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1. INTRODUCTION

The uncertainty in meteorological (MET) predictions
is of great interest for a large number of applications,
ranging from economic to recreational to public safety.
It is therefore important that numerical models and
forecasts provide accurate estimates of their uncertainty
along with their best or most likely prediction (NRC
2007). One common method for determining this
uncertainty is the use of ensembles, with multiple
numerical forecasts produced using slightly different
initial conditions and/or model parameterizations. The
goal of using an ensemble is to span the possible
outcomes given the uncertainties in the initial state of
the atmosphere, the limited observations and the
modeling system (Leith 1974). The mean of the
ensemble has also been shown to outperform any
individual ensemble member compared to observations
(Hamill and Colucci 1997, Stensrud et al. 1999).

While ensemble forecasting is a significant step
toward forecasting the most likely outcome and the
uncertainty in the forecast, the size of operational
ensembles is insufficient to fully represent the
probability density function (PDF) of possible forecasts.
An ensemble capable of doing so is impractical with
current computing resources. Therefore, any MET
ensemble provides a sampling of the full forecast PDF
and any measures of the uncertainty from the ensemble
(such as variance) should be evaluated for applicability
and calibrated if necessary. Many studies, including
Houtekamer et al. (1997), show that most MET
ensembles are under-dispersive (the ensemble spread
is consistently smaller than the spread in the forecast
errors).  Several studies attempt to determine a
correlation between ensemble spread and some
measure of the error for various variables (Kalnay and
Dalcher 1987, Murphy 1988, Barker 1991, Houtekamer
1993, Buizza 1997, Hamill and Colucci 1998, Stensrud
et al. 1999), but these studies generally find an
unacceptably low correlation between spread and errors
(Grimit and Mass 2007). Houtekamer (1993) explains
this low correlation using a stochastic model that
showed that, even in idealized cases, the correlation
between ensemble spread and absolute error will not be
large.

Grimit (2004) proposes that, rather than a simple
spread-to-error  correlation, a more probabilistic
approach should be used to evaluate ensemble
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uncertainty. Specifically, Grimit stresses the distinction
between forecast error and forecast uncertainty.
Because each forecast results in only one realization of
the forecast error (one random draw from the forecast
PDF), the error of any particular forecast provides little
information about the distribution from which it was
drawn. However, if the relationship between the spread
of the MET ensemble and forecast uncertainty is
constant within a sample, we can group multiple
samples with similar ensemble variance and use the
distribution of the associated group of errors as a
measure of the underlying uncertainty in the errors.

Grimit (2004) and Grimit and Mass (2007) use an
idealized stochastic model that shows a strong linear
relationship between ensemble spread and error
variance. Kolczynski et al. (2009) uses a similar method
derived from Roulston (2005) on low-level wind data
from the National Centers for Environmental Prediction
Short-Range Ensemble Forecast (NCEP-SREF).
Kolczynski et al. (2009) also finds a strong correlation
between ensemble variance and error variance, and
uses this linear relationship as a calibration (denoted
LVC, for Linear Variance Calibration) for wind variance
input into an atmospheric transport and dispersion
model. However, unlike the Grimit and Mass study
using an idealized model, Kolczynski et al. (2009) finds
that the slope of the linear fit is less than the ideal value
of one, and that the y-intercept is larger than the ideal
value of zero (Fig. 1). The study also finds that these
parameters change substantially depending on the
length of the forecast. When applied to dispersion
calculations in a case study, the calibration improves the
resulting dispersion forecast in most of the metrics used
in the study.

This study further explores possible influences on
the LVC slope and intercept. This is done using a
stochastic model adapted from that used by
Houtekamer (1993) and Grimit and Mass (2007).
However, this new stochastic model allows the variance
of the error distribution and the ensemble distribution to
vary from each other, allowing for the creation of
“imperfect” ensembles, but in such a manner that a
linear relationship between the variances is maintained.
Since we are interested in the variances of low-level
wind speed for atmospheric transport and dispersion,
the new model also uses a Weibull distribution instead
of a log-normal distribution as the underlying
“climatology”, as a Weibull approximates the climatology
of surface (10-m) wind speed (Wilks 2006). Section 2
provides the details of the new stochastic model.
Section 3 presents the results of the model for six
experiments using an ensemble size of 20, typical of
operational MET ensembles. The same six experiments



are then repeated using varying ensemble size for
results in Section 4. Conclusions and directions for
future work are offered in Section 5.

2. METHODOLOGY

In order to investigate the relationship between
ensemble variance and error variance, we construct a
stochastic model in which we control the variance from
which the data are drawn. This will allow us to compare
the results of the model directly with the expected
values given the underlying distribution.

For each simulation, we first generate a random
value of “speed” s; from a Weibull distribution with a
shape parameter of 1.8 and a scale parameter of 5.0.
We choose this distribution because we are interested
in the low-level winds important for atmospheric
transport and dispersion, and Kolczynski et al. (2009)
focused on low-level winds. The shape and scale
parameters fall within the common range of values
empirically determined for the distribution of wind
speeds. The error distribution and ensemble distribution
are then both defined to be normal distributions with a
mean of zero and a variance that depends on s;. The
relationship is a simple linear one, with the variance of
the errors (2) defined as

oZ=m,-s +b, (@)
and the variance of the ensemble (52) defined as
oZ=m,-s +h, @)

Using these variances, we pick one number at random
from the normal distribution N(0,02) as our observed
error, and M numbers from the distribution N(0,s2) to
serve as our ensemble. This process is repeated one-
hundred thousand times to create a population of
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Figure 1: Scatterplot showing the relationship between
error variance and ensemble variance (adapted from
Kolczynski et al. 2009). The linear best-fit line (LVC)
has a slope of 0.502 and a y-intercept of 3.007.

error/ensemble pairs.

A modified version of the Linear Variance Calibration
(LVC) presented in Kolczynski et al. (2009) is then used
to calculate a relationship between the ensemble
variance and error variance. First, the error-ensemble
pairs are ordered based on the ensemble variance.
Then the data are binned into groups of 1000. In each
bin, the ensemble variance is averaged to obtain a
representative ensemble variance for the bin, and the
variance of the errors in the bin is computed. The
philosophy is that, if the relationship between ensemble
variance and error variance remains constant within the
sample, errors from cases with similar ensemble
variance should be drawn from similar error
distributions. Thus, we can take the variance of the
errors from many different realizations and it would be
similar to the variance if we could compute it over many
errors for the same case. We then perform a linear
regression on the mean ensemble variance/error
variance pairs for each bin to determine the slope
(Mvc) and intercept of the relationship (b c).

Because we specify the underlying distribution, we
can also compute the expected LVC slope and intercept
algebraically. The slope of the LVC regression (my¢) is
expected to be

m

a

Myc =— (3)
LvVC m,
and the y-intercept of the LVC regression (b.yc) is
expected to be

m

b =b, —b,—* 4)
me

We can compare these theoretical values to those
calculated from the simulated data.

3. EXPLORATION WITH ENSEMBLE SIZE OF 20

In order to explore the behavior of the model with
typical operational ensemble sizes, we first consider
several configurations using a constant ensemble size
of twenty members. Each experiment is summarized in
Table 1 along with the 20 member ensemble results.
Experiments A and B are both “perfect” ensembles, with
the ensemble being drawn from a distribution identical
to that from which the errors are drawn. The only
difference between A and B is that the variances of B
are three times bigger than those of A relative to s;.
Experiments C and D explore simple over- and under-
dispersive cases, with the ensemble being drawn from
distributions with three times larger or one third smaller
variances, respectively. Experiments E and F
demonstrate more complicated relationships, where the
variance of the error distribution or ensemble distribution
includes a constant. Figure 2 shows the scatterplot and
rank histogram from each experiment.

The most important result is that the slope calculated
using the LVC () is smaller than the slope expected
from algebra (m,y¢). Similarly, the y-intercept computed
using LVC (b,yc) is higher than the theoretical value
from algebra (b.yc). However, the R? for every



Table 1: Summary of the experimental configuration and corresponding results for an ensemble size of 20. The color

of each row corresponds to the color used in Figs. 3 and 4.

Exp. mgy b, m, b, R? myyc Myc bryc bryc
A 0.1 0.0 0.1 0.0 0.94 1.00 0.71 +0.00 +0.13
B 0.3 0.0 0.3 0.0 0.95 1.00 0.72 +0.00 +0.38
C 0.1 0.0 0.3 0.0 0.98 0.33 0.24 +0.00 +0.13
D 0.3 0.0 0.1 0.0 0.96 3.00 2.15 +0.00 +0.39
E 0.1 0.0 0.1 0.4 0.99 1.00 0.45 -0.40 +0.07
F 0.1 0.4 0.1 0.0 0.92 1.00 0.72 +0.40 +0.52
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Figure 2: Relationship of ensemble variance (abscissa) to the error variance (ordinate) for each experiment, using an
ensemble size of 20. Insets: rank histogram of each experiment

experiment is high (above 0.92), indicating a strong
linear correlation between ensemble variance and error
variance even though the coefficients of the linear fit do
not match the theoretical values. Interestingly, the slope
computed by LVC is 72% of the theoretical value for
every experiment except E, which is the only one to use
an additive constant for the ensemble variance. There
also seems to be a functional relationship for the y-
intercept calculated by LVC, with the LVC y-intercept
being 1.3 - m, larger than the theoretical value for every
experiment except E.

4. EXPLORATION OF ENSEMBLE SIZE

To investigate the possible effect of ensemble size
on the ensemble variance/error variance relationship,

particularly the deviation from theoretical values, we
repeat each experiment for a variety of ensemble sizes
ranging from five to five thousand (5, 10, 20, 50, 100,
200, 500, 1000 and 5000). This should reveal any
sampling limitations due to ensemble size, as well as
indicate any fundamental problems with the LVC if it is
unable to obtain the theoretical values at very large
ensemble sizes.

Figures 3 and 4 show the calculated LVC slope and
y-intercept respectively for each experiment at varying
ensemble sizes. The LVC calculated values of slope
and y-intercept for each experiment approach the
theoretical value as ensemble size gets larger. This
indicates that the deviation from the theoretical values in
the experiments when using 20 members is likely due to
sample size issues and is not a byproduct of LVC.



Furthermore, the plot shows that much larger ensemble
sizes are needed (> 200) in order to obtain the
theoretical slope and y-intercept than are currently used
operationally. This is an important outcome, because it
means that even with a perfect ensemble, the ensemble
variance should be calibrated for any ensemble with
fewer than several hundred members.  Scientists
exploring applications of ensemble variance ranging
from ensemble generation to its use as a proxy for
uncertainty should be mindful of this result.
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Figure 3: Calculated LVC slope for each of the
experiments listed in Table 1 using variable ensemble
sizes. The theoretical slope is 1 for Exps. A, B, E and F;
; for Exp. C; and 3 for Exp. D. Data are plotted at

ensemble sizes of 5, 10, 20, 50, 100, 200, 500, 1000,
2000 and 5000.
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Figure 4: Calculated LVC y-intercept for each of the
experiments listed in Table 1 using variable ensemble
sizes. The theoretical y-intercept is 0 for Exps. A-D; -
0.4 for Exp. C; and 0.4 for Exp. D. Data are plotted at
ensemble sizes of 5, 10, 20, 50, 100, 200, 500, 1000,
2000 and 5000.

5. CONCLUSIONS
This study has explored the relationship between

ensemble variance and error variance calculated by the
Linear Variance Calibration (LVC) presented in

Kolczynski et al. (2009) in a controlled way using an
idealized stochastic ensemble. The results show that
the calculated LVC slope and y-intercept deviate
substantially from the algebraically-derived values when
ensemble size is less than several hundred members
for a climatology that follows a Weibull distribution, as is
appropriate for surface wind speed. This result implies
that ensemble variances, even from otherwise “perfect”
ensembles, should be calibrated if ensemble size is less
than several hundred members.

This study also determined a potential adjustment to
the LVC slope and y-intercept for an ensemble size of
20 that accounts for the sampling error caused by
limited ensemble size. This adjustment was accurate as
long as b,, the portion of the ensemble variance
independent of the forecast value s;, was zero. Further
research may be able to determine a functional form of
this adjustment that works for other ensemble sizes. It
may also be possible to compute an adjustment that
properly incorporates the additive portion of ensemble
variance (b,) as well. This would allow the
determination of a “best” possible relationship between
error variance and ensemble variance of a given
ensemble size. Such a “best” relationship could then be
a goal in developing ensemble systems so that their
variances are “correct”.
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