) in the
upper panels, at (0◦E, 60◦S) in the lower panels. The
right panels show the production of the same covari-
ance samples using the three-dimensionally nested
grids and, of course, the fully anisotropic filters. The
respective covariances generated within the three-
patch configuration by the isotropic and anisotropic
filter algorithms for at each sample location are vir-
tually identical, confirming that the alternative filter
algorithm behaves consistently. However, in each
case, we see evidence of the artificial anisotropy re-
sulting from the presence of the mid-latitude blend-
ing zones. This anisotropy is not present in the
right panels, showing that the nested grids method
successfully resolves this defect.

Some subtle residual unevenness in the contours
for the cases involving the anisotropic filters is
probably the consequence of sampling variations in
the stochastic method presently used to renormal-
ize these covariances; this effect is expected to be
eliminated by the new normalization method based
on the asymptotic ‘Parametrix Expansion’ method
described by Purser (2008a,b).

Fig. 4 shows the covariance contributions gen-
erated at the same geographical locations, but at a
lower altitude (216mb) where the covariance scales
are much smaller. In these cases, the adverse effects
of the overlapping grids are less visible in the left
and central panels, as we would expect, since these
covariances fit more comfortably within the blending
zones where the grids overlap.

The configuration of cubes, and the weights at-
tributed to their contributions to the covariance
synthesis, and the weight attributed to the three-
patch combination, are all shown in Fig. 5. At the

altitude (216mb) of the impulses used in Fig. 4,
with log

2
(σ) = −2.23, a significant contribution to

the covariances of the two right panels still comes
from the three-patch conventional grids, so these
covariances are still slightly affected by the presence
of the blending zones. But at the higher altitude of
Fig. 3, the entire synthesis of the covariances shown
in the two right panels comes from the nested cubes.

4. NON-CARTESIAN GRIDDING

The nested grid experiments were carried out
using a simple regular Cartesian lattice for each cube
and the wasted space not occupied by its embedded
sphere occupies almost the same amount of volume
as the sphere itself. But the fact that covariance gen-
eration in these domains must be conducted using
the more general anisotropic filters has the liberating
consequence that it is no longer necessary to restrict
the computational lattice here to be of the simple
‘cubic’ variety as regarded in Earth-centered Carte-
sians. Other simple lattices, familiar in crystallogra-
phy, resolve space more isotropically. One of these,
the ‘face centered cubic’ (fcc) lattice (e.g., Ziman
1979) is associated with the closest regular packing
arrangement of identical spheres. As a consequence
of this property, the embedded spherical region of
concern to this grid nest also occupies the largest
possible proportion (about 74%) of the volume of
the most accommodating ‘fundamental polyhedron’
of any periodic extension of each lattice-and-sphere
combination.

The fundamental polyhedron in which the sphere
can be inscribed most efficiently is the Voronoi cell
of the fcc lattice (a Voronoi cell comprises all the
points closer to a selected lattice point than to any
other lattice point).

The generating vectors of the fcc lattice, relative
to the Cartesian coordinates, are proportional to the
columns of the matrix,

E =





0, 1, 1
1, 0, 1
1, 1, 0





and the Voronoi cells of such a lattice can be shown
to have the shape of the ‘rhombic dodecahedron’
(e.g., Coxeter, 1963). But a linear transformation
by a matrix proportional to

2E−1 =





−1, 1, 1
1, −1, 1
1, 1, −1





transforms the fcc grid into a cubic one, the sphere
into an oblate ellipsoid; a triply-periodic cubic do-
main in this transformed space, just large enough to
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Figure 6: Schematic depiction of the efficient
non-overlapping embedding of a spherical volume
(shaded, shown in a cyclic succession of constant-z
cross-sections) in a periodic cubic ‘x, y, z’ grid via a
linear distortion that would convert the locally cubic
lattice into one metrically equivalent to the more
isotropic face-centered cubic lattice. Polygonal seg-
ments within each square section show the Voronoi
cell boundary, similarly distorted.

accommodate the ellipsoid without overlap, conse-
quently improves simultaneously the isotropy (in the
original Cartesian space) of grid resolution, and the
efficiency of utilization of the computational array.
Fig. 6 vividly demonstrates, through one cycle of
cross-sections through the logically-cubic periodic
array, that the domain of interest (shaded ellipsoid)
packs very efficiently, and without overlap, into the
space available for it. This rather simple geometrical
device will be considered for future implementations
of the nested grid method.

5. DISCUSSION

We have proposed, and successfully tested, a
way of overcoming a minor defect of the present
GSI as it affects the very largest horizontal scales
of covariances. Our method employs a nested se-
quence of cubic grids constructed to resolve these
large scales in the upper levels of the domain of
the global analysis. Preliminary experiments with
cycled assimilation at T62 resolution have shown a
mixture of positive and negative impacts. The worst

negative impacts involved the very top levels of the
model where our interpolation procedures are known
to be deficient. The ability to accommodate horizon-
tally anisotropic, and arbitrarily tilted, covariances
within the new system has not been exercised in
the experiments conducted so far. Neither have we
fully exploited the inherent ‘multigrid’ aspect of the
nested grid configuration, which, without additional
significant cost, could allow us in future to reshape
the covariances to exhibit more general profiles than
the simple quasi-Gaussian shapes we have confined
our studies to.

Replacing the present cubic grids with the al-
ternative oblique grid nests using the face-centered
cubic lattice discussed in Section 4 may improve the
computational efficiency significantly. Also, should
the general method be adopted, it might enable the
horizontal extent of the present blending zones of
the three-patch configuration, used in this future
context only for the very finest scales of covariance
contributions, to be dramatically reduced, entailing
a concomitant computational saving through the
reduction in the amount of storage, filtering, interpo-
lation and blending needed to generate and reconcile
the partial solutions allocated to these three patches.
At higher altitudes, where the covariance’s horizon-
tal scales are very large, it might not even be neces-
sary to perform any recursive filtering on the three-
patch grids, further reclaiming the computational
costs (an increase of about 34% in our preliminary
experiments) incurred by the introduction of these
new supplementary nested grids into the analysis
configuration.
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