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1. INTRODUCTION 

The uncertainty in meteorological (MET) predictions 
is of great interest for a large number of applications, 
ranging from economic to recreational to public safety.  
It is therefore important that numerical models and 
forecasts provide accurate estimates of their uncertainty 
along with their best or most likely prediction (NRC 
2007).  One common method for determining this 
uncertainty is the use of ensembles, with multiple 
numerical forecasts produced using slightly different 
initial conditions and/or model parameterizations.  The 
goal of using an ensemble is to span the possible 
outcomes given the uncertainties in the initial state of 
the atmosphere, the limited observations and the 
modeling system (Leith 1974).  The mean of the 
ensemble has also been shown to outperform any 
individual ensemble member compared to observations 
(Hamill and Colucci 1997, Stensrud et al. 1999). 

While ensemble forecasting is a significant step 
toward forecasting the most likely outcome and the 
uncertainty in the forecast, the size of operational 
ensembles is insufficient to fully represent the 
probability density function (PDF) of possible forecasts.  
An ensemble capable of doing so is impractical with 
current computing resources.  Therefore, any MET 
ensemble provides a sampling of the full forecast PDF 
and any measures of the uncertainty from the ensemble 
(such as variance) should be evaluated for applicability 
and calibrated if necessary.  Many studies, including 
Houtekamer et al. (1997), show that most MET 
ensembles are under-dispersive (the ensemble spread 
is consistently smaller than the spread in the forecast 
errors).  Several studies attempt to determine a 
correlation between ensemble spread and some 
measure of the error for various variables (Kalnay and 
Dalcher 1987, Murphy 1988, Barker 1991, Houtekamer 
1993, Buizza 1997, Hamill and Colucci 1998, Stensrud 
et al. 1999), but these studies generally find an 
unacceptably low correlation between spread and errors 
(Grimit and Mass 2007).  Houtekamer (1993) explains 
this low correlation using a stochastic model that 
showed that, even in idealized cases, the correlation 
between ensemble spread and absolute error will not be 
large. 

Grimit (2004) proposes that, rather than a simple 
spread-to-error correlation, a more probabilistic  
approach should be used to evaluate ensemble 
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uncertainty.  Specifically, Grimit stresses the distinction 
between forecast error and forecast uncertainty.  
Because each forecast results in only one realization of 
the forecast error (one random draw from the forecast 
PDF), the error of any particular forecast provides little 
information about the distribution from which it was 
drawn.  However, if the relationship between the spread 
of the MET ensemble and forecast uncertainty is 
constant within a sample, we can group multiple 
samples with similar ensemble variance and use the 
distribution of the associated group of errors as a 
measure of the underlying uncertainty in the errors. 

Grimit (2004) and Grimit and Mass (2007) use an 
idealized stochastic model that shows a strong linear 
relationship between ensemble spread and error 
variance.  Kolczynski et al. (2009) uses a similar method 
derived from Roulston (2005) on low-level wind data 
from the National Centers for Environmental Prediction 
Short-Range Ensemble Forecast (NCEP-SREF).  
Kolczynski et al. (2009) also finds a strong correlation 
between ensemble variance and error variance, and 
uses this linear relationship as a calibration (denoted 
LVC, for Linear Variance Calibration) for wind variance 
input into an atmospheric transport and dispersion 
model.  However, unlike the Grimit and Mass study 
using an idealized model, Kolczynski et al. (2009) finds 
that the slope of the linear fit is less than the ideal value 
of one, and that the y-intercept is larger than the ideal 
value of zero (Fig. 1).  The study also finds that these 
parameters change substantially depending on the 
length of the forecast.  When applied to dispersion 
calculations in a case study, the calibration improves the 
resulting dispersion forecast in most of the metrics used 
in the study. 

This study further explores possible influences on 
the LVC slope and intercept.  This is done using a 
stochastic model adapted from that used by 
Houtekamer (1993) and Grimit and Mass (2007).  
However, this new stochastic model allows the variance 
of the error distribution and the ensemble distribution to 
vary from each other, allowing for the creation of 
“imperfect” ensembles, but in such a manner that a 
linear relationship between the variances is maintained.  
Since we are interested in the variances of low-level 
wind speed for atmospheric transport and dispersion, 
the new model also uses a Weibull distribution instead 
of a log-normal distribution as the underlying 
“climatology”, as a Weibull approximates the climatology 
of surface (10-m) wind speed (Wilks 2006).  Section 2 
provides the details of the new stochastic model.  
Section 3 presents the results of the model for six 
experiments using an ensemble size of 20, typical of 
operational MET ensembles.  The same six experiments 



 
 

are then repeated using varying ensemble size for 
results in Section 4.  Conclusions and directions for 
future work are offered in Section 5. 

 
2. METHODOLOGY 

In order to investigate the relationship between 
ensemble variance and error variance, we construct a 
stochastic model in which we control the variance from 
which the data are drawn.  This will allow us to compare 
the results of the model directly with the expected 
values given the underlying distribution. 

For each simulation, we first generate a random 
value of “speed”  from a Weibull distribution with a 

shape parameter of 1.8 and a scale parameter of 5.0.  
We choose this distribution because we are interested 
in the low-level winds important for atmospheric 
transport and dispersion, and Kolczynski et al. (2009) 
focused on low-level winds.  The shape and scale 
parameters fall within the common range of values 
empirically determined for the distribution of wind 
speeds. The error distribution and ensemble distribution 
are then both defined to be normal distributions with a 
mean of zero and a variance that depends on .  The 

relationship is a simple linear one, with the variance of 

the errors ( ) defined as 
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and the variance of the ensemble ( ) defined as 
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Using these variances, we pick one number at random 

from the normal distribution  as our observed 

error, and M numbers from the distribution  to 

serve as our ensemble.  This process is repeated one-
hundred thousand times to create a population of 
 

 
Figure 1: Scatterplot showing the relationship between 
error variance and ensemble variance (adapted from 
Kolczynski et al. 2009).  The linear best-fit line (LVC) 
has a slope of 0.502 and a y-intercept of 3.007. 

error/ensemble pairs. 
A modified version of the Linear Variance Calibration 

(LVC) presented in Kolczynski et al. (2009) is then used 
to calculate a relationship between the ensemble 
variance and error variance.  First, the error-ensemble 
pairs are ordered based on the ensemble variance.  
Then the data are binned into groups of 1000.  In each 
bin, the ensemble variance is averaged to obtain a 
representative ensemble variance for the bin, and the 
variance of the errors in the bin is computed.  The 
philosophy is that, if the relationship between ensemble 
variance and error variance remains constant within the 
sample, errors from cases with similar ensemble 
variance should be drawn from similar error 
distributions.  Thus, we can take the variance of the 
errors from many different realizations and it would be 
similar to the variance if we could compute it over many 
errors for the same case.  We then perform a linear 
regression on the mean ensemble variance/error 
variance pairs for each bin to determine the slope 

( ) and intercept of the relationship ( ). 

Because we specify the underlying distribution, we 
can also compute the expected LVC slope and intercept 
algebraically.  The slope of the LVC regression ( ) is 

expected to be 
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and the y-intercept of the LVC regression ( ) is 

expected to be 
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We can compare these theoretical values to those 
calculated from the simulated data. 

 
3. EXPLORATION WITH ENSEMBLE SIZE OF 20 

In order to explore the behavior of the model with 
typical operational ensemble sizes, we first consider 
several configurations using a constant ensemble size 
of twenty members.  Each experiment is summarized in 
Table 1 along with the 20 member ensemble results.  
Experiments A and B are both “perfect” ensembles, with 
the ensemble being drawn from a distribution identical 
to that from which the errors are drawn.  The only 
difference between A and B is that the variances of B 
are three times bigger than those of A relative to .  

Experiments C and D explore simple over- and under-
dispersive cases, with the ensemble being drawn from 
distributions with three times larger or one third smaller 
variances, respectively.  Experiments E and F 
demonstrate more complicated relationships, where the 
variance of the error distribution or ensemble distribution 
includes a constant.  Figure 2 shows the scatterplot and 
rank histogram from each experiment. 

The most important result is that the slope calculated 
using the LVC ( ) is smaller than the slope expected 

from algebra ( ).  Similarly, the y-intercept computed 

using LVC ( ) is higher than the theoretical value  
from algebra ( ).  However, the R
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Table 1: Summary of the experimental configuration and corresponding results for an ensemble size of 20.  The color 
of each row corresponds to the color used in Figs. 3 and 4. 

Exp.          

A 0.1 0.0 0.1 0.0 0.94 1.00 0.71 +0.00 +0.13 

B 0.3 0.0 0.3 0.0 0.95 1.00 0.72 +0.00 +0.38 

C 0.1 0.0 0.3 0.0 0.98 0.33 0.24 +0.00 +0.13 

D 0.3 0.0 0.1 0.0 0.96 3.00 2.15 +0.00 +0.39 

E 0.1 0.0 0.1 0.4 0.99 1.00 0.45 - 0.40 +0.07 

F 0.1 0.4 0.1 0.0 0.92 1.00 0.72 +0.40 +0.52 

 
 

 
 
Figure 2: Relationship of ensemble variance (abscissa) to the error variance (ordinate) for each experiment, using an 
ensemble size of 20.  Insets: rank histogram of each experiment 

 
experiment is high (above 0.92), indicating a strong 
linear correlation between ensemble variance and error 
variance even though the coefficients of the linear fit do 
not match the theoretical values.  Interestingly, the slope  
computed by LVC is 72% of the theoretical value for 
every experiment except E, which is the only one to use 
an additive constant for the ensemble variance.  There 
also seems to be a functional relationship for the y-
intercept calculated by LVC, with the LVC y-intercept 
being  larger than the theoretical value for every 

experiment except E. 
 
4. EXPLORATION OF ENSEMBLE SIZE 

To investigate the possible effect of ensemble size 
on the ensemble variance/error variance relationship, 

particularly the deviation from theoretical values, we 
repeat each experiment for a variety of ensemble sizes 
ranging from five to five thousand (5, 10, 20, 50, 100, 
200, 500, 1000 and 5000).  This should reveal any 
sampling limitations due to ensemble size, as well as 
indicate any fundamental problems with the LVC if it is 
unable to obtain the theoretical values at very large 
ensemble sizes. 

Figures 3 and 4 show the calculated LVC slope and 
y-intercept respectively for each experiment at varying 
ensemble sizes.  The LVC calculated values of slope 
and y-intercept for each experiment approach the 
theoretical value as ensemble size gets larger.  This 
indicates that the deviation from the theoretical values in 
the experiments when using 20 members is likely due to 
sample size issues and is not a byproduct of LVC.  



 
 

Furthermore, the plot shows that much larger ensemble 
sizes are needed (> 200) in order to obtain the 
theoretical slope and y-intercept than are currently used 
operationally.  This is an important outcome, because it 
means that even with a perfect ensemble, the ensemble 
variance should be calibrated for any ensemble with 
fewer than several hundred members.  Scientists 
exploring applications of ensemble variance ranging 
from ensemble generation to its use as a proxy for 
uncertainty should be mindful of this result. 

 

 
Figure 3: Calculated LVC slope for each of the 
experiments listed in Table 1 using variable ensemble 
sizes.  The theoretical slope is 1 for Exps. A, B, E and F; 
 for Exp. C; and 3 for Exp. D.  Data are plotted at 

ensemble sizes of 5, 10, 20, 50, 100, 200, 500, 1000, 
2000 and 5000. 

 
 

 
Figure 4: Calculated LVC y-intercept for each of the 
experiments listed in Table 1 using variable ensemble 
sizes.  The theoretical y-intercept is 0 for Exps. A-D; -
0.4 for Exp. C; and 0.4 for Exp. D.  Data are plotted at 
ensemble sizes of 5, 10, 20, 50, 100, 200, 500, 1000, 
2000 and 5000. 

 
5. CONCLUSIONS 

This study has explored the relationship between 
ensemble variance and error variance calculated by the 
Linear Variance Calibration (LVC) presented in 

Kolczynski et al. (2009) in a controlled way using an 
idealized stochastic ensemble.  The results show that 
the calculated LVC slope and y-intercept deviate 
substantially from the algebraically-derived values when 
ensemble size is less than several hundred members 
for a climatology that follows a Weibull distribution, as is 
appropriate for surface wind speed.  This result implies 
that ensemble variances, even from otherwise “perfect” 
ensembles, should be calibrated if ensemble size is less 
than several hundred members. 

This study also determined a potential adjustment to 
the LVC slope and y-intercept for an ensemble size of 
20 that accounts for the sampling error caused by 
limited ensemble size.  This adjustment was accurate as 
long as , the portion of the ensemble variance 

independent of the forecast value , was zero.  Further 

research may be able to determine a functional form of 
this adjustment that works for other ensemble sizes.  It 
may also be possible to compute an adjustment that 
properly incorporates the additive portion of ensemble 
variance ( ) as well.  This would allow the 

determination of a “best” possible relationship between 
error variance and ensemble variance of a given 
ensemble size.  Such a “best” relationship could then be 
a goal in developing ensemble systems so that their 
variances are “correct”. 
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