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Introduction

Quasigeostrophic (QG) theory has been a central part
of synoptic scale meteorology for well over half a cen-
tury. It was used quantitatively in the early days
of numerical weather prediction and has been ap-
plied qualitatively for decades, in one form or an-
other, in operational weather forecasting and research
in synoptic scale dynamics. Moreover, QG theory is
a staple in nearly all, if not all, dynamic meteorol-
ogy courses at both the undergraduate and graduate
level.

Unfortunately, most applications of QG theory in
operational forecasting, research studies and mete-
orological education has changed little during this
time. One notable exception is the use of Q-vectors
to diagnose vertical motions via the omega equation
rather than evaluating the forcing associated with
temperature and vorticity advection. However, the
implementation of high resolution numerical analy-
ses and forecasts has made both of these older appli-
cation methods difficult, if not impossible, to imple-
ment.

The increase in computing power that has pro-
duced these high resolution data sets has also led to
the capability of applying QG theory using more ro-
bust quantitative procedures. This has been man-
ifest at the National Weather Service Forecast Of-
fice in Denver/Boulder through the use of a com-
plete QG analysis package that goes well beyond the
typical applications of the theory. The package pro-
vides full three dimensional numerical solutions to the
QG omega, height tendency and Zwack-Okossi de-
velopment equations. In addition, a variety of other
QG related fields are computed including deforma-
tion, static stability tendency, frontogenesis, and oth-
ers. The package allows forecasters to easily diag-
nose the synoptic scale dynamics both in the anal-
yses and forecasts. Furthermore, although not yet
implemented, the package could easily be used in the

classroom to revolutionize the way meteorology stu-
dents are introduced to QG theory by avoiding the
relatively large number of assumptions, some of which
are rather questionable, that are usually considered
to make the presentation more tractable.

This paper will discuss some of the features of this
package, share a few insights that have been gained
through its operational use, and perhaps suggest ways
that the package could be used in the classroom.

Data and computational procedures

The QG package is run locally, in real time, at
the Weather Forecast Office in Denver/Boulder on a
Linux workstation. A wide variety of diagnostic fields
are produced, allowing forecasters (and potentially
students in synoptic/dynamic meteorology courses)
to obtain a rather complete QG picture of the at-
mosphere. The novel approach here is to not only
provide the ”usual” fields typically used in synop-
tic/dynamic diagnosis (temperature advection, dif-
ferential vorticity advection, divergence of Q-vectors,
etc.) but to also produce solutions of the fundamental
diagnostic equations of QG theory. These equations
are show in the Appendix; mathematical variables
follow standard meteorological conventions.

The diagnostic parameters and numerical solu-
tions to the aforementioned equations are computed
using all of the numerical weather prediction (NWP)
data received at National Weather Service offices.
This includes the North American Mesoscale (NAM),
Global Forecast System (GFS), Rapid Update Cycle
(RUC), United Kingdom Meteorological Office (UK-
MET), European Centre for Medium-Range Weather
Forecasts (ECMWF), and Downscaled GFS by NAM
extension (DGEX). In addition, the equations are
solved using the mean fields from the Short Range
Ensemble Forecast (SREF) and Global Ensemble
Forecast System. Solutions using data from Envi-
ronment Canada’s Global Environmental Multiscale
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(GEM) model will be coming on line in the near fu-
ture.

An outline of the solution technique is as follows.
Further details can be found in Thaler (2004). Height
fields and surface pressure are extracted from the
raw model data and, if not already there, placed on
the CONUS211 grid, which has a nominal horizontal
grid point spacing of 80 km. For higher resolution
data sets, this remapping to the CONUS211 grid re-
quires the data to be thinned (by using a subset of
all the grid points), while lower resolution data is bi-
linearly interpolated to the smaller grid. Once the
height fields are remapped, if necessary, they are ver-
tically interpolated to a 50 hPa grid extending from
1000 hPa to 100 hPa. The height and surface pres-
sure fields are then smoothed using an implicit tan-
gent filter (Raymond, 1988) to eliminate smaller scale
features. At this point, vertical height gradients are
computed from these smoothed height fields using a
fourth order compact operator scheme for the deriva-
tives with virtual temperatures then calculated from
these gradients using the hydrostatic equation. The
static stability as well as the remaining forcing terms
(those on the right hand side) in the QG omega equa-
tion [Eq. (1)] are then calculated. In order for Eqs.
(1) and (2) to be elliptic partial differential equations
the static stability must be positive definite, so a
check is made to ensure that this is the case. Numer-
ical solution of Eq. (1) requires the specification of
boundary conditions. Homogeneous Dirichlet bound-
ary conditions (ω = 0) are used at the top of the
domain and on the lateral boundaries. A linearized
nonhomogeneous Dirichlet boundary condition is ap-
plied on the bottom boundary (1000 hPa), which es-
sentially assumes that the surface geostrophic wind
flows over the terrain. The QG omega equation [Eq.
(1)] is then numerically solved using the precondi-
tioned, stabilized bi-conjugate gradient method.This
iterative technique is substantially faster than the
successive over-relaxation (SOR) method that is usu-
ally implemented to solve the QG omega equation,
requiring on the order of 50 iterations to converge to
a solution compared to several hundred required for
SOR. Next, the right hand side of the Zwack-Okossi
development equation [Eq. (3)] is calculated, using
the values for ω obtained above. The same itera-
tive technique discussed previously is used to invert

the Laplacian in Eq. (3) to yield
∂Φ(pl)

∂t
, the geopo-

tential (height) tendency at the ”surface”, defined as
the first grid point where the pressure is less than
the terrain pressure. Homogeneous Dirichlet lateral

boundary conditions are used during the inversion.
This field then serves as the nonhomogeneous Dirich-
let lower boundary condition during the solution of
the geopotential tendency equation [Eq. (2)]. Homo-
geneous Dirichlet conditions are specified on the top
and lateral boundaries during the iterative solution
of this equation. The final step in the calculations is
the computation of a QG ”precipitation rate”, com-
puted by lifting the model moisture field with the
newly computed QG vertical velocity. All of the out-
put from the QG package is then available for real
time use in daily forecast operations. The data can
be trivially combined with all other data currently
available to forecasters (e.g., satellite, radar, upper
air, etc.)

It should be emphasized here that the solution
technique contains some subtleties that have, for the
most part, been ignored previously. These include the
use of a crude large scale terrain forcing via the non-
homogeneous lower boundary conditions, fully three-
dimensionally varying static stability parameter, in-
clusion of moisture via virtual temperature and the
inclusion of the beta effect. These variations from the
traditional solution techniques can have profound ef-
fects on the standard interpretations of the diagnostic
equations as given, for example, in Holton (1992) and
Bluestein (1993).

Discussion

One can make the argument that the use of QG the-
ory in this age of high resolution data sets and nu-
merical weather prediction models is outdated. Per-
haps forecasters (and students) should just use the
NWP output verbatim without trying to understand
the underlying dynamics. Indeed, there is anecdotal
evidence suggesting that ”meteorological cancer” dis-
cussed nearly three decades ago by Snellman (1982)
and more recently by Bosart (2003) is becoming in-
creasingly prominent in the operational meteorolog-
ical community. While QG theory certainly cannot
explain all weather phenomena, when applied prop-
erly (namely by way of actual solutions to the di-
agnostic equations rather than relying on question-
able assumption-laden approximations) it is capable
of explaining a rather wide range of weather condi-
tions, even those where the assumptions underlying
the theory could be called into question. Further-
more, viewing the atmosphere through the QG filter
also allows one to better differentiate between synop-
tic scale and mesoscale or smaller phenomena.

As a first example of the benefits of using the QG
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diagnostic package, consider Fig. 1, which shows nu-
merical model output of heights and vertical motion.
The vertical velocity field is extremely noisy, contain-
ing a large number of small scale features, some re-
lated to the synoptic scale troughs and ridges, others
due to the underlying terrain and still others likely
due to gravity waves in the model. When confronted
with data like this, it is not a simple matter to un-
derstand the causes of all the vertical motion features
shown. If the forecaster is attempting to understand
the development of precipitation using the model ver-
tical motion, it is often not clear as to which came
first, the precipitation creating the vertical motion
due to latent heat effects or the vertical motion lead-
ing to the creation of precipitation at a later time
through saturated ascent. Sorting all of this out when
facing operational deadlines is difficult.

Contrast this with Fig. 2, depicting the height
field and radar reflectivity along with the QG verti-
cal velocity [solution of Eq. (1)] for the same time
as in Fig. 1. The comma shaped area of ascent
lines up nicely with the similarly shaped radar echoes,
with the strong subsidence normally found on the up-
stream side of a synoptic scale trough clearly visible
near the center of the figure. The other area of precip-
itation over the Great Basin is also in an area of QG
ascent associated with another synoptic scale trough.
It appears that much of the precipitation depicted
seems to be forced by QG processes. The notable ex-
ception to this would be the precipitation along the
West Coast, which appears in QG subsidence areas
but is probably forced by terrain.

The next example of the usefulness of the QG di-
agnostic package is shown in Fig. 3. Here is a rather
innocuous trough in the height field along with the
QG vertical velocity. It is interesting to note that
the usual conceptual model of ascent ahead of the
trough axis and subsidence behind fails to work prop-
erly here, with a substantial area of ascent/descent
shown behind/ahead of the trough axis, likely due to
frontogenetical processes associated with the conflu-
ent flow to the southeast of the trough. Again, having
the actual QG vertical velocity at their disposal, fore-
casters can easily see these kinds of departures from
the standard conceptual models. Moreover, giving
meteorology students access to such depictions early
in their careers would likely prove beneficial too as
they may not fall into the trap of trying to fit all flow
patterns into cookie-cutter like compartments.

The standard textbook approach of discussing the
QG diagnostic equations and their solutions involves

the approximation that the solution of the equations
is negatively correlated with the forcing functions.
This requires some questionable ”hand-waving” type
of mathematical arguments. That this is not nec-
essarily always true is shown in Fig. 4 where the
forcing function and the solution to the geopotential
tendency equation [Eq. (2)] are shown together. It is
obvious from this depiction that the maxima/minima
of the forcing function are not necessarily corre-
lated (either negatively or positively) with the max-
ima/minima of the solution to the equation. While
these types of mathematical simplifications may pro-
vide some physical insights into the equations, one
wonders if they do more harm than good. Assuming
that a three dimensional Laplace operator behaves as
simply as a sign change can lead to significant misin-
terpretations of the diagnostic equations. It also leads
to questions about the applicability of the equations
to real weather scenarios.

Figure (5) shows an example of the QG precipi-
tation rate discussed above, combined with radar im-
agery. Although not perfect, the ability of QG theory
to capture at least the gross features of the rain band
is striking. It is also an interesting exercise to com-
plete a more thorough QG analysis of this band of
ongoing precipitation. To begin, Fig. 6 shows the vir-
tual temperature, geostrophic wind, dilatation axes of
the geostrophic deformation (aligned along the local
axis of dilatation) and geostrophic frontogenesis func-
tion at the time of the rain band. Most of the area
in the figure is experiencing geostrophic frontogenesis
with a small area of frontolysis shown near the center
(dashed lines). This frontogenesis is a quantitative
depiction of the action of the geostrophic deforma-
tion acting on the virtual temperature gradient (Pet-
terssen, 1956). Figure 7 takes this a step further by
showing the relative humidity field, the forcing func-
tion in the omega equation due to the frontogenesis
and the actual QG vertical motion response forced
by the frontogenesis. The ascending branch of the
direct circulation is plainly visible and when this is
combined with the relative humidity field it becomes
clear that this band is likely forced in large part by
QG processes. Note also that the actual solution to
the omega equation is substantially smoother than
the forcing function. Indeed the response to the fron-
tolytical area is completely absent in the actual verti-
cal motion solution. This provides more reason to use
the solutions to the diagnostic equations rather than
the forcing functions as the interpretation is much
simpler. Many of the small scale forcing function fea-
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tures in the equations simply do not have an impact
on the solutions. Trying to estimate the solution to
the equations by putting all of these pieces together,
either from a student’s perspective or a forecaster’s,
is nontrivial.

Finally, an example of the solution to the Zwack-
Okossi development equation [Eq. (3)] is shown in
Fig. 8. This equation essentially integrates all QG
processes throughout the atmosphere to obtain a
pressure tendency at the surface. This parameter is
helpful in understanding the movement and intensi-
fication or decay of low level pressure systems. It is
also helpful in discerning when ageostrophic processes
are dominant.

Concluding remarks

This paper has briefly described a QG diagnostic
package that has been in use at the NWS office in
Denver/Boulder, Colorado for the last several years.
It has proven to be quite beneficial to the forecast
process by allowing forecasters to gain a deeper un-
derstanding of large scale processes both in the actual
atmosphere and in the numerical weather prediction
model output. It has also been briefly discussed in
some classroom settings up to this point, but not yet
implemented there. However, it is felt that having
a package like this available in the classroom could
also prove useful in teaching both undergraduate and
graduate students synoptic and dynamic meteorol-
ogy.
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Appendix

Quasigeostrophic Omega Equation
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Quasigeostrophic Geopotential Tendency Equation

[
Rd

p

(
RdTv

pcpd

− ∂Tv

∂p

)]
∇2

p

∂Φ
∂t

+ f2
0

∂2

∂p2

∂Φ
∂t

= −fo

[
Rd

p

(
RdTv

pcpd

− ∂Tv

∂p

)]
Vg ·∇p (ζg + f)

−f2
o

∂

∂p

[
−Vg · ∇p

(
RdTv

p

)]
− f2

o ω
∂

∂p

[
Rd

p

(
RdTv

pcpd

− ∂Tv

∂p

)]

+fo

[
Rd

p

(
RdTv

pcpd

− ∂Tv

∂p

)](
∂Fry

∂x
− ∂Frx

∂y

)
− f2

o

∂

∂p

(
RdḢ
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Quasigeostrophic Zwack-Okossi Development Equation
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Figures

Figure 1: 500 hPa height (yellow, dam), primitive equation vertical velocity (orange, µbar s−1, solid lines
denote ascent, dashed lines descent) and radar reflectivity (dBZ, scale at top).
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Figure 2: 500 hPa height (yellow, dam), QG vertical velocity (orange, hPa hr−1, solid lines denote descent,
dashed lines ascent) and radar reflectivity (dBZ, scale at top).
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Figure 3: 400 hPa height (blue, dam) and QG vertical velocity (tan, hPa hr−1, solid lines denote descent,
dashed lines ascent).
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Figure 4: 850 hPa forcing function in the QG geopotential tendency equation (green, 10−19 m2 Pa−2 s−5)
and QG height tendency [orange, dam (12hr)−1].
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Figure 5: QG instantaneous precipitation rate (in hr−1) and radar echoes (dBZ, scale at top).

10



Figure 6: 650 hPa QG geostrophic frontogenesis function [green, 10−2 K (100km)−1 hr−1], virtual tempera-
ture (orange, C), geostrophic dilatation axes (blue, 10−6 s−1) and geostrophic wind (tan, kt).
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Figure 7: 700 hPa QG omega equation frontogenetical forcing function (image, 10−17 Pa−1 s−3, greenish
tints positive values, bluish tints negative values), relative humidity (blue, percent) and QG vertical motion
response to frontogenetical forcing (orange, hPa hr−1).

12



Figure 8: MSL pressure (yellow, hPa minus 1000), surface pressure tendency [purple, hPa (3hr)−1].
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