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1. Introduction 

The NEXRAD (WSR-88D) Doppler radar 

network allows meteorologists to track severe 

weather events and provide better warning 

information to the public, ultimately saving lives and 

reducing property damage.  However, the assimilation 

of such data into NWP models to provide physically 

consistent three-dimensional analyses and short-term 

forecasts has not been extensively explored.  Since 

Doppler radar is the only operational instrument 

capable of providing observations of sufficient spatial 

and temporal resolution to capture convective-scale 

phenomena, the assimilation of reflectivity and 

velocity data from Doppler radars is vital to predicting 

ongoing convection and is part of the “warn on 

forecast” vision of the National Weather Service 

described in Stensrud et al. (2009). 

Several methods exist for the assimilation of  
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radar data. Sun et al (1991) and Sun and Crook (1997, 

1998) have shown that four-dimensional variation 

analysis (4DVAR) is an idealized approach to 

assimilate radar data.  However, To assimilate radar 

data, 4DVAR has so far been limited to relatively 

simple model configurations, usually with warm-rain 

microphysics only (Sun 2005). Computational cost 

and strong nonlinearity with model physics, including 

ice microphysics, often causes difficulties in 4DVAR 

assimilation of radar data. Ensemble Kalman filter 

(EnKF) is another advanced method for assimilating 

radar data (Snyder and Zhang 2003; Zhang et al. 

2004; Dowell et al. 2004; Tong and Xue 2005; Gao 

and Xue 2008). Caya et al. (2005) showed that EnKF 

and 4DVAR produce analyses of generally similar 

quality and computational cost. Though these two 

methods are advanced methods theoretically, they 

are rather expensive computationally, especially at 

the convection-resolving resolution.  

For realtime analysis and forecasting for 

convective weather, the three-dimensional (3DVAR) 
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data assimilation method is a computationally efficient 

method comparing to 4DVAR and EnKF (Gao et al. 

1999, Xiao et al. 2005). A 3DVAR system, ARPS 

3DVAR system, is developed for ARPS model (Xue et 

al. 2000, 2001, and 2003). As described in Gao et al 

(2002; 2004), the ARPS 3DVAR system is capable of 

analyzing radar radial velocity data along with 

conventional observations in a very efficient way. To 

compensate the lack of a time dimension in 3DVAR 

method, experiments are usually performed using 

rapid intermittent analysis cycles to make better use 

of data distributed in time (Hu et al. 2006a, b).  The 

ARPS 3DVAR system is usually supplemented by a 

cloud analysis package which analyzes hydrometer 

variables using radar reflectivity and satellite 

observations. Several studies (e.g. Hu et al. 2006a, b; 

Ge et al. 2009; Schenkman et al. 2009) have shown 

reasonable success in simulating and forecasting 

convective storms including tornadoes and supercells 

using the ARPS 3DVAR data assimilation system. 

In this study, we seek to investigate the 

relative importance of assimilating radial velocity and 

reflectivity data to storm-scale analysis and forecast 

by using the 3DVAR and its cloud analysis system. 

The impact of assimilating radial velocity and/or 

reflectivity data from a WSR-88D network near central 

Oklahoma is examined using both an idealized case 

and a real data case. Hu et al. (2006a) showed that 

both radial wind and reflectivity data are very 

important for on-going storm development and 

forecasts. However, which type of radar data is more 

important has not been thoroughly examined for 

strong convective weather events. 

 This paper is organized as follows. Section 

2 describes model parameters, and data assimilation 

method in detail. Section 3 provides configuration of 

the various experiments. Section 4 discusses the 

results of intermittent assimilation and forecasts 

cycles for an idealized case on a 1-km grid, and the 

results from the 400 Greensburg tornadic 

thunderstorm case is presented in section 5. 

Summary and conclusions are given in section 6. 

2. The ARPS model,  3DVAR system and cloud 

analysis scheme  

ARPS is used as the prediction model in this 

study. It is a general-purpose three-dimensional, non-

hydrostatic and compressible atmospheric model 

which is well documented in several early publications 

(Xue et al. 2000, 2001 and 2003). In this section, we 

will only briefly review ARPS 3DVAR data assimilation 

system and cloud analysis scheme. Following Gao et 

al. (2004), the standard cost function of 3DVAR can 

be written as, 
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where the first term on the right hand side measures 

the departure of the analysis vector, x, from the 

background, xb, weighted by the inverse of the 

background error covariance matrix B. In the current 
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ARPS 3DVAR system, the analysis vector x contains 

the three wind components (u, v, and w), potential 

temperature (θ), pressure (p) and water vapor mixing 

ratio (qv). The second, observation term, measures 

the departure of the analysis from the observation 

vector, yo. In this study, yo only includes radar radial 

velocity data. The analysis is projected to the 

observation space by the forward operator H which is 

defined by forward radial wind equations and 

interpolation operator from model grid points to radar 

observation locations. The observation term is 

weighted by the inverse of observation error 

covariance matrix R that includes both the instrument 

and representativeness errors.  

Term ( )cJ x  in Eq. (1) represents dynamic 

or equation constraints. By defining 

( )b= −Bv x x , the cost function is changed into 

incremental form: 
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where H is the linearized version of H and 

( )bo H xyd −≡ . In the current version of the 

ARPS 3DVAR system, the cross-correlations between 

variables are not included in the background error 

covariances. The spatial covariances for background 

error are modeled by a recursive filter (Purser, 2003a, 

2003b). The corresponding covariance matrix, R, is 

diagonal, and its diagonal elements are specified 

according to the estimated observation errors. 

In ARPS 3DVAR, the mass continuity 

equation is imposed as a weak constraint. This 

constraint builds up the relationship between different 

wind components. Gao et al (1999; 2004) found that 

this constraint is very effective in producing 

reasonable analyses of vertical velocity. When a 

stretching gird strategy is used in vertical direction, a 

special treatment (Hu et al. 2006a, 2006b), which 

assigns different weighting coefficients in horizontal 

and vertical direction, is needed to apply this 

constraint.  

In our recent development, the modified 

ARPS model equations are also included as weak 

constraints in the 3DVAR scheme. These newly 

introduced constraints couple the wind components 

with the thermodynamic variables (Ge et al. 2007).  In 

this study, for simplicity, only the mass continuity 

constraint is included because our focus is to disclose 

the relative importance of radial wind and reflectivity 

on storm-scale data assimilation. The cloud analysis 

was developed based on the Local Analysis and 

Prediction system (LAPS, Albers et al. 1996) with 

significant modifications by Zhang (1999), Brewster 

(2002), and Hu et al (2006a). The purpose of 

including the cloud analysis is to decrease the “spin 

up” time of storm development in numerical models. 

3. Data assimilation experiments with simulated 

data 

In this section, we evaluate the impacts of 

reflectivity and radial wind on radar data assimilation 

using simulated data. Such simulation experiments 
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are usually referred as observing system simulation 

experiments (OSSEs). The ARPS model is used in a 

3D cloud model mode whereby the storm 

environment is horizontally homogeneous. The 20 

May 1977 Del City, Oklahoma tornadic supercell 

storm is used to conduct several series of 

experiments. This storm has been thoroughly studied 

by multiple Doppler analysis and numerical simulation 

(Ray at al. 1981;  Klemp et al. 1981;  and Klemp and 

Rotunno 1983). 

The model is configured using 67× 67× 35 

grid points and 1km× 1km× 0.5km grid intervals in 

the x,y,z directions respectively, so as to create a 

physical domain of 64× 64× 16 km. The simulation 

starts with a modified sounding (as in Klemp et al, 

1981) which favors the development of supercell 

thunderstorms. A thermal bubble of 4K perturbation is 

used to initiate a storm, and this bubble is centered at 

x=48 km, y=16 km and z=1.5 km with the lower-left 

corner of the domain as the origin. The radius of the 

bubble is 10 km in x and y directions and 1.5 km in 

the z direction. The three-category ice microphysical 

scheme of Lin et al. (1983) is used together with a 

1.5-order turbulent kinetic energy subgrid 

parameterization. Open boundary conditions are used 

for the lateral boundaries and rigid wall conditions for 

the top and bottom boundaries. An upper-level 

Rayleigh damping layer is also included to reduce 

wave reflection from the top of the model. 

 The simulation runs for 90 min. To keep the 

right-moving storm near the center of the model 

domain, a mean storm speed (U=3 ms-1, V=14 ms-1) 

is subtracted from the sounding. Fig.1a-d shows 

horizontal cross sections of simulated wind vectors, 

contours of reflectivity and potential temperature 

(shaded) at surface and Fig. 2a-d shows horizontal 

cross sections of simulated wind and contours of 

vertical velocity at 3 km above ground level from 30 

min to 90 min of model integration time respectively. 

The initial convective cell strengthens over the first 30 

min and begins to split into two cells around 50 min. 

At about 90 min into the simulation, the right mover is 

near the center of the domain as expected and the left 

mover located at the northwest corner. (Fig. 1 a-d). A 

strong rotating updraft associated with the right-

moving storm (about 22 m s-1) is evident at 50 min, 

and moves slowly to southeast and remains the same 

strength at 90 min (Fig 2a-d). The evolution of the 

simulated storm is qualitatively similar to that 

described by Klemp and Wilhelmson (1981).    

Two pseudo radars are placed at south of 

the analysis domain at (X=0 km, Y=0 km, Z=0 km) 

and (X=64 km, Y=0 km, Z=0 km). Simulated radar 

observations including both radial wind and reflectivity 

from two pseudo Doppler radars are obtained at 

model grid points by sampling the evolution of this 

simulated storm every 5 min from 30 min to 90 min. 

The elapsed times for the volume scans of two radars 

are neglected, and thus we assume that the radial 

wind observations are simultaneous. For simplicity, 

the two radars will cover all horizontal physical grids 

(i.e. 64× 64) which assumes that the radars sweep 
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almost continuously in horizontal direction. The 

elevation angles are chosen to reproduce the 

scanning strategy of the VCP 11 mode for the WSR-

88D network. The simulated radar data are only 

specified in precipitation regions (where reflectivity is 

greater than zero). To simulate the radar’s statistical 

error, a 1m s-1 random error is added to the radial 

velocities in the pseudo observation dataset. 

Three intermittent data assimilation experiments 

are performed with an interval of 5 min and a window 

covering t=30 min to t=90 min of the model simulation. 

In the first experiment, only radial velocity data are 

assimilated using ARPS 3DVAR, and this experiment 

is referred as SiVrOnly. In the second experiment, 

only reflectivity data are assimilated using the cloud 

analysis scheme, so it is named as SiRfOnly. In this 

cloud analysis scheme, the mixing ratio of 

precipitation (including rain water, snow, and hail) and 

potential temperature are adjusted within the cloud 

analysis based on reflectivity measurements. The 

other hydrometeor variables are not adjusted to avoid 

negative impacts on the balance of model equations 

when rapid analysis cycles are applied. In the third 

experiment, both radial velocity and reflectivity data 

are used, and it is named SiVr&Rf. These three 

experiments are designed to survey the relative 

impacts of different data types on radar data 

assimilation over a given data assimilation window. 

There are 13 assimilation cycles with 5 min interval in 

these 3 experiments. The ARPS 3DVAR system is 

used to first create the model initial condition and then 

the ARPS system runs for a 5-min forecast starting 

from this initial analysis. This intermittent assimilation 

cycle is applied every 5 min until the end of 

assimilation period.  

To investigate which type of data has more 

impact on intermittent data assimilation cycles, we 

estimate how the model variables, such as wind 

components, potential temperature, moisture are 

retrieved. Fig. 1 shows the horizontal winds, 

perturbation potential temperature and reflectivity at 

250 m AGL (first model level above surface) and Fig. 

2 shows the horizontal wind, and vertical velocity 

fields at 3.5 km AGL, at 30, 50, 70 and 90 min of 

model time. They are shown for the truth simulation, 

cycled 3DVAR assimilation for experiments SiVrOnly, 

SiRfOnly and SiVr&Rf, as described above. For the 

SiVrOnly experiment, Fig. 1e shows that analyzed 

horizontal wind field has a small convergence area 

near the center of model domain at the first cycle of 

assimilation, but the reflectivity field is zero because 

reflectivity is not assimilated. Fig. 1i shows quite 

opposite results to Fig. 1e, with no wind perturbation, 

but the reflectivity field is quite similar to the truth run 

(Fig. 1i, vs Fig. 1a). In SiVr&Rf, both radial velocity 

and reflectivity are used and the analysis established 

the pattern of precipitation and the storm structure 

quite well. At the 3.5 km level, an updraft is produced 

at the correct location for both SiVrOnly and SiVr&Rf 

experiments (Fig. 2e, m), but there is no updraft for 

SiRfOnly, as expected. After four more analysis 

cycles at t = 50 min, the low-level flow immediately 
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underneath the storm cells becomes closer to the 

truth (Fig. 1f, g, n vs 1b), but the cold pool and 

reflectivity areas are still smaller for experiment 

SiVrOnly. At the 3.5 km level, the perturbation 

horizontal winds and the updrafts are well captured in 

SiVrOnly and SiVr&Rf experiments, and the strength 

of the updraft for the SiRfOnly is good, but the pattern 

is somewhat different from the truth (Fig. j vs 2b).  

By t = 70 min, the analysis is further 

improved. By this time, there is no significant 

difference from the truth in either the low-level and 

mid-level fields (Fig. 1g, k, o and Fig. 2g, k, o). The 

cold pool in experiment SiVrOnly looks closer to the 

truth than other two experiments, but the reflectivity 

field is little bit weaker than other two experiments 

and the truth. In mid-levels (Fig 2k), the retrieved 

mesocyclone is present for experiment SiRfOnly, but 

its pattern is quite different from truth; this behavior 

becomes worse for the final assimilation cycle (Fig 2l). 

General storm structures including the precipitation 

pattern are well retrieved at the final assimilation cycle 

in all three experiments though the results from 

SiRfOnly are worse than the other two, especially for 

the wind pattern. From analyzing these individual 

model generated fileds, we can see that both radial 

wind and reflectivity have positive impacts on radar 

data assimilation for retrieving model variables which 

are not directly observed by two radars. Radial 

velocity mainly benefits the retrieval of model’s 

dynamic variables, while reflectivity mainly benefits 

the establishment of model’s precipitation pattern.  

Although the root-mean-square (rms) error is 

not a good verification tool for storm scale 

phenomena, we still use it here for quantitative 

comparison among different experiments. The RMS 

errors for several analyzed model variables, Vh, w, θ', 

and qv are shown in Table 1. It is clear the rms errors 

for experiment SiVrOnly decrease with time rapidly. In 

contrast, the rms errors of selected model variables 

for SiRfOnly experiment increase with time, especially 

for both horizontal and vertical wind components. This 

indicates that assimilating reflectivity data actually 

introduces error during the assimilation cycles, though 

these data also can assist in building up storm cells 

during the assimilation cycles. For experiment 

SiVr&Rf, the rms errors for θ' increases with time, but 

not as much as when assimilating the reflectivity only, 

and errors for Vh, w, and qv 
 decrease with time 

gradually. This indicates that assimilating both radial 

velocity and reflectivity data has mixed results in term 

of rms errors and introduces less error to the model 

than when assimilating reflectivity only.  

Tabel 1.   The RMSE of horizontal wind(Vh), 
vertical velocity(w), potential temperature(θ), 

water vapor mixing ratio (qv) 
 

Exps Vars 0 
min 

20 
min 

40 
min 

60 
min 

SiVrOnly 
Vh 2.65 2.15 1.98 1.93 
w 2.89 2.67 1.98 1.79 
θ 2.25 1.92 1.73 1.60 
qv 0.78 0.42 0.43 0.34 

SiRfOnly 
Vh 5.62 6.29 7.77 9.68 
w 4.95 7.00 6.19 6.85 
θ 2.25 3.08 3.47 4.07 
qv 0.78 0.81 0.84 0.78 

SiVr&Rf 
Vh 2.65 2.27 2.36 2.40 
w 2.89 3.14 2.49 2.52 
θ 2.25 2.94 4.17 5.34 
qv 0.78 0.53 0.58 0.57 
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To conclude, it is shown that assimilating 

radial velocity only (SiVrOnly) produces the best 

results at the final assimilation step, but it needs time 

to spin up the storm. Assimilating reflectivity data 

helps to reduce the spin-up time, but it also introduces 

some additional error. There are two possible sources 

for this additional error: one is that the cloud analysis 

package, which is used to assimilate reflectivity data 

and is based on empirical laws, has lots of sensitive 

parameters to be tuned and obtaining an optimal 

parameter setting is difficult. Another is that the 

nonlinear interaction between model variables 

(especially between dynamic variables and 

hydrometeor related variables) is not well handled in 

the current ARPS 3DVAR system and a dynamically 

consistent analysis is not reached due to the lack of 

suitable equation constraints.  

4. Experiment with May 7 Greensburg tornadic 

storm case 

  In this section, we investigate the impacts of 

reflectivity and radial wind on radar data assimilation 

with a real data case – the 4-5 May 2007 Greensburg 

tornadic thunderstorm case. This case is chosen 

because it is well documented and produced one of 

the strongest tornadoes in recent years. The storm 

complex produced 18 tornadoes in the Dodge City 

forecast area and 47 tornado reports in Kansas, 

Nebraska and Missouri. The tornado started moving 

through Greensburg at 0245 UTC 5 May 2007 (21:45 

CDT 4 May) and destroyed over 90 % of the town. 

The tornado damage was rated at EF5 - the highest 

rating on the Enhanced Fujita scale (McCarthy et al., 

2007). 

The synoptic setting for this event at 0000 UTC 

5 May consisted of a deep trough over the western 

United States with an upper-level short-wave trough 

starting to move over western Kansas (Fig. 3a).  A 

surface low was present over southeastern Colorado, 

and a quasi-stationary front extended from the low 

across northwest Kansas and into northeast 

Nebraska (Fig. 3b). A dryline stretched generally 

southward across western Kansas, Oklahoma, and 

into west Texas. A very moist and unstable air mass 

was found east of the dryline, where values of 

surface-based convective available potential energy 

(CAPE) were above 4000 J kg-1 across central 

Oklahoma and southcentral Kansas.  Values of 0-3 

km storm-relative environmental helicity (SREH) were 

in excess of 150 m2 s-2 throughout much of Oklahoma 

and Kansas, providing an environment favorable for 

supercell thunderstorms. 

Initial storm development occurred over the 

northern Texas panhandle/Oklahoma border around 

2210 UTC on 4 May 2007. A complex cell evolution 

ensued in which several storm splits were observed in 

succession over the next 2 h.  As one of the storms 

crossed the border into Kansas near 0040 UTC, it 

split with the right-moving storm evolving into the 

tornadic supercell thunderstorm that passed over 

Greensburg. This storm moved from 212°(the 

direction with the north as 0° and clockwise turn, 

hereafter) at 13 ms-1 and developed its hook echo 
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signature by 0106 UTC. Between 0130 UTC and 

0148 UTC, a strong middle-level mesocyclone was 

very clear and persistent in the data of Dodge City 

WSR-88D radar (not shown). The supercell was 

observed to take on a classic hook echo shape by 

0230 UTC as the strength of its rotation increased 

dramatically. The tornado that eventually produced 

the violent EF-5 damage at Greensburg was first 

observed near 0200 UTC (Lemon and Umscheid 

2007). Forecasters at the National Weather Service 

Dodge City Weather Forecast Office issued a tornado 

warning with 30 minutes lead-time for this event.  

 Over the next hour from 0230 to 0330 UTC, 

this tornadic supercell thunderstorm (which we call 

the dominant storm) turned a bit more to the right, 

moving from 219° as the storm motion slowly 

decreased from 10 m s-1 to near 8 m s-1 (Fig. 3, 

Lemon and Umscheid 2007). In comparison, the 

group of non-supercell thunderstorms to the 

northwest of the dominant storm moved much faster 

at 23 m s-1 from 206°.  While the violent EF-5 tornado 

that hit Greensburg dissipated near 0305 UTC, a 

second strong EF-3 tornado developed near 0303 

UTC, lasted for 65 min, and had a path length of over 

43 km. This 1-h period from 0230 to 0330 UTC is 

selected for study since this dominant thunderstorm 

has classic supercell characteristics, including a well-

defined mesocyclone and hook echo, during this time 

period (Fig. 3). In addition, the storm motion is fairly 

steady and strong tornadoes are observed throughout 

the period. Thus, this 1-h period is very good for 

testing a convective-scale forecast system.  

For this real data case experiment, we use 3-km 

grid spacing with 200x200 grid points in the horizontal. 

The domain is selected with sufficient coverage to 

contain the principal features of interest while 

maintaining some distance between primary storms 

and the lateral boundaries. The model uses 47 

terrain-following vertical layers, with nonlinear 

stretching, via a hyperbolic tangent function, that 

yields a spacing of 100 m at the ground that expands 

to approximately 800 m at the top of the domain. 

Similar to idealized case, the ARPS 3DVAR technique 

is used to create rapid analysis cycles and the cloud 

analysis scheme follows the 3DVAR analysis step to 

assimilate the radar reflectivity data. In addition, the 

mixing ratio of precipitation (including rain water, 

snow, and hail) and potential temperature are 

adjusted within the cloud analysis based on reflectivity 

measurements, and the other hydrometeor variables 

are not adjusted to avoid negative impacts of these 

adjustments on the balance of model equations.  

For this real data case, we again focus on 

understanding the impacts of radial velocity and 

reflectivity on numerical forecast.  In the first analysis 

and forecast experiment (named experiment 

ReVrOnly ), only radial velocity observations are used. 

For the second experiment (named ReRfOnly), only 

reflectivity observations are used.  Both radial velocity 

and reflectivity data are used in the third experiment 

(named ReVr&Rf).  These three experiments allow us 

to assess the relative importance of radial velocity 
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and reflectivity data.   

 For all the experiments, radar data from six 

radars at Dodge City (KDDC), (Vance AFB, OK 

(KVNX), Wichita Kansas (KICT), Oklahoma City 

(KTLX), Amarillo TX (KAMA) and Topeka Kansas 

(KTWX) are used in the 3DVAR and cloud analysis 

system. Each experiment consists of a 1-h 

assimilation period (from 0130-0230 UTC) and a 1-h 

forecast period (0230-0330 UTC). The background 

and boundary condition come from an analysis from a 

mesoscale ensemble assimilation system (Stensrud 

and Gao, 2009). While Stensrud and Gao (2009) 

performed a 3DVAR analysis only at one time level 

before the forecast is launched, the present study 

uses an assimilation period that consists of thirteen 

analysis cycles at 5-min intervals, where a 5 min 

ARPS forecast follows each analysis until the end of 

the 1-h assimilation period. From the final analysis, a 

1-h forecast is launched.  

  For all three experiments, we use analyses 

from WSR-88D data for verification. The evolution of 

the storm as indicated by the analyzed radar 

reflectivity, horizontal winds, and vertical vorticity at 

the 2 km MSL is shown in Fig. 4 from 0230 to 0330 

UTC. The development of hook feature for the major 

supercell near Greensburg area around 0240 UTC is 

very clear. The wind analysis at this level indicates a 

very strong mid-level cyclonic circulation. This storm 

moved gradually in the northeast direction (Fig 4). 

During this period, the dominant storm cell produced 

the most intense tornado that hit the town of 

Greensburg. The storm maintained a very strong 

circulation and continued to move to the northeast, 

and second tornado developed coincident with the 

end of Greensburg tornado just northeast of the town 

(McCarthy 2007).  

Our first analysis and forecast experiment 

(ReVrOnly) that uses the radial velocity observations 

only is able to capture the path of the storm that 

produced the Greensburg tornado during 1-h period 

of forecast (Fig 5). However, the initial storm 

produced at the end of 1-h intermittent assimilation 

(from 0130-0230 UTC) is generally very weak (Fig 5a). 

There are two reasons for this result. The first is that 

no reflectivity is assimilated, so the storm has to be 

“spin up” by itself through the internal storm dynamics 

based upon only radial wind observations. The 

second reason is that during the 1-h assimilation 

period the observed dominant storm is located in 

between several nearby radars (KDDC, KVNX, KICT), 

but none of the radars is very close to the storm.  

Thus, only the mid-level storm signatures are 

observed, and so the storm develops from the middle 

levels. At the end of 1-h intermittent assimilation 

(0230 UTC), the precipitation is still under 

development and has not reached to the ground yet. 

However, the location of the storm and its dynamics 

are well established, and so the forecast storm quickly 

develops its hook echo signature during the first 10 

min (Fig 5b) and maintains a strong circulation 

throughout the 1-h forecast. The circulation appears 

very strong during 0240-0250 UTC period during 
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which time the the strong tornado hit Greensburg. 

However, because no reflectivity data are assimilated, 

the area of precipitation is relatively small compared 

to the analysis (Fig 4).             

In the second experiment (ReRfOnly), only 

reflectivity observations are used. The analyzed 

reflectivity pattern after 1-h of intermittent assimilation 

looks reasonable (Fig 6a). But the wind vectors, 

especially near and in the storm, are very different 

from the 3DVAR analysis (Fig 4a). This indicates that 

the storm dynamic structure is not fully captured 

during the 1-h assimilation of reflectivity using the 

cloud analysis scheme. While the purpose of using 

the cloud analysis is to reduce the spin-up period for 

forecasts beginning from a single analysis, the 

repeated application of the cloud analysis in the high-

frequency assimilation cycles may lead to 

unrealistically high values for hydrometer related 

variables, such as rain water mixing ratio, snow 

mixing ratio, even potential temperature. To reduce 

this unrealistic effect, it is important to adjust model 

dynamic variables by assimilating radial wind 

observations simultaneously, which will be discussed 

later (also see idealized case). As indicated by the 

forecast in Fig. 6, the initially dominant cell on the 

right (south side) propagates much faster to the 

northeast than the observed storm and eventually 

merges with some smaller cells (Fig. 6c, d, e).  By the 

end of the one hour forecast period, the merged cell 

has grown into a large storm complex and is located 

too far northeast compared to the analysis (Fig. 6f) 

and the observation (Fig. 4f). There is no obvious 

circulation associated with tornadic signature of the 

thunderstorm. While a weak circulation exists in Fig 

6c, d, the location is not correct. In general, the 

results from this set of experiments are not very 

encouraging. 

The third experiment (ReVr&Rf) yields the 

best results, as the evolution of the forecast storm is 

closest to the analysis. Fig. 7a shows that both the 

reflectivity and wind field look reasonable compared 

to the analysis (Fig 4a), and there is a very small 

positive vorticity center at 2-km MSL. The 10-min 

forecast valid at 0240 UTC indicates a weak hook 

echo near Greensburg accompanied by a stronger 

mesocyclone than that of Fig. 7a. The storm moves 

slowly to the northeast, develops a strong hook echo, 

and maintains its strength throughout the entire one-

hour forecast period. The whole 1-h forecast of the 

dominant cell that produced the Greensburg tornado 

compares reasonably well with the analyses in terms 

of the structure, location and evolution of the 

convective storm. Several small cells that are 

separate from the dominant storm also propagate to 

the northeast and become weaker and weaker until 

some finally disappear. This does not completely 

agree with the analysis, but is not the main concern of 

forecasters on this day. These results indicate that 

using both radial velocity and reflectivity data in the 

3DVAR assimilation system is more beneficial to 

producing a reasonable forecast of this severe 

tornadic thunderstorm event than using these two 
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data types separately.  

5. Summary and Conclusion 

The WSR-88D network allows 

meteorologists to track severe weather events and 

provide better warning information to the public, 

ultimately saving lives and reducing property damage. 

However, the assimilation of such data into NWP 

models to provide physically consistent three-

dimensional analyses and short-term forecasts has 

not been extensively explored. Doppler radar is the 

only operational instrument capable of providing in-

storm observations of sufficient spatial and temporal 

resolution to capture convective-scale phenomena. 

Therefore, the effective assimilation of Doppler radar 

data into operational convection-resolving models is 

of increasing importance in our quest to extend 

warning lead times (Stensrud et al. 2009). Among the 

existing data assimilation methods, the 3DVAR 

system is a very computationally efficient method that 

can use radar data in real-time mode and in very high 

resolution both spatially and temporally. In this study, 

the impact of assimilating radial velocity and 

reflectivity data from a WSR-88D network near central 

Oklahoma is examined using both an idealized and a 

real data case. The ARPS 3DVAR, combined with a 

complex cloud analysis package, is used to produce 

analyses in high-frequency intermittent assimilation 

cycles. The ARPS model is used to do the 1-hour 

long numerical forecast for the real data case. Our 

purpose is to examine the relative importance of 

assimilating radial velocity and reflectivity data on 

storm-scale data assimilation and forecasting for very 

strong convective weather events. 

For the idealized case, a set of experiments 

that differ in the type of data used are performed to 

identify the impact of radial velocity and reflectivity 

data when using two pseudo WSR-88D radars. It is 

found that by assimilating radial velocity data only, the 

model can predict the timing and evolution of a 

simulated supercell thunderstorm with great accuracy. 

In contrast, large errors emerge when only reflectivity 

data are assimilated. These errors are produced 

during the updating of hydrometer-related variables 

and the temperature adjustment that occurs in the 

cloud analysis package. When both radial velocity 

and reflectivity are used, the analysis has less error 

than seen when assimilating reflectivity only, but has 

more error than seen when only radial velocity is 

assimilated. However, assimilating reflectivity data 

can reduce a storm’s “spin up” time significantly. Thus, 

to obtain the maximum benefit from radar data, both 

radial velocity and reflectivity should be assimilated in 

the most appropriate way.     

For the observed Greensburg tornadic 

thunderstorm case of 4-5 May 2007, three 

experiments are undertaken that are very similar to 

those from idealized data case. It is found that by 

assimilating only radial velocity data the model can 

reproduce the supercell thunderstorm that produced 

Greensburg tornado very well. In contrast, by 
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assimilating only reflectivity data, the model fails to 

reproduce the Greensbeurg supercell thunderstorm.  

However, when both radial velocity and reflectivity 

data are assimilated,  the dominant storm cell that 

produced the Greensburg tornado is reproduced most 

accurately in term of the structure, location and 

evolution of storm.  These results suggest that the 

assimilation of radial velocity data is essential for the 

prediction of supercell thunderstorms, likely due to 

their helical updrafts that play such an important 

dynamic role in storm development and evolution. 

Though reflectivity data is fundamental to storm 

tracking and quantitative precipitation estimation 

(QPE) and the assimilation of such data into NWP 

models can reduce the model spin-up time, it may be 

not as important as radial velocity.  This is due to 

reflectivity being related to more inactive model 

variables and a lot of uncertainties in model 

microphysics further complicates its usage in storm 

scale NWP.  However, the inclusion of reflectivity data 

with radial velocity data yields the best results, and for 

weaker thunderstorms reflectivity data may be very 

important.  More research is needed to confirm these 

conclusions.  
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Fig. 1. The total u-v wind vector, perturbation potential temperature (contour at every 1K) and reflectivity 

(colored) at z=250m AGL and t=30min, 50min, 70min, and 90min respectively. (a), (b), (c), (d) are for truth 

simulation, (e), (f), (g), (h) are for Vr only experiment, (i), (j), (k), (l) are for Z only experiment, (m), (n), (o), (p) 

are for both Vr and Z experiment. Solid contour for positive, and dashed contour for negative. 
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Fig. 2. The perturbation u-v wind vector, vertical velocity (contour at every 5m/s) at z=3.5km AGL and 

t=30min, 50min, 70min, and 90min respectively. (a), (b), (c), (d) are for truth simulation; (e), (f), (g), (h) are 

for Vr only experiment; (i), (j), (k), (l) are for Z only experiment; (m), (n), (o), (p) are for both Vr and Z 

experiment.  Solid contour for positive, and dashed contour for negative. 
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Fig. 3.  Environmental conditions at 0000 UTC 5 May 2007 shown by (a) 300 hPa geopotential height (every 120 m), 

temperature (every 2.5 °C), and winds (full barb is 10 m s-1), and (b) surface observations of mean-sea level pressure 

(every 4 hPa), winds (full barb is 10 m s-1), and the 18°C dewpoint isoline.   
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Fig. 4.  Analyzed radar reflectivity (dBZ), horizontal winds, and vorticity at 2 km MSL using data from the KDDC, KICT, 

KVNX, KTLX, and KTWX Doppler radars valid at (a) 0230, (b) 0240,  (c) 0250, (d) 0300, (e) 0315, and (f) 0330 UTC 5 

May 2007 over western Kansas.  Analyses created using the 3DVAR system.   
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Fig. 5.  As in Fig. 4, but for the forecast starting from the 3DVAR analysis at 0230 UTC 5 May 2007 for the Vr_only 

experiment. 
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Fig. 6.  As in Fig. 4, but for the forecast starting from the 3DVAR analysis at 0230 UTC 5 May 2007 for the Z_only 

experiment. 

 

 

 



 7

 2
0 

   
   

   
   

   
   

   
   

68
   

   
   

   
   

   
   

   
   

11
6 

   
   

   
   

   
   

   
  1

64
 (k

m
)

 2
0 

   
   

   
   

   
   

   
   

68
   

   
   

   
   

   
   

   
   

11
6 

   
   

   
   

   
   

   
  1

64
 (k

m
)

e f

ba

dc

 2
0 

   
   

   
   

   
   

   
   

68
   

   
   

   
   

   
   

   
   

11
6 

   
   

   
   

   
   

   
  1

64
 (k

m
)

 20                         68                           116                        164 (km) 20                         68                           116                        164 (km)  

Fig. 7.  As in Fig. 4, but for the forecast starting from the 3DVAR analysis at 0230 UTC 5 May 2007 for Vr_Z 

experiment. 


