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1. INTRODUCTION*

 
 The radial-velocity and reflectivity 
observations of severe weather events like 
thunderstorms and tornadoes from WSR-
88Ds can provide important information for 
the initialization of numerical storm-scale 
prediction models using the Ensemble 
Kalman Filter (EnKF) approach (Snyder and 
Zhang 2003, Zhang et al. 2004, Dowell et al. 
2004a, Xue et al. 2006, Aksoy et al. 2009). 
Research reveals that approximately a 30-
60 minutes assimilation window is sufficient 
to initialize a severe storm into the model 
using WSR-88D 5-6 minute volume scan 
data. However, while the WSR-88D data 
assimilation in storm-scale model provide a 
good quality analyses, reliable short-term 
forecasts from these good quality analyses 
still remains a challenge to the researchers 
in the data assimilation community.  
 One of the major sources of error in 
storm-scale data assimilation and forecasts 
is the microphysical scheme used to 
represent the microphysical characteristics 
of the storms in the model. The development 
of a microphysics scheme is based on 1) a 
number of different phase changes of water 
species and 2) a number of different 
interactions between cloud and precipitation 
particles.  Thus, many assumptions are 
needed to make these schemes both 
realistic and computationally affordable 
(Stensrud 2007). The most commonly used 
type of microphysical scheme in storm-scale 
modeling is a single-moment bulk 
microphysics scheme that predicts only the 
particle mixing ratios of the hydrometeors. 
However, the precipitation particles that are 
represented in the various single-moment 
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bulk microphysics schemes tend to differ 
from one another.  
 A single-moment scheme uses a 
specified functional form with constant 
values of intercept parameters and densities 
of hydrometeors for the calculation of 
hydrometeors size distributions (Stensrud 
2007) that are defined somewhat arbitrarily 
and remain constant throughout the 
simulation. However, several observational 
studies indicate that the particle densities 
and intercept parameters of hydrometeor 
distributions can vary widely within a single 
storm and among storms (Gunn and 
Marshall 1958; Houze et al. 1979, 1980; 
Mitchell 1988; Pruppacher and Klett 2000; 
Cifelli et al. 2000; Brandes et al. 2007). 
Moreover, Gilmore et al. (2004) show that 
reasonable selections of intercept 
parameters and density of hail/graupel yield 
substantial and operationally important 
differences in simulations of thunderstorms 
in terms of storm structure, severity and 
intensity.  Snook and Xue (2008) find that 
varying the intercept and density parameters 
within their typical uncertainty range yield a 
wide range of solutions from the same set of 
initial and environment conditions.  Thus 
applying predefined constant parameters for 
precipitation particles cannot adequately 
represent the particle microphysical 
characteristics and can lead to significant 
errors in the analyses and forecasts of 
severe storms.  
 Determining the suitable values for 
the microphysical parameters in storm scale 
data assimilation however is very difficult 
due to the lack of in situ cloud observations. 
Since the selection of microphysical 
parameters in storm-scale modeling has 
profound impact on the analyses and 
forecasts of severe weather events, and an 
arbitrary selection of those parameters may 
lead to significant error, one approach to 
account for the uncertainty in the storm-
scale EnKF system is to vary the 
microphysical parameters within the same 
microphysics scheme. Results from Fujita et 
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al. (2007) and Stensrud et al. (2009) indicate 
that an ensemble with multiple physical 
parameterizations and initial condition 
perturbations yields better analyses and 
forecasts than an ensemble with only initial 
condition or physics perturbations. Therefore 
in an effort to explore the impact of 
variations in parameters within the same 
microphysics scheme in storm scale system, 
Observing System Simulation Experiments 
(OSSEs; Lord et al. 1997) are conducted 
using a range of different realizations of the 
intercept and density parameters using an 
EnKF data assimilation technique. The 
simulation of a supercell storm is conducted 
using two different microphysics schemes. 
Radial-velocity and reflectivity observations 
are then constructed from the reference 
solutions and are assimilated using the 
ensemble Kalman filtering technique on the 
same numerical model that produced the 
reference simulation. The first set of 
experiments is based on assumptions of a 
perfect model in which both the truth 
simulation and the ensemble system use the 
same microphysics scheme. The second set 
of experiments is based on imperfect model 
assumptions in which the microphysics 
scheme for the truth simulation and the 
microphysics scheme for the assimilation 
system are different. The imperfect model 
assumption includes error in the forecast 
models, particularly from the microphysical 
parameterization. The storm-scale model, 
simulated radar dataset and the 
experimental design are described in section 
2.  Section 3 presents the results obtained 
from the EnKF analysis and forecasts, 
followed by a final discussion in section 4.   
   

 
2. ASSIMILATION  SYSTEM AND 
EXPERIMENTAL DESIGN 
 
 The Collaborative Model for 
Multiscale Atmospheric Simulation 
(COMMAS; Wicker and Skamarock 2002; 
Coniglio et al. 2006) model used in this 
study is a nonhydrostatic compressible 
numerical cloud model. The data 
assimilation scheme used is based on the 
ensemble square-root filter (EnSRF) of 
Whitaker and Hamil (2002). The reflectivity 
and radial velocity observations are 
assimilated in the filter serially. Each time an 
observation is assimilated, the ensemble 

mean and each of the ensemble members 
are updated for each model variable at each 
grid point within 4 km of the observation. 
Details of the EnSRF system used in this 
study can be found in Dowell et al. (2004a). 
In this study, a 40 member ensemble is 
used, and the number of observations 
assimilated during each 1-min assimilation 
period ranges from 630 to 25360, depending 
on the location of the radar relative to the 
supercell, height of radar scans and 
supercell intensity.  

 This study uses a radar emulator 
that generates radial-velocity and reflectivity 
observations from the reference simulations 
in native radar coordinates using a simplified 
version of a realistic volume averaging 
technique (Wood et al. 2009). The Z, u, v 
and w wind components at model grid points 
within the beamwidth are scanned with the 
radar emulator to produce the WSR-88D 
radar reflectivity and radial velocity 
observations. Details of the radar emulator 
are discussed in the Yussouf and Stensrud 
(2009). To reduce the heavy computational 
burden of observation assimilation, the 
reflectivity and radial velocity observations 
used in this study are created along each 
radial at a coarser 1.0-km range sampling 
interval instead of the 0.25 km interval 
available from the radars. The antenna half-
power beamwidths are assumed to be 0.89o 
for this study with 1.0o azimuth interval and 
a 1.39o effective beamwidth. The synthetic 
radar observations are generated using 
Volume Coverage Pattern (VCP) 11 
precipitation mode scanning strategy 
consisting of 14 elevation angles. To 
assimilate the WSR-88D radar observations 
more realistically, the WSR-88D 
observations are generated for 2-3 sweeps 
every minute rather than assuming the 
entire volume is collected simultaneously. 
Out of the 14 sweeps, the lower 12 sweeps 
of observations are generated 3 sweeps per 
minute for the first 4 min with the remaining 
upper 2 sweeps valid for the fifth minute of 
the volume scan. To account for the 
measurement and sampling errors for radial 
velocity and reflectivity observations, 
random numbers are drawn from a 
Gaussian distribution of zero mean and 
standard deviations of 2 m s

-1 
and 2 dBZ, 

respectively, and are added to the 
observations. Moreover, the radar is 
stationary while the model domain moves 
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with the simulated storm; all experiments in 
this study are conducted using a single 
radar to observe the supercell storm.   
 
2.1. The two truth simulations and synthetic 
radar observations 
  
 Two simulation runs of a supercell 
thunderstorm are conducted using the 
classic Weisman-Klemp analytic sounding 
(Weisman and Klemp, 1982) with a quarter 
circle hodograph for the vertical wind shear 
profile. The model domains for the truth runs 
are 100 km wide with 1-km resolution in the 
horizontal and 18 km tall in the vertical 
direction. The domains are vertically 
stretched from 100 m vertical spacing at the 
bottom to 700 m vertical spacing at the 
domain top. The 2 h long simulations are 
initiated with an ellipsoidal thermal bubble of 
2.5 K with 10 km radius in the horizontal 
direction and 1.4 km radius in the vertical 
direction that is placed at the center of the 
domain at t = 0 min. The ellipsoidal thermal 
bubble develops into a convective cell within 
the first 30 mins of the simulations and the 
first echoes are seen by the radar emulator 
at around t = 25 min. Over the next 30 min, 
the convective cell splits into two cells, one 
moving right towards the east and the other 
moving towards the northeast. During the 
second hour of the simulations, the right-
moving cell tends to dominate the system 
with a few short lived smaller cells 
developing in between the two main cells.   
The domain grids are translated at u = 17 
and v = 7 m s-1 to keep the main storm near 
the center of the model domains.  
 The first truth simulation applies the 
Gilmore et al. (2004) version of the Lin-
Farley-Orville (Lin et al. 1983) single-
moment bulk microphysics scheme 
(Truth_LFO hereafter). The LFO scheme 
contains three ice categories (i.e. ice 
crystals, snow and hail/graupel) and 
calculates the mixing ratios of six water 
species: water vapor, cloud water, cloud ice, 
rain, snow and hail/graupel. The second 
truth simulation applies the 10-ICE (Straka 
and Mansell, 2005) single-moment bulk 
microphysics scheme (Truth_10ICE 
hereafter) to represent more realistic storm 
characteristics. It has the same two water 
particle categories (cloud water and rain) as 
the LFO scheme and ten ice categories (i.e. 
6 graupel and hail categories, 3 ice 

categories and snow) that are characterized 
by habit, size and density. The extra ice 
hydrometeor categories that are included in 
the 10ICE scheme better represent the 
range of precipitation ice characteristics in a 
storm system. It also improves the treatment 
of conversion from one ice categories to 
another with the changes in habit, density 
and terminal velocity (Straka and Mansell, 
2005). Both microphysics schemes assumes 
a monodisperse particle size distribution for 
cloud water and cloud ice and approximate 
an inverse exponential form (Marshall and 
Palmer 1948) for the particle size 
distributions of rain and ice categories as 
follows: 

 0( ) x xD
x xn D n e λ−=  (1) 

where x is rain or ice categories, D is the 
particle diameter (m), n is the number of 
particles per unit volume (m-4), λ is the slope 
parameter that defines the decrease in 
particle counts as diameter increases (m-1) 
and n0x is the intercept parameter that 
defines the maximum number of particles 
per unit volume at D = 0 size. The slope 
parameter varies with mixing ratio and is 
given by 
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where ρx is the density of the particle, ρ is 
the air density, and qx is the mixing ratio. 
From equation (1) and (2), it is obvious that 
the particle size distribution is a function of 
n0x and ρx.  The values of the density and 
the intercept parameters used for the truth 
simulation from the two microphysics 
scheme are given in Table 1.  
 The truth runs from the two 
microphysics schemes produce a similar 
supercell storms, however there are 
differences in the location, strength and 
structure of the storm as shown in Fig. 1. 
The cold pool at the lowest model level from 
Truth_10ICE (Fig. 1b) is colder than the cold 
pool from Truth_LFO (Fig. 1a) after 35 mins 
of the simulation. The high-reflectivity core 
of the southern cell from the Truth_LFO is 
more intense than the reflectivity core of the 
southern cell from Truth_10ICE and the mid-
level vertical vorticity also differ from each 
other (Fig. 1 e and f). Similar differences 
also are found for other variables at other 
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vertical levels of the model domain at other 
simulation times.  
 
2.2. The ensemble configuration and OSSE 
design  
  
 Each member of the 40 member 
ensemble uses the same classic Weisman-
Klemp sounding with quarter circle 
hodograph in a horizontally homogeneous 
environment to define the initial 
environmental condition. The domain size 
and grid resolution for the ensemble 
members are identical to the truth runs. To 
facilitate the development of storms, 3 
thermal bubbles (i.e. 1.5 K maximum 
ellipsoidal θ perturbations) with 7.5 km 
radius in the horizontal direction and 2.0 km 
radius in the vertical direction at random 
locations within the 40 km to 60 km portion 
of the domain in x and y directions and 
within 0.25 to 2.25 km in z direction are 
introduced at the initialization time (t = 0) to 
each ensemble member following Synder 
and Zhang (2003) and Dowell et al. (2004a, 
b). This method of initialization is very 
helpful as the thermal bubbles initiate 
convective cells and produce the covariance 
information needed for the ensemble to 
successfully assimilate the radar data. The 
domain of the ensemble also moves at u = 
17 and v = 7 m s-1 following the truth run to 
keep the storm inside the domain.  
 After initializing the ensemble 
members at t = 0, the members are 
integrated forward in time for 25 min before 
the assimilation of first observations. During 
this period, the θ perturbations within the 
center 20 km x 20 km area of the domain 
initiate convective cells in the ensemble 
members (Synder and Zhang 2003; Dowell 
et al. 2004a, b; Aksoy et al. 2009).  The 
30 min long assimilation period starts at t = 
25 min and ends at t = 54 min. During this 
assimilation period, 6 volume scans of 
WSR-88D observations are assimilated. The 
radar is located at x = -3.6 km and y = -4.9 
km from the southwest corner of the domain 
during the first volume scan. The 
observations valid within 1 min of the current 
time are assimilated followed by advancing 
the ensemble members 1 min to the next 
observation time. No covariance inflation or 
thermal perturbations are added to the 
members to maintain the ensemble spread 
during the assimilation cycles. After 30 min 

of data assimilation, the ensemble members 
are used to produce a 1-h forecast. 
Moreover, while previous studies make a 
short term forecast initialized from the 
ensemble mean analysis at the last 
assimilation cycle (Snyder and Zhang 2003; 
Tong and Xue 2005), this study uses all of 
the 40 ensemble members at the last 
assimilation cycle to make an ensemble of 
forecasts. Two sets of OSSEs are 
implemented in this study using to assess 
the benefits of multi parameter ensemble 
system. 
 
 
a. Perfect Model Experiment 
 The ensemble members use the 
LFO microphysics scheme and the 
simulated WSR-88D reflectivity and radial 
velocity observations assimilated are 
created from the Truth_LFO.  Two 
experiments are conducted using identical 
background environment. The first 
experiment (Perfect_Control hereafter) is 
conducted with the same constant intercept 
and density parameters for the hydrometeor 
categories for all ensemble members as in 
the Truth_LFO. Thus the ensemble 
members in the Perfect_Control experiment 
have the identical base environment and 
microphysics scheme as in the truth but 
differ from each other in the location and 
magnitude of the thermal bubbles. The 
second experiment (Perfect_MP hereafter) 
also uses the LFO microphysics scheme but 
instead of using the same constant 
precipitation particle intercept and density 
parameters, each ensemble members uses 
different values for these parameters. Thus 
the ensemble members in the Perfect_MP 
experiment differ from each other not only in 
the location and magnitude of the thermal 
bubbles but also differ in intercept and 
density parameters within the same 
microphysics scheme. These parameters 
include the intercept parameters for rain 
(n0r), snow (n0s) and hail/graupel (n0h) and 
the bulk densities of snow (ρs) and 
hail/graupel (ρh). The lists of the different 
parameter values assigned to the 40 
ensemble members in the mulitparameter 
experiment is shown in Table 2. The use of 
a variety of density and intercept parameters 
results in a supercell storms that are 
different from each other in terms of 
structure, strength and intensity.  
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b. Imperfect Model Experiment 
 Unlike the previous experiment, the 
synthetic reflectivity and radial velocity 
observations assimilated by the ensemble 
members are generated from the 
Truth_10ICE truth run. The ensemble 
members in the first experiment 
(Imperfect_Control hereafter) use the LFO 
microphysics scheme with the same 
precipitation particle parameters as in the 
Perfect_Control experiment. The ensemble 
members in the second experiment 
(Imperfect_MP hereafter) also use the LFO 
microphysics scheme with indentical 
intercept and density parameters for the 
precipitation particles as in the Perfect_MP 
experiment. The initialization and other 
ensemble configuration details are identical 
to the previous experiment. The imperfect 
model experiment explores the performance 
of the EnKF system for the same storm 
event in the presence of model errors due to 
different microphysics scheme used in the 
ensemble and the truth run.  
 
3. RESULTS 
 
 The ultimate goal of storm-scale 
data assimilation is to obtain accurate short 
term forecasts of severe storms events. To 
evaluate the accuracy of the forecasts from 
assimilating WSR-88D observations for a 
30-min period, the 40 analyses from the last 
assimilation cycles are used as the initial 
conditions for each of the ensemble 
members and 1-h short-term forecasts are 
produced. The accuracy of the analyses and 
forecasts for both perfect and imperfect 
model experiments when using fixed or 
varied microphysics scheme parameters in 
the ensemble system are then compared 
with the truth runs. The evaluation criteria 
include both statistical and graphical 
comparisons between the truth and the 
ensemble system. Statistical measures 
include root-mean-square (rms: Wilks 2006) 
error of the unobserved variables and 
equitable threat scores (ETSs: Wilks 2006). 
The rms error is calculated using the 
difference between the reference simulation 
and the ensemble mean analyses and 
forecasts averaged over only those model 
grid points where there is convection (the 
sum of rain, snow and hail mixing ratios are 
greater than 0.10 g kg-1).  The ETS score is 

calculated from the contingency table that 
gives discrete joint sample distribution of 
ensemble mean forecasts and the reference 
simulation in terms of cell count. An ETS 
score of 1 denotes a perfect forecast while 
the forecast accuracy decreases as the ETS 
scores decreases towards zero. 
 
 
 3.1. Analyses 

  
 To evaluate how well the supercell 
is captured by the ensemble system during 
the 30- min assimilation period, the rms 
errors of u, v and w wind component, 
temperature and total precipitation (rain, 
snow and hail/graupel) mixing ratios from 
the ensemble mean analyses for both 
perfect and imperfect model experiments 
are shown in Fig. 2 and Fig. 3 respectively.  
The rms errors from both experiments are 
seen to decrease rapidly for all variables as 
more observations are assimilated. At the 
end of the assimilation period, the rms errors 
for winds and temperature variables for the 
control and multiparameter ensembles from 
both Perfect (Figs 2a, b, c and d) and 
Imperfect (Figs 3a, b, c and d) model 
experiment are very similar. However, while 
the rms errors of total precipitation mixing 
ratio from the Perfect_MP experiment are 
larger than that of the the Perfect_Control 
experiment (Fig 2e), the rms errors of the 
same from the Imperfect_MP experiment 
are significantly smaller than that of the 
Imperfect_Control experiment (Fig 3e) 
throughout the 30 minute assimilation 
period. In the presence of model error, the 
Imperfect_MP is able to span better the true 
precipitation mixing ratios and hence 
produce smaller rms errors. 

 
3.2. Forecasts  
  
 The rms errors of the ensemble 
mean forecasts during the 1 hour forecast 
period for perfect and imperfect model 
experiment are shown in Fig. 4 and 5 
respectively. The quality of the forecast in 
both plots deteriorates rapidly with time as 
expected. However, the Perfect_Control 
experiment yields smaller rms errors 
compared to the Perfect_MP experiment for 
the winds, temperature and total 
precipitation (Fig. 4) variables.  In the 
absence of model error, the EnKF only 
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corrects the errors generated from initial 
conditions. Moreover, the Perfect_Control 
experiment uses the same intercept and 
density parameters as in Truth_LFO, and 
thus the smaller rms errors are expected. 
The rms errors for winds and temperature 
variables (Fig. 5 a, b, c and d) from the 
Imperfect_MP experiment are very similar to 
the rms errors from Imperfect_Control 
experiment during the first 40-mins of the 
forecast period and yield smaller rms errors 
during the last 20 min of the forecasts. 
However, the Imperfect_MP generates 
smaller rms error than that of the 
Imperfect_Control for total precipitation 
mixing ratio (Fig. 5 e) throughout the 1-h 
forecast period.  

To quantify forecast accuracy from 
the ensemble mean forecasts, ETS scores 
are calculated by comparing the ensemble 
mean forecast with the truth for reflectivity 
values exceeding 35 dBZ threshold and for 
precipitation (rain, snow and hail/graupel) 
mixing ratios exceeding 1.0 g/kg threshold. 
Results indicate that the Imperfect_MP 
ensemble mean forecasts yield higher ETS 
scores throughout the 1-h forecast period 
compared to the that of the 
Imperfect_Control (Figs.6c and d) for both 
threshold values. However for the perfect 
model assumption, the ETS score for the 
Perfect_Control experiment is larger than 
the score for the Perfect_MP (Figs.6a and 
b) for the entire forecast period for both 
reflectivity and total precipitation mixing 
ratios.   
 The total rainfall (mm) at the end of 
1-h forecast period accumulated on the 
ground from the supercell storm is shown in 
Fig. 7. The accumulated rainfall amounts 
from the Imperfect_MP ensemble mean 
forecast (Fig 7c) more closely resembles 
the truth (Fig. 7a) than the rainfall amounts 
from the Imperfect_Control (Fig. 7b) 
experiment.  The Imperfect_Control 
produces higher rainfall amounts from the 
northern and the southern storms cells 
when compared to the truth. The maximum 
mean hail diameter (mm) at the lowest 
model level during the 1-h forecast period 
for the perfect and imperfect model 
experiment is shown in Fig. 8. While the 
ensemble members from the 
Perfect_Control (Fig. 8a) do not always 
capture the truth well within the ensemble 
members, the truth lies outside the 

ensemble members for the 
Imperfect_Control experiment (Fig. 8b). The 
plot indicates that the ensemble members 
from the Imperfect_Control experiment 
overpredict hail diameter. In contrast, the 
multiparameter experiment from both 
perfect and imperfect model assumption 
(Figs. 8 c and d) captures the truth well 
within the ensemble members. 
 The ability of the EnKF in 
forecasting the important variables in 
convective storm environment is illustrated 
by comparing the forecast time series of the 
minimum cold pool temperature, maximum 
rainwater mixing ratio, maximum hail mixing 
ratio at the lowest model (100 m) and the 
maximum vertical vorticity at 300m above 
ground from each ensemble member for 
both perfect and imperfect model 
assumption is shown as in Figs. 9-12.  The 
ensemble members from the control runs 
for both perfect and the imperfect model 
experiment provides insufficient ensemble 
spread, with the truth falling outside the 
ensemble envelope for different forecast 
periods. In contrast multiparamter 
experiments not only improve the ensemble 
spread, but also capture the truth well within 
the envelope of the ensemble members.  

 These results highlight the 
importance of muliparameter ensemble in 
the presence of model error. Using a 
combination of different density and 
intercept parameters of the hydrometeor 
category can significantly improve the 
forecasts over experiments using a single 
inaccurate intercept and density parameter 
for the hydrometeor categories. This is 
especially true when examining the extreme 
values of the model fields that would be 
most helpful in determining and identifying 
potential hazards.  
 
 
4. DISCUSSION 
 
 The goal of this study is to evaluate 
the feasibility of using a range of intercept 
and density parameters for the precipitation 
particle types in the EnKF system in the 
presence of model error. Two reference 
simulations of a splitting supercell storm are 
generated using LFO and 10ICE 
microphysics schemes in an identical storm 
environment. Two sets of OSSEs are 
conducted in an perfect and imperfect model 
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framework using an EnKF data assimilation 
technique using 1) a constant intercept and 
density parameters of the hydrometeors for 
all ensemble members and 2) a range of 
different values for the intercept and density 
parameters of the hydrometeors for the 
different ensemble members. Synthetic 
WSR-88D reflectivity and radial velocity 
observations are created from the truth runs 
using a realistic volume averaging technique 
and these observations are assimilated into 
the ensemble system for a 30-min period. 
The 40 analyses ensemble members from 
the last assimilation cycle are then used to 
make 1 h long forecasts.   
 Results show that the EnKF system 
performs reasonably well with the imperfect 
model assumption. It is found that a 
multiparameter ensemble within the 
imperfect model framework (Imperfect_MP) 
generates more accurate forecasts of total 
precipitation mixing ratios and accumulated 
rainfall events compared to that of the 
control imperfect model experiments 
(Imperfect_Control). This conclusion does 
not apply for the perfect model assumption 
where model error does not play a role.  
Moreover the 1-h forecast time series of the 
40 ensemble members for lowest cold pool 
temperature, maximum hail and rain water 
mixing ratios at 100 m AGL and the 
maximum vertical vorticity at 300m AGL 
indicates that the truth almost always lies 
within the envelope of ensemble members 
for the Imperfect_MP experiment while truth 
more often lies outside the ensemble 
envelope for the Imperfect_Control 
experiment. This also holds true for the 
perfect model assumptions. Moreover the 
multiparameter experiments also yields a 
better ensemble spread.  
 Caution is warranted as the results 
obtained in these studies are based on 
synthetic radar observations. Moreover, in a 
real observation assimilation, the model 
error can potentially be larger than that 
considered in this study. The possibility of 
using multiparameter ensemble in storm-
scale data assimilation system should be 
tested using a broader range of experiments 
using real radar observations of severe 
weather events. However, these results 
suggest that the inclusion of a range of 
intercept and density parameters in a 
convection resolving ensemble system can 

provide improved short range forecasts for a 
wide range of storm systems.   
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Table 1. The intercept and the density parameters for the precipitation particles from the 
Truth_LFO and Truth_10ICE simulations.  
 

LFO Scheme 10 ICE Scheme 
Catagory Intercept 

m-4
Density  
kg m-3

Catagory Intercept 
m-4

Density  
kg m-3

Hail/Graupel 4x104 900 Graupel (low) 4.0x105 300 
Snow 3x106 100 Graupel (medium) 2.0x105 500 
Rain 8x106 1000 Graupel (high) 1.0x105 700 
Ice - - Frozen drops 4.0x105 800 

   Small hail 4.0x104 800 
   Large hail 1.0x103 900 
   Snow 8x106 100 
   Rain 8x106 1000 
   Rimed ice 1.0x108 300 
   Plate ice - 900 
   Column ice - 900 
   Cloud droplets - 1000 
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Table 2. List of ensemble members with the values of intercept parameters and densities of rain, 
hail/graupel and snow particles from the LFO microphysics scheme.  
 

Ensemble 
Members 

Hail/graupel 
intercept  
n0h (m-4) 

Density of 
hail/graupel 
ρh (kg m-3) 

Snow 
intercept n0s 

(m-4) 

Density of 
snow 

ρs (kg m-3) 

Rain 
intercept  
n0r (m-4) 

1 4.00 x 104 900 3.00 x 106 100 8.00 x 106

2 4.50 x 103 900 1.04 x 107 50 7.14 x 106

3 5.07 x 103 800 6.77 x 106 100 5.19 x 106

4 5.70 x 103 500 2.18 x 106 350 1.22 x 107

5 6.41 x 103 700 1.89 x 106 400 6.09 x 106

6 7.22 x 103 600 8.38 x 106 250 9.32 x 106

7 8.12 x 103 800 7.27 x 106 150 2.70 x 107

8 9.14 x 103 900 3.84 x 106 50 2.30 x 107

9 1.03 x 104 400 1.76 x 106 200 4.43 x 106

10 1.16 x 104 500 1.43 x 106 300 1.09 x 107

11 1.30 x 104 600 1.07 x 106 400 8.38 x 106

12 1.47 x 104 700 2.89 x 106 250 7.53 x 106

13 1.65 x 104 800 5.10 x 106 150 5.77 x 106

14 1.86 x 104 900 8.99 x 106 300 3.16 x 107

15 2.09 x 104 400 1.38 x 107 100 8.83 x 106

16 2.35 x 104 500 2.51 x 106 300 4.20 x 106

17 2.65 x 104 600 2.34 x 106 100 3.00 x 107

18 2.98 x 104 700 1.53 x 106 150 1.96 x 107

19 3.35 x 104 800 7.80 x 106 200 1.76 x 107

20 3.77 x 104 900 1.33 x 106 100 1.58 x 107

21 4.24 x 104 400 4.12 x 106 350 2.18 x 107

22 4.78 x 104 500 4.43 x 106 100 1.50 x 107

23 5.37 x 104 600 5.48 x 106 250 2.56 x 107

24 6.05 x 104 700 3.58 x 106 400 1.35 x 107

25 6.80 x 104 800 1.00 x 106 20 6.42 x 106

26 7.66 x 104 400 1.28 x 107 300 3.98 x 106

27 8.62 x 104 500 5.88 x 106 200 2.42 x 107

28 9.70 x 104 900 1.15 x 106 50 1.28 x 107

29 1.09 x 105 400 1.24 x 106 350 4.67 x 106

30 1.23 x 105 700 2.03 x 106 50 2.07 x 107

31 1.38 x 105 800 9.65 x 106 350 1.04 x 107

32 1.56 x 105 900 1.19 x 107 200 5.48 x 106

33 1.75 x 105 500 1.64 x 106 250 9.82 x 106

34 1.97 x 105 600 6.31 x 106 400 1.67 x 107

35 2.22 x 105 700 1.11 x 107 100 1.15 x 107

36 2.49 x 105 800 4.75 x 106 300 2.84 x 107

37 2.81 x 105 900 2.70 x 106 150 1.86 x 107

38 3.16 x 105 400 1.48 x 107 50 7.94 x 106

39 3.55 x 105 700 1.58 x 107 400 4.92 x 106

40 4.00 x 105 900 3.33 x 106 300 6.77 x 106
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Figure 1.  Potential temperature after 35 minutes of the simulation at the lowest model level (100 
m AGL) (a and b), reflectivity (c and d) 2.6 km AGL after 1 hr and vertical vorticity (e and f) at 3.1 
km AGL after 1.5 hr from the truth simulation using the LFO and 10 ICE microphysics scheme.  
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Figure 2. The rms errors of ensemble mean analyses vs. time(sec) during the 30-min assimilation 
periiod from the perfect model experiment starting at t = 25 min and ending at t = 54 min for (a) u 
(m s-1), (b) v (m s-1), (c) w (m s-1), (d) t (k) and (e) total precipitation (rain, snow, hail/graupel) 
mixing ratios (g kg-1) for the control (black lines) and muliparameter (gray lines) ensemble 
system.  Values are averaged over the domain at grid points where the total precipitation mixing 
ratios (sum of qr, qh and qs) in the truth run is greater than 0.10g kg-1. 
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Figure 3. Same as in Fig. 2 but for the imperfect model experiment.   
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Figure 4. The rms errors of ensemble mean forecast during the 1 hr forecast period for (a) u (m s-

1), (b) v (m s-1), (c) w (m s-1), (d) t (k) and (e) total precipitation (rain, snow, hail/graupel) mixing 
ratios (g kg-1). Values are averaged over the domain where the total precipitation (sum of qr, qh 
and qs mixing ratios) is greater than 0.10g kg-1. Details are shown in the legend. 
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Figure 5. Same as in Fig. 4 but for the imperfect model experiment.   
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Figure 6. Values of equitable threat score (ETS) for reflectivity values exceeding 35 dBZ 
threshold for  a) Perfect and c) Imperfect Model experiments and the precipitation (rain, snow and 
hail/graupel) mixing ratios exceeding 1.0 g/kg threshold  for  c) Perfect and d) Imperfect Model 
experiments as function of forecast time (sec). Details are shown in legends 
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Figure 7. 1-h accumulated rainfall (mm) amounts from the a) Truth_10ICE and the ensemble 
mean forecasts of 1-h accumulated rainfall (mm) from b) Imperfect_Control and c) Imperfect_MP 
experiment.   
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Figure 8. The maximum mean hail diameter (mm) at the lowest model level (100m AGL) during 
the 1-h forecast period for a) Perfect_Control, b) Imperfect_Control c) Perfect_MP, and d) 
Imperfect_MP experiment.   
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Figure 9. The minimum potential temperature (k) at the lowest model level (100m) during the 1-h 
forecast period for all the 40 ensemble members (in different shades of red) and the truth (in blue) 
for a) Perfect_Control, b) Imperfect_Control, c) Perfect_MP and d) Imperfect_MP experiment.  
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Figure 10. Same as in Fig. 9 but for maximum rainwater mixing ratio (g kg-1).  
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Figure 11. Same as in Fig. 9 but for maximum hail mixing ratio (g kg-1). 
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Figure 12. Same as in Fig. 9 but for maximum vertical vorticity (s-1) at  300m AGL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

22 


