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1. INTRODUCTION

Numerical weather prediction (NWP) models 
use a wide array of conventional and non-
conventional observations to estimate the state of 
the Earth's environment for their initial condition
(IC).  Successful assimilation of observations 
involves sophisticated algorithms and techniques 
for quality control (QC) to prepare observations for
input to the analysis. Models that embody the 
physical laws governing the behaviour of the 
Earth's atmosphere, ocean and land surface, and 
computers with the power to run these models 
rapidly enough to make timely forecasts are an 
essential element of an effective environmental 
analysis and prediction system. The National 
Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS) model makes 3, 6, 
and 9-hour forecasts for each cycle every 6 hours 
generating a background (guess) for the next 
assimilation and analysis of the above mentioned 
observations.  The analysis system in production 
at NCEP is the Gridpoint Statistical Interpolation 
(GSI) (Wu et al. 2002), a 3-dimensional variational 
process, which uses the background guess and all 
available conventional and non-conventional 
observations to generate an optimal analysis
including the global surface pressure, and 3 
dimensional dependent variables of motion, mass 
and moisture.

On approximately a monthly basis, poor 
forecasts or “Skill Score Dropouts” plague GFS 
performance.  Other national center forecasts, for 
example, the European Centre for Medium-range 
Weather Forecasts (ECMWF), often do not exhibit 
this skill loss, for example, in Fig. 1.  We attempt to 
quantify the skill differences between the GFS and 
ECMWF forecast system when there are dropouts, 
and define areas at IC time that have an impact on 
5-day forecasts. Our goal is to find differences 
that can lead to algorithms to detect and correct
QC problems, bias correction, and analysis issues 
in ICs before the forecast begins.  To do this one 
needs to construct experiments that will objectively 

compare results from these national center 
forecast systems.  For the experiments, we use 
the ECMWF standard 15 level pressure, 
longitude/latitude, 1°x1° ICs converted to 
simulated or “pseudo” RAOB observations.  To 
analyze low model forecast skill, we compare the
operational GFS and ECMWF analyses as well as 
forecasts from these analyses.  Treating the 
ECMWF gridded ICs as pseudo-observations, and 
using them as sole input into the GSI analysis,
which then acts as a “grand interpolator”, new ICs 
are generated that inherit ECMWF analysis
system characteristics.  These are labelled as 
“ECM” runs, described in more detail in section 3.  
From these ICs, GFS forecast experiments, (at 
T382L64), are made for comparison with NCEP’s 
operational forecasts or other control to detect 
differences between these systems in time and 
space for measuring the effectiveness of QC and 
other investigations. 

Generally, it is found that the ECM results 
show improvement in GFS 5-day skill scores in 
practically all Southern Hemisphere (SH) and most 
Northern Hemisphere (NH) cases.  In addition, 
application of GSI pseudo-observations derived 
from similar (same number of vertical levels, etc…)
standard GFS (instead of ECMWF) post 
processed ICs produces forecasts similar to GFS 
production for typical and dropout cases.  This 
provides a way to make comparisons between 
forecast systems and to isolate differences in QC 
of observations.  ECM runs can be used to find the 
locations that are responsible for dropouts and 
then the input observations can be manipulated by 
type, level, and location to test the impact on 
forecasts to improve QC algorithms.  

We find that the regions that influence the 
forecast skill can be found by creating a hybrid IC
from selectively using the ECMWF or GFS 
pseudo-observations as input data for the GSI
analysis.  A region is chosen where “patches” over 
special areas are substituted in the pseudo-
observation file, e.g., areas where there is 



ambiguity in observation quality, perhaps from 
areas of cloudiness and other observation 
contamination, or in latitude bands to isolate bias 
and quality control problems that alter 5-day 
forecasts.  Kumar et al. (2009) shows that areas of 
meteorological potential as measured by 
dynamical indexes such as Eady’s Baroclinic 
Index (EBI) or Rossby Radius of curvature are 
necessary conditions for some low skill forecast 
events. These cases are used to magnify the 
observation problems where we endeavour to 
remove errors that cause skill loss in forecasts but 
keep as much as possible, the information content 
to better define the initial state.  Once the ECM 
analysis experiments are run, one can use the 
results interpolated to individual observation 
locations to analyze how the GSI and ECMWF 
analyses “draw” to these observations.  The 
resulting differences in statistics can be used to 
discover quality control issues and create 
algorithms for complex QC, and implement real-
time QC detection/correction schemes as in 
(Ballish et al. 2009). In this report, we update the 
method and cases begun in Alpert et al. (2009).  
As new instruments are orbited their contribution 
may need to be measured by the improving 
special cases such as dropouts.  

2. “ECM” DESCRIPTION

To determine when a dropout occurs, a
suitable, but admittedly arbitrary criteria, using the 
GFS 5-day Anomaly Correlation (AC) 500 hPa 
forecast height score as described in Fig. 1.

     Using this criterion we update the list of IC
dates, YYYYMMDDHH where HH is the cycle time 
at 00 or 12Z in Table 1.  A number of these ICs
are selected for experiments and comparison with 
ICs supplied from ECMWF analysis.  Analyses 
that are derived from the ECMWF information by 
use of the GFS/GSI were called ECM runs in 
Alpert et al. (2009). The GSI analysis with
ECMWF pseudo-observations is initiated using the 
GFS operational analysis as the background 
guess. The resulting output analysis is used as the 
background guess along with the ECMWF 
pseudo-observations for a second iteration of the 
GSI. It was found that using an analysis twice 
instead of a model forecast as background guess 
created noise in the resulting analysis and 
subsequently in the early hours of the forecast.  
Even though this noise does not influence the 
forecast skill, it is present in the initial condition, 
and within a 12 hour forecast, and influences 
secondary calculations such as the EBI (see 

Ballish et al. 2009 for its use in this context). 
Therefore to decrease the GFS influence or 
memory stored in the background, and reduce 
noise, we cycle this analysis in a similar way to 
that in production described in Section 3.  

3. “ECMCYC” EXPERIMENTS

ECMWF forecasts do not often exhibit the loss 
of skill that occasions the GFS forecasts, so we 
chose it as a proxy for ground truth to compare 
with GFS analysis.  That is, we choose fields from 
ECMWF to engineer GFS analyses suitable for
comparison, and useful as a means to construct 
controlled experiments.  We have updated the
approach used to make ECM analyses by 
organizing the ECM program closer to operational 
methods.  

The analysis system, as used by NCEP 
production, is a never ending cycle of 3, 6, 9-hour 
model forecasts (background guess), which 
account for model influence including the models 
physics package.  This means that not only the 
model influences the analysis but also previous 
analysis cycles each in combination with the 
available observations.  We call the upgraded 
analysis the “ECMCYC” analysis with a 6-hour 
cycling method schematically shown in Fig. 2.  A 
3, 6, and 9-hour forecast is used as the 
background guess with the pseudo RAOB 
observations, to produce another 3, 6, and 9-hour 
forecast as background guess for the next cycle.  
To start the ECMCYC cycling the first background 
guess is taken from the GFS operations, the 
remaining cycles background guess are made 
from each previous cycle. The resulting ECMCYC 
analysis will have little influence from the startup 
GFS background guess after several cycles and 
does not contain the noise from using an analysis 
as the background guess instead of a model 
forecast.  In Fig. 3 a less noisy initial condition EBI 
calculation is shown for a typical day in April and 
can be compared with that in Fig. 9 of Alpert et al.
(2009).

The ECMWF operational medium range 
prediction model is spectral T799 with 91 vertical 
levels.  The fields used for this study are from 15 
standard pressure levels, interpolated, and post 
processed files on a 1°x1° equally spaced 
cylindrical projection longitude/latitude grid.  Each 
file contains surface pressure, u-, v-components of 
the wind, temperature and relative humidity on 15
standard levels (including the surface pressure)
1000., 925., 850., 700., 500., 400., 300., 250., 



200., 150., 100.,50., 20., and 10 hPa.  The GFS 
operational model, by comparison, also is a 
spectral model with truncation T382 and uses a 
physics Gaussian grid of about 0.3 degrees with 
64 vertical levels.

An orography from GFS operations is 
interpolated to the 1°x1° grid and a new surface 
pressure is constructed hydrostatically taking 
account of these elevations for the pseudo-
observations.  Specific humidity, wind and 
temperature are calculated from the given 
variables and converted to profiles with 
appropriate coding and headers to have them 
appear as profiles of pseudo RAOB observations
for the above given pressure levels at the grid 
points.  The GSI observation input is confined to 
these pseudo-observations.  

The resulting product is an analysis that can 
be considered as a “grand interpolation” for GFS 
ICs from the original ECMWF information.  These 
analyses are used in conjunction with surface and 
fix fields from GFS production archives as ICs for 
5-day forecast experiments.  The 5-day AC scores 
for 15-29 April 2009 is shown in Fig. 4 using the 
ECMCYC analysis.  It compares with the skill of 
past ECM runs and exceeds current production as 
shown in Alpert et al. (2009).  The NH 500 hPa 
mean AC score shows over the period ECMWF, 
ECM, and GFS scores of 0.90, 0.89, and 0.85
respectively.  In the SH where there is less skill 
ECMWF and the ECM 5-day forecasts are within 
one AC point near 0.87 compared to GFS at 0.82.  
It is remarkable that model skill can be maintained 
through day 5 with only 14 standard levels.  
Extending this idea of pseudo-observations, one 
can make forecast experiments by “patching” in 
sections of one analysis over the other to confirm 
the locations of the source of the dropout, should 
such areas exit.  The hypothesis that observations 
may have bias or other QC problems can then be 
studied over these areas and perhaps alleviated.  

4. OVERLAY OF A DROPOUT CASE 

An example of a NH dropout is the 
2007102212 GFS production IC (F00) resulting in
a 5-day forecast that verified with an AC skill score 
of 0.61, as shown on the banner at the top of Fig.
5. This particular case by definition is a dropout 
based on criterion in Fig. 1 earning a place on the 
dropout list (Table 1). The production ECMWF 5-
day forecast had AC score of 0.87 and the ECM 
run was 0.89 (Fig. 5), both do not show skill 

degradation.  Comparison of the 500 hPa
geopotential of the GFS and ECMWF production
(similar to Fig. 5c) IC show very little difference
and confirms that a slight difference is sufficient at 
IC time to cause very different day 5 forecasts.  
The differences that are present between these 
two national center model ICs ranges as much as 
± 20m in height with virtually all large differences 
located within a broad trough in the Central Pacific
(within the box drawn in Fig. 5c as shown by the 
red color fill in that area).  The height fields at 
other levels (not shown) give a similar result, and
similar differences in temperature (not shown) are 
predominately from this same Pacific location. A 
number of wind maximums are present in both the 
ECMWF and GFS analyses (not shown but 
consider the height gradients) which completes a 
synoptic picture of a volatile broad trough with a 
number of short waves moving within.  The red 
color fill area indicates higher heights for the GFS 
(Fig. 5c). This shows that the GFS IC difference is 
largely an amplitude problem and not from a 
phase error.  The largest 5-day forecast error at 
500 hPa, in this case, is found to the east of 
Greenland and is largely responsible for the low 
AC score as shown in Fig. 5 under the GFS 
column.  

To test that the dropout originated from the IC
differences in the Pacific region we integrate an 
“Overlay” (OVRLY) forecast experiment for 5-days 
with GFS pseudo-observations but with ECM 
pseudo-observations only over a prescribed area
or “patch” in the Pacific as shown by the box in 
Fig. 5c.  The pseudo-observations used for the 
GFS and the ECM overlay include all the 
dependent variables and surface pressure at each
latitude.  This “hybrid” set of pseudo-observations 
is used as the only observation input to the GSI 
analysis system.  The GFS production analysis is 
used as the background guess and GFS 
production fixed fields such as albedo, snow, etc… 
are needed to start the analysis as described in 
Fig. 2, and the resulting analysis is used to make a 
5-day forecast called the “OVRLY run”.  The 5-day 
forecast height and their difference to the verifying 
analysis for this OVRLY run (GFS IC with the ECM 
overlay substituted only over the patch area) at 
500 hPa, is shown in Fig. 6b. The color fill in Fig.
6a compared with that in 6b shows much greater 
forecast error in the GFS production thus, the 
ECM values over the Pacific OVRLY patch area
are sufficient to alleviate the dropout.  The OVRLY 
skill score shown in the banner of Fig. 6 confirms 
this finding.  For a 5-day forecast, the GFS 
forecast errors are largest east of Greenland 



extending across the 0 meridian but these errors 
are greatly reduced in the OVRLY experiment.  
The associated trough error in the Greenland area 
5-day forecast can be traced back to the Pacific 
OVRLY region described above in Fig. 5c at IC
time.  The resulting analysis is a hybrid of the two 
national center analyses, but the information 
content of the dependent variables from the better 
scoring ECMWF analysis is placed only over the 
Pacific area in question as shown in Fig. 5c.  The 
resulting 5-day OVRLY experiment forecast skill 
score is shown on the banner of Fig. 5 and is 0.90 
confirming that the problem area is the outlined 
Pacific area.  Smaller rectangles centered on the 
broad Pacific trough were studied with similar 
results; however when the OVRLY is moved to an 
area far away from the Pacific, the system reverts
to the production GFS and the dropout reoccurs
with similar loss of skill.  A number of dropout 
cases are shown with the overlay patch in the 
same position.  

In Fig. 7, eight NH overlay experiments are run 
for a number of dropout forecasts, including that 
shown in Figs. 5 and 6 where we show the skill 
scores compared with the GFS, ECMWF 
(operations) as well as the ECM (pseudo ob) run.  
The overlay area in the central Pacific as shown in 
Fig. 5 is kept the same for all these experiments.  
The above mentioned 2007102212 and 00Z 
overlay experiments both alleviate the dropouts 
but this is not the case 12 hours before or after this 
period where low skill persists.  The period of 4 
consecutive dropouts shown in Fig. 7 could 
indicate that the information necessary to improve 
the skill was not in the overlay rectangle location 
so the low skill forecasts did not gain the benefit 
from the ECMWF information.  ECMWF operations 
are not immune from skill loss as shown on 
2008030112, and ECM runs dropout as well 
(2008030400) but normally improve skill on 
average.  For all the cases listed in Table 1 the 
ECM runs dropout about 10%.  

     This gives rise to the idea of possible areas of 
analysis/model sensitivity and we note the lack of 
conventional observations over NH ocean and in 
the SH causing the analysis system to rely more 
on non-conventional observations.  In the SH, the 
differences between the GFS and ECMWF ICs are 
seldom centered in a single area, but scattered 
throughout the mid-latitudes as shown in Alpert et 
al. 2009).  Therefore, in SH, instead of using a 
rectangle overlay, two different overlay latitude 
bans: 20-60S and 60-90S were used. However,
neither overlay area experiment returned the high

skill found in ECM forecast runs from global 
application of ECMWF pseudo-observations
shown in Fig. 6 of Alpert et al. (2009), but they did
alleviate the dropout according to our criteria in the
cases.

5. SOUTHERN HEMISPHERE ECM
EXPERIMENTS

     The AC skill for 10 SH dropout cases, selected 
from Table 1, for the first half of 2008 are shown in 
Fig. 8.  Even more so in the SH the ECM forecast 
skill is close to that of ECMWF operations except 
for the ECMWF dropout on 2008031812.  Noted 
on this figure is the CNTRL (green) experiment 
skill which is from an updated GSI system.  It is an 
improvement over the previous one shown in 
Black on Fig. 8.  The upgraded GSI has alleviated 
half of the dropout cases by our criteria and
improved the average AC skill.  The addition of 
new observation types and other improvements 
show progress in our understanding as new 
implementations are made.  In spite of the 
improvement of the forecast skill in the SH, the
question remains as to the cause of the 
degradation.  One possible cause we can 
investigate, using ECM experiments, is to quantify
what an observation type contributed to the 
degradation.  Work has been done in this area 
using adjoint methods (Zhu and Gelaro 2008), as 
well as an Ensemble approach (Liu and Kalnay, 
2008) but it is instructive to run a set of ECM 
experiments that vary the observation input by 
type, e.g, including only one observation type to 
test the influence on the analysis and subsequent 
forecast skill.  This experiment was done for the 
2008020300 dropout case (Alpert et al. 2009)
which originally had a skill score of 0.65 from GFS 
operations.  The CNTRL GSI system includes all 
satellite radiance data over 6-h ingest window and 
when run for this case had a skill score of 0.70.  It 
is shown with 9 other dropout cases in Fig. 9 for 
AC scores and the root-mean-error (RMS) scores 
in Fig. 10 for the impact of each satellite radiance 
contribution.  

The conventional data, including RAOBS, 
ships, buoys, aircraft, satellite cloud track winds, 
and other conventional observation types, but not 
including the radiance observations, are called 
“PREPB” runs after the file name that stores them.  
The impact of satellite radiance data on SH 
dropouts for each of several satellite radiance 
observation types: Advanced Microwave Sounding 
Units; (AMSUA and AMSUB), Microwave Humidity 
Sounder (MHS), GPS Radio Occultation



(GPSRO), and the Atmospheric Infrared Sounder 
(AIRS) are in their turn used in an 
analysis/forecast experiment including the PREPB 
conventional observations.  A MINDATA category 
is also run which includes only TRMM and SSMI 
data as a proxy for a “no observation data” 
experiment (meaning the analysis should be the 
same as the background guess) as these
instruments contribute small data counts and the 
GSI requires the presence of at least some 
observations in order to run.  The GSPRO, MHS 
and AMSUB have the largest contributions to skill
in the SH for most of these dropout cases 
especially the case of 2008020300 where this 
combination alone alleviated the dropout (Alpert et 
al. 2009).  The AMSUA and CNTRL forecasts are 
similar which could indicate that the contributions 
of the other types do not improve the skill or that 
the AMSUA observations were in some way 
affecting the skill.   The RMS scores show the 
same contributions (low score for improvement) as 
the AC scores.

     A composite summary of all the data on Fig.
11, the impact of satellite radiance observation 
type contributions is shown for 3- and 5-day AC 
scores.   The satellite radiance data shows 
positive impact for the NH 3- and 5-day forecasts.  
In the SH, conventional and satellite observations 
(PREPB) show a negative impact (8 points) in 5-
day forecasts.  The addition of satellite radiance 
data to the conventional observations shows a
positive impact for 5-day forecasts.  AMSUA along 
with PREPB conventional observations show the 
largest positive impact in the NH.  In general these
cases are shown to have individual characteristics 
requiring incisive diagnostics to distinguish 
between independent causes.

6. SATELLITE COUNTS AND OTHER 
MEASURES

There is a half billion observations in each 6 
hour GFS cycle.   Each satellite instrument has a 
unique number of spectral channels measuring 
radiation.  Not all the data can be utilized by the 
assimilation process so there is windowing of the 
data and further selection process for assimilated 
data.  The amount of data received, selected and 
assimilated is shown in Fig. 12 for a typical 6 hour 
cycle (2009030412).   The percentage is given for 
each instruments contribution.  The newest 
addition is IASI which represents 43% of the total 
radiance data received and about half of the total 
selected by the assimilation process and a third of 
that included in the assimilation.  Before the 

introduction of IASI AMSUA and AIRS were the 
dominant contributors.  One should note the large 
amount of data that is filtered out by the selection 
process.  

If a sufficient amount of data is missing from a 
particular cycle for a long enough period, then 
there could be an effect on model skill.  An 
apparent lack of observational data was the
apparent cause for the SH dropout shown in Fig.
13 occurring on 2009010800.   Counting back on 
Fig. 13 gives the initial time as 3JAN.  On Fig. 14 
are the data counts for most of the satellite 
radiance contributions for the initial condition as 
well as a few previous cycles.   The loss of data on 
this particular period was large for most of the 
positive contributors mentioned in the previous 
section.  The ECMWF forecast was also 
compromised as its skill score fell to 0.8, still far 
above the GFS at 0.4 and ECMWF may have 
experienced data loss as well.  It should be 
remembered that the accumulation time for 
ECMWF is 12 hours long compared to 6 hours for 
the GFS and there is a chance that some of the 
missing data might have been recovered.  In any 
event, one could use ECM experiments to locate 
where the forecast was impacted and check for 
the potential of weather systems to be mis-
forecast.  

7. SUMMARY

    The use of ECMWF analysis pressure files to 
generate “pseudo-observations” for input to the 
Gridded Statistical Interpolation (GSI) and 
subsequent GFS 5-day forecasts, yield results that 
have the character of the ECMWF model in terms 
of forecast error and skill.  These are called “ECM” 
or “ECMCYC” runs depending on their background 
guess.  In either case the GFS operational skill is 
improved in the NH and more so in the SH for 
typical cases as well as when the GFS model 5-
day forecast has very low skill which we have 
termed “dropouts”.  Dropouts seen in the GFS 
model seem to occur once a month in the NH and 
more often in the SH.  A climatology of NH and SH 
dropouts has been updated and systematic 
differences have been described when the model 
has forecasts of very low skill.  The goal is to 
diagnose problems in quality control and other 
analysis issues and implement operational 
improvements.

GFS runs from ECM analyses show dropouts 
can be alleviated in GFS forecasts but the number 
that can be improved vary greatly.  Running the 



operational GSI after removing select observation 
types offers a systematic approach for assessing 
the impact of different observation types.  
Analyzing the contribution to the analysis from
individual observation types, and constructing 
composites, has shown that sometimes 
withholding observations can improve the forecast.  
However, these results are not consistent.  The 
goal remains to develop implementable algorithms
for improving quality control, bias correction, and 
analysis weighting of observations.  This is 
discussed in an accompanying report of Kumar et 
al. 2009).
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Table 1. Dates of Northern Hemisphere (NH) and Southern Hemisphere (SH) skill score dropout cases 
specified by initial condition date.

Dropout Table
Northern Hem. Southern Hem. Southern Hem. (Cont…)
2007102112 2007092912 2008080500
2007102200 2007100212 2008081500
2007102212 2007100412 2008081600
2007102312 2007100612 2008081912
2007111112 2007100700 2008090212
2007122012 2007101300 2008090300
2008012100 2007101400 2008100912
2008021712 2007102000 2008101212
2008030112 2007111912 2008101300
2008030400 2007121612 2008101912
2008030412 2007122000 2008102112
2008060400 2007122012 2008102200
2008060500 2008011100 2008110600
2008060600 2008011112 2008110612
2008062500 2008011212 2008110700
2008070200 2008020100 2008110900
2008070212 2008020112 2008110912
2008070300 2008020300 2008111400
2008070412 2008021512 2008120112
2008070600 2008021700 2008120812
2008070700 2008022000 2008121812
2008070712 2008030112 2009010212
2008070812 2008030212 2009010300
2008071000 2008030300 2009010312
2008071900 2008030312 2009021012
2008092300 2008030912 2009021100
2008092312 2008031012 2009022012
2008100400 2008031212 2009022100
2008100412 2008031300 2009022112
2008101012 2008031412 2009030912
2008101100 2008031800 2009031012
2008101112 2008031812 2009031112
2008101200 2008032012 2009031200
2008101212 2008040900 2009031212
2008101300 2008042500 2009032212
2008102100 2008042512 2009032300
2009021600 2008042600 2009032500

2008050900 2009040412
2008051000 2009040500
2008051512 2009040600
2008052200 2009040700
2008052212 2009040900
2008061212 2009040912
2008062500 2004041000
2008062512
2008072500
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