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1. INTRODUCTION 
 

Evensen (1994) first proposed the ensemble 
Kalman filter (EnKF) in an oceanographic application, 
and the ensemble Kalman filter techniques have since 
been implemented in atmospheric applications by 
Houtekamer and Mitchell (1998), Anderson (2001) and 
Whitaker and Hamill (2002).   The background error 
covariances in the EnKF are computed from an 
ensemble forecast.  Thus the EnKF is able to provide a 
flow-dependent estimate of the background error 
covariances for use in data assimilation.   
 

The EnKF, an intermittent data assimilation scheme, 
performs a data-assimilation analysis at each 
observation time and switches back to standard model 
integration between analysis times.  This cycle of a 
model integration period, analysis step, and then 
another model integration period often causes 
discontinuities / error spikes between the observation 
times (e.g., Hunt et al. 2004).  The discontinuities may 
be related to dynamic imbalances caused every time a 
new observation is incorporated into the background 
model analysis.  In the study of Fujita et al. (2007), the 
discontinuities of errors before and after the analysis 
step are shown to occur when hourly surface 
observations are assimilated by EnKF.  A logical 
question may be whether their reported RMS wind 
errors increasing through the 6-h assimilation period 
reflect in some way enhanced divergence related to 
gravity-wave activity caused by the hourly updates.  
There are also discontinuities reported in the forward 
and backward Kalman filter analyses as discussed in 
Juckes and Lawrence (2009).  Duane et al. (2006) also 
found the Kalman filter algorithm has some 
desynchronization bursts at times of regime transitions 
between the Lorenz and “reversed Lorenz” phases.   
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Based on the results in these studies, we 

hypothesize that if the EnKF is able to be applied 
continuously in time, analyses can be improved by 
reducing the discontinuities or bursts.  Nudging, or 
Newtonian relaxation, is a continuous data assimilation 
scheme designed to be applied every time step, 
allowing corrections to be made gradually within a time 
window around the observation times (Stauffer and 
Seaman 1990; 1994).  Thus a hybrid EnKF scheme that 
combines both EnKF and nudging was proposed and 
tested in the  Lorenz  three-variable  model  by  Lei  and   
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Stauffer (2007; 2008).  The hybrid EnKF uses nudging-
type terms to apply the EnKF gradually in time in order 
to minimize the insertion shocks.  In this study, the 
hybrid EnKF is extended from the Lorenz three-variable 
model to use a more realistic two-dimensional (2D) 
shallow water model for two types of cases: a quasi-
stationary wave and a moving vortex.   
 
2. THE HYBRID EnKF SCHEME  
 

To apply the EnKF continuously in time rather than 
at only the analysis time, the hybrid EnKF combines the 
EnKF (Evensen 1994; Houtekamer and Mitchell 1998) 
and the observation nudging method (Stauffer and 
Seaman 1990; 1994).  Figure 1 illustrates the hybrid 
EnKF technique.  Suppose we start with an ensemble of 
N background forecasts that will be updated by the 
EnKF and a forecast that will be updated by the nudging 
(called the “nudging state”).  The following five steps are 
repeated for each data assimilation cycle: 1) Compute 
the hybrid nudging coefficients using the ensemble 
forecast via the EnKF algorithm.  2) Compute the 
nudging state by continuously applying nudging with the 
hybrid nudging coefficients.  3) Update each of the 
ensemble members using the EnKF.  4) Shift the 
ensemble from its ensemble mean to the analysis of the 
nudging state while retaining the ensemble spread. 5) 
Integrate the ensemble and the nudging state forward to 
the next analysis time.  

 
The nudging scheme adds additional relaxation 

terms into the governing model equations.  The full set 
of model equations is then used to nudge the model 
state towards the observation state gradually, as shown 
by Eq. (1):   
 

       
 
 
 
 
 
 
 
 

 
 
Figure 1.  A schematic illustrating the five steps per assimilation 
cycle of the hybrid EnKF described in the text.  The small dots 
denote the ensemble members, the ellipses around the small 
dots denote the ensemble spread, and the curved arrows 
indicate the trajectory of the ensemble members.  The stars 
denote the analyses of the nudging state at the observation 
times, and the trapezoids show the nudging time window.  The 
observations are denoted by the red arrows.                                            
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The nudging magnitude matrix is usually set to 

nonzero diagonal elements and zero off-diagonal 
elements.   The nonzero diagonal elements are often 
specified by past experience and experimentation 
(Stauffer and Seaman 1994).  The flow-dependent 
hybrid nudging coefficients, computed from the 
ensemble forecast (Lei and Stauffer 2007; 2008), are 
elements of the EnKF gain matrix normalized by the 
sum of the temporal weighting coefficient over the 
assimilation window.  The flow-dependent hybrid 
nudging coefficient is described by Eq. (2): 
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where  is the time step and K is the EnKF gain matrix. t
 

Thus the hybrid EnKF scheme takes advantage of 
ensemble forecasts and its flow-dependent / time-
dependent background error covariances to provide 
flow-dependent / time-varying nudging coefficients.  The 
hybrid EnKF also extends the nudging magnitude matrix 
from having nonzero diagonal elements and zero off-
diagonal elements to a full nonzero matrix.  This form 
may lead to a smoother, more accurate adjustment of 
the model background to the observations than does the 
nudging scheme or EnKF applied separately. 
 
3. EXPERIMENTAL DESIGN 
 
3.1  Model and  initial conditions 
 

As an extension of our previous work with the 
Lorenz three-variable system (Lei and Stauffer 2007; 
2008), experiments in this study are performed using a 
more realistic 2D shallow water model.  The barotropic 
nonlinear shallow water equations take the following 
form: 
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where  and  are the velocity components in the x 
and y directions, h  is the depth of the fluid, 

u v
g  is the 

acceleration of gravity, f  is the Coriolis parameter,   

is the diffusion coefficient, and L  and  are the 
dimensions of the rectangular domain of integration.  
The Coriolis parameter 

D

f  is defined as constant 10-4 s-1 

using the f -plane approximation.  The diffusion 

coefficient   is given as 104 m2s-1.   
 

The domain dimensions L  and  are set to 500 
km and 300 km, respectively.  The grid spacing in the x 
and y directions is 10 km.  Thus the grid dimensions are 
52

D

 31.  The time step is 30 s and a leapfrog scheme is 
used to integrate the model in time. 
 

The hybrid EnKF is tested in two cases: a quasi-
stationary wave (Case I) and a moving vortex (Case II).  
Reduced acceleration of gravity g  is used in the quasi-

stationary wave case, and defined as 0.5 ms-2.   The 
true initial condition of Case I follows Grammeltvedt 
(1969) and Zhu et al. (1994).  The true initial height is 
given by: 
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where 
0H , 

1H  and 
2H  are set to 50.0 m, 5.5 m, and 

3.325 m respectively.  The true initial wind field is 
derived from the initial height field assuming geostrophy.  
The true initial height and wind fields are shown by Fig. 
2a.   
 

A phase error (2π/8) is added into Eq. (4) to create 
the initial height field of the nudging state.  The height 
fields of the ensemble are created by adding random 
errors with Gaussian distribution mean zero and 
variance 2π/8 onto the perturbed phase of the initial 
height of the nudging state.  The initial winds of the 
nudging state and the ensemble members are derived 
from the initial height fields through the geostrophic 
relationship. 

 
Figure 2b shows the true initial condition of Case II.   

The background mean height is 200 m, and the 
background uniform flow is 10 ms-1.  A hyperbolic-
shaped height perturbation with a maximum value of 20 
m and a length scale of around 100 km, is located in the 
center of the domain.  The wind and height fields are 
also geostrophically balanced initially.  The initial height 
field of the nudging state moves the true perturbation 
center westward one grid point and southward two grids 
points.  It adds a random error of Gaussian distribution 
with mean zero and variance 2.0 onto the true 
perturbation strength.  The initial height fields of the 
ensemble put random errors with Gaussian distribution 
mean zero and variance 2.0 onto the perturbation center 
of the initial nudging state and random errors with 
Gaussian distribution mean zero and variance 2.0 onto 
the perturbation strength of the initial nudging state.  
The initial wind fields are also derived from the initial 
height fields by means of the geostrophic relationship in 
both the nudging state and the ensemble. 



Periodic boundary conditions are used at the west-
east boundaries in both cases.  Case I has a free-slip 
rigid wall boundary condition at the south-north 
boundaries where height and u-component are defined 
from the values one point inside the boundary.  For 
Case II, the tendencies of height and wind components 
are set to zero at the south-north boundaries. 

 

 
 
Figure 2. The initial height and wind derived from the initial 
height using the geostrophic approximation for (a) Case I and 
(b) Case II.  The red dot denotes the observation site of OBSN 
I, the black diamonds show the observation sites of OBSN II, 
and the black circles indicate the observation sites of OBSN III. 
 
3.2 Observations and verification 
 

Simulated observations representing the “truth” 
state are generated by finer-scale model simulations.  
The fine domain has grid spacing of 1 km, grid 
dimensions of 511 301 and a time step of 1 s.  The 
initial condition and boundary conditions are consistent 
with the previous discussion in section 3.1.  The 
simulated observations from Case I have variances 

,  and .   

The variances of the simulated observations in Case II 
are given as: , 
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.  The simulated observations are 

produced by adding random errors of Gaussian 

distribution with mean zero and assumed variances onto 
the “truth”.   
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Four types of observation networks are tested in 

this study.  The first observation network (OBSN I) has 
only one randomly chosen observation site, which is 
shown by the red dot in Fig. 2a, close to the domain 
center.  The second observation network (OBSN II) 
consists of 19 observations spaced 25 km apart along 
the center latitude of the domain, and shown by the 
black diamonds in Fig. 2a.  The black circles in Fig. 2a 
represent the third observation network (OBSN III), 
which has 11 observations spaced 25 km apart in north-
south at x = 150 km.  The last observation network 
(OBSN IV) combines the OBSN II and OBS III together.  
By default, the observations are available every three 
hours. 

 
The verification data, based on the 1-km model 

simulation, is available on every grid point of the 10-km 
coarse domain.  For a given grid point on the coarse 
domain, the verification data there is the average value 
of neighboring 10  10 1-km grid points from the fine 
“truth” domain.  The root-mean-square (RMS) errors of 
height and wind are computed separately every minute.  
The RMS error decreases slightly with time, because 
the signal of the unforced wave or vortex is decreased 
by diffusion gradually in time.  Thus a normalized RMS 
error is used here, which is defined as the RMS error 
computed against the “truth” run divided by the RMS 
error of the “truth” computed against its domain-average 
value.  Moreover, a parameter called observation 
retention (OR) is defined to quantitatively measure the 
“spikiness” in the error reflecting the ability of the model 
to retain the observation in the data assimilation.  The 
OR is the average absolute value of the RMS error 
difference between one time step before the observation 
time and that at the observation time after the 
assimilation.  In order to take both the RMS error and 
OR into account, a normalized error parameter, called 
NER, is calculated by summing the average RMS error 
normalized by that of the ensemble Kalman smoother 
(EnKS) and the OR normalized by that of the EnKS.  
The EnKS is considered the “gold standard” to measure 
the other assimilation methods.  Details will be 
discussed in section 4. 
 
3.3 Ensemble covariance inflation and localization 
 

To avoid filter divergence, an approach is used to 
increase the background error covariances somewhat 
by inflating the deviation of the background members 
with respect to their mean by a small amount as 
suggested by Hamill et al. (2001).  The inflation factor is 
defined as 1.1.  In addition, a covariance localization 
method is used following Houtekamer and Mitchell 
(2001), where a fifth-order piecewise rational function is 
applied to the covariance localization (Gaspari and 
Cohn 1999).  The covariance localization parameter 2c 
(see Eq. (4.10) of Gaspari and Cohn (1999)) is set to 
500 km in Case I, in which 500 km is equal to the 
wavelength.  Similarly, Case II has the covariance 
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localization parameter 2c set to 100 km, the scale of the 
initial vortex. 
 
4. RESULTS 
 

Using the two types of initial conditions and cases 
described in section 3.1, 24-h model integrations are 
performed with assimilation of 3-hourly observations.  
The performance of the hybrid EnKF scheme is 
compared to nudging and EnKF applied separately.  
The EnKF has the same inflation factor and covariance 
localization length as the hybrid EnKF as discussed in 
section 3.3.  The nudging radius of influence is given as 
the covariance localization length of the hybrid EnKF.  
The nudging coefficients are set to 10-4 s-1.  Both 
nudging and hybrid EnKF have a nudging time window 
of 1 h on each side of the observations.  A trapezoidal 
temporal nudging coefficient function, symmetric around 
the observation time, with a maximum weight of 1.0 
within the center half of the window, decreasing linearly 
to 0.0 toward the ends of the window, is shown in Fig. 1 
and is  defined by Stauffer and Seaman (1994).   

 
In addition, an ensemble Kalman smoother (EnKS) 

is also used in this study (Evensen and Leeuwen 2000).  
The EnKS is an extended version of EnKF, which uses 
the solution of the EnKF as the first guess for analysis 
and applies future observations backward in time to the 
past model state by using the background ensemble 
forecasts.  Compared to the EnKF, it has the ability of 
improving model analysis and observation retention, but 
it requires greater computational cost and data storage.  
Thus the EnKS is considered our “gold standard” (Lei 
and Stauffer 2008) to measure the other assimilation 
methods.  As mentioned earlier, this is why the average 
RMS error and OR of EnKS are used to scale the errors 
for each method in the computation of the NER.  
Following Khare et al. (2008), we apply covariance 
inflation in the EnKS only to the prior estimates of EnKF, 
and it is also set to 1.1.  The ensemble covariance 
localization of EnKS is the same as EnKF.  For 
efficiency, the EnKS applies each observation backward 
to the previous observation time every 30 minutes.   

 
Figure 3 shows the normalized RMS error of height 

and wind in the wave Case I with OBSN II.  In both the 
height and wind fields, the intermittent EnKF scheme 
shows a significant improvement when observations are 
assimilated every 3 h, as evidenced by the strong RMS 
error decreases at the observation times and then 
followed by a rapid increase in error between the 
observation times.  This pattern is consistent with the 6-
h assimilation period results of Fujita et al. (2007).  
Comparatively, the hybrid EnKF shows RMS error 
decreasing gradually in time by taking advantage of the 
continuous nudging approach.  The RMS errors of the 
hybrid EnKF are lower than those of EnKF after the first 
time the observations are assimilated.  The pink dash-
dot spikes of EnKS every 30 minutes apart denote the 
improvement in RMS error obtained from the next 
available observation which is applied back to previous 
observation time.  Since the next observation is applied 

backward only to the previous observation time every 30 
minutes in EnKS, the normalized RMS error of EnKS 
has similar performance to that of EnKF, where large 
error corrections are made when observations are 
assimilated.  Thus here the hybrid EnKF produces 
smaller RMS error than both EnKF and EnKS, and it 
also produces smoother analyses in time than both 
EnKF and EnKS.   
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Figure 3. The normalized RMS error of Case I using OBSN II 
for (a) height field and (b) wind field.  The green solid line is the 
normalized RMS error using no data assimilation, the blue solid 
line is that of nudging, the red solid line is that of EnKF, the 
black dash-dotted line is that of hybrid EnKF, and the pink 
dash-dotted line is that of EnKS. 

 
The average values of RMS error, OR and NER 

over the 24-h period for Case I using different 
observation networks for data assimilation are shown in 
Fig. 4.  Figures 4a and 4d show that the hybrid EnKF 
produces the smallest average RMS error in both the 
height and wind fields.  Figures 4b and 4e indicate that 
the hybrid EnKF has the smallest values of OR, i.e. the 
best observation retention.  The EnKF and EnKS have 
much larger values of OR than both nudging and hybrid 
EnKF.  The EnKS usually has smaller RMS  errors  than 
the EnKF at analysis steps due to future observations 
being applied backward.  Thus the hybrid EnKF retains 
the benefit of EnKF to reduce the RMS error effectively, 
obtains   better observation retention and produces a 
smoother solution in time with smaller discontinuities 



than EnKF by use of nudging-type terms to apply the 
EnKF continuously in time.  Moreover, the hybrid EnKF 
also has the smallest values of NER, since it has the 
smallest average RMS error and the smallest value of 
OR. 

discontinuities compared to the EnKF.   
 

Figure 6 exhibits the average values of RMS error, 
OR and NER for Case II assimilating the different 
observation networks.  The hybrid EnKF also produces 
the smallest average RMS error in OBSN II and OBSN 
IV.  However in OBSN I and OBSN III, the hybrid EnKF 
produces somewhat larger average RMS error than the 
EnKF and EnKS.  This is because the error reduction in 
the EnKF and EnKS mainly comes from ensemble 
averaging.  The observations in OBSN I and OBSN III 
play a much reduced role compared to the larger 
number of observations along the flow in OBSN II and 
OBSN IV.  The OBSN I and OBSN III networks cannot 
detect the moving vortex sufficiently.  Nonetheless, as 
shown by Figs. 6b and 6e, the hybrid EnKF has the best 
(lowest) OR even with OBSN I and OBSN III.  In 
addition, the hybrid EnKF produces better (smaller) 
values of NER than both EnKF and EnKS, as shown in 
Figs. 6c and 6f. 

 
The normalized RMS errors of height and wind for 

the moving vortex Case II with OBSN II are shown in Fig. 
5.  It is interesting that using no data assimilation 
(NOFDDA) performs best for the height field after the 
first two observation times.  Following the third 
observation time (9 h), the hybrid EnKF shows a clear 
RMS error improvement over all the other data 
assimilation schemes.  The wind field, on the other hand, 
responds more favorably to data assimilation methods 
early in the simulations, and strong corrections by the 
EnKF at observation times are once again seen in the 
wind field.  Similar to the wave case shown in Fig. 3b, 
the hybrid EnKF reduces the RMS wind error in the 
vortex  case  gradually  in time with  fewer  and  weaker  
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(e) (b) 

 

(f) (c) 
 

Figure 4. Height and wind statistics for Case I with different observation networks: (a) the average height RMS error, (b) the 
average height OR, and (c) the height NER, (d) the average wind RMS error, (e) the average wind OR, and (f) the wind NER.  
Smaller values are better values for all three statistics.  



 
 

(a) (b) 

Figure 5. Same as Fig. 3, except for Case II using OBSN II. 
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Figure 6. Same as Fig. 4, except for Case II. 



5. CONCLUSIONS AND DISCUSSION 
 

A hybrid EnKF data assimilation approach is 
investigated using a 2D shallow water model and 
building on that learned from a Lorenz three-variable 
model system (Lei and Stauffer 2007; 2008).  A quasi-
stationary wave case and a moving vortex case are 
used to further test the hybrid EnKF scheme.  Four 
observation networks are applied in the 24-h data 
assimilation experiments for each case.  The hybrid 
EnKF reduces the RMS error more significantly than the 
EnKF.  Moreover, the hybrid EnKF retains the benefits 
from the continuous nudging approach to improve the 
model state gradually rather than make strong 
corrections and discontinuities at the analysis steps as 
the EnKF.  Compared to the “gold standard” EnKS, the 
hybrid EnKF has the ability to reduce the RMS error as 
good as or even better than the EnKS, and also produce 
better observation retention than the EnKS at a reduced 
computational cost which is more similar to that of the 
EnKF. 
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