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1. INTRODUCTION 

 
 The McGill Algorithm for Precipitation 
nowcasting by Lagrangian Extrapolation (MAPLE) has 
being applied in real-time with data from the South 
Korean radar network.  This procedure first determines 
a radar echo velocity field using a Variational Echo 
Tracking (VET) technique and then generates a 
nowcast by Lagrangian advection of the current map 
by assuming stationarity of the derived vector field 
throughout the forecast period. The VET technique as 
first presented by Laroche and Zawadzki (1995) was 
actually devised for wind retrievals over a very small 
region of 20 km by 20 km using both reflectivity and 
Doppler data sets.  It has then been adapted to 
reflectivity-only maps over domains larger by about two 
orders of magnitude as is the case with the United 
States radar network.  A basic description of MAPLE is 
provided by Germann and Zawadzki (2002), the 
extension to probabilistic forecasts has then been 
formulated by Germann and Zawadzki (2004), the 
implementation of a filtered forecast that removes the 
perishable scales has been carried out by Seed (2003) 
and by Turner et al. (2004) while the limits of 
predictability have been examined with a much larger 
data set by Germann et al. (2006). 
 

In this Part 1 of our two-part research effort 
we first examine the influence of the various user-
selectable VET parameters on the skill of the resulting 
20-min to 4-h forecasts using four months of archived 
data from South Korea (July and Nov ‟06, Feb and 
May „07) provided to us before the real-time 
experiment.  We briefly describe in section 2 the 
Korean radar data and then, in section 3, the VET 
module and its main input parameters. In section 4 we 
outline the semi-Lagrangian advection scheme and 
illustrate an example of a MAPLE forecast. Section 5 
analyzes the verification results obtained with the 
„default‟ VET input parameters as well as with other 
plausible combinations.  The results of the real-time 
experiment conducted in the summer of 2008 in South 
Korea is presented in the accompanying Part 2 paper.  
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2. ADAPTATION OF THE KOREAN COMPOSITE 
DATA INTO MAPLE 

 
 The Korean composite radar network is 
composed of data from a maximum of 11 radars with 
an update cycle of 10 minutes.  The composite map 
used as VET input is based on the so-called CMAX 
map that picks up the strongest reflectivity among all 
the available elevation angles.  The individual CMAX 
maps from each radar are then combined into the 
„composite‟ radar map of the Korean network by using 
the maximum algorithm, that is, the strongest 
reflectivity is shown over overlapping coverage. The 
chosen method of map projection is a Lambert Conic 
Conformal true at the two standard parallels of 30º N 
and of 60º N latitude, thus assuring a minimal amount 
of distortion with respect to the true distances along 
the surface of the earth.  The resulting composite map 
consists of a (512 x 512) array at 2-km resolution, 
covering the entire Korean Peninsula and neighboring 
territories. Examples are provided in Fig. 1. 
 

3. VARIATIONAL ECHO TRACKING (VET) 
TECHNIQUE 

  
3.1 Basic description of VET 
 
 An adaptation of the variational echo tracking 
(VET) technique described by Laroche and Zawadzki 
(1995) is used to derive the velocity field of radar 
reflectivity echoes.  The entire composite map is 
divided into sub-domains of a selectable size and a 
velocity vector Vm,n can be computed for each sub-
area (m,n) by minimizing the difference, or cost 
function, in the reflectivity between two composite 
maps Z(x,y,to) and Z(x,y,to-Δt) separated by a certain 
time interval Δt. To construct the whole field V=Vmn 

each Vm,n vector can be retrieved by an individual 
minimization inside each sub-area, or, as is specific to 
the variational method, all vectors are retrieved 
simultaneously by performing a global minimization 
over the entire composite map.  A smoothness 
constraint is also applied in order to reduce any drastic 
differences between the vectors at neighboring sub-
areas.  The cost function F to be minimized thus 
depends totally on the vector field V and may be 

expressed in terms of these two constraints as follows: 
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F(V) = FZ + FV    (1) 

 
The conservation of reflectivity constraint FZ is 
explicitly defined as the sum of squares of the 
residuals at all (x,y) points, (in practice, at all grid areas 
(i, j) of the domain), as one map is displaced over the 
other according to the vector field Vx,y=(u,v), where u 
and v are the x- and y-components of V interpolated at 
every (x,y) from the Vm,n values at neighboring sub-
areas. 
 

FZ = wzΣxΣy{Z(x,y,to)–Z(x-uΔt,y-vΔt,to-Δt)}2
dxdy 

 wz is a weight given to this conservation of 
reflectivity constraint.  It is generally related to data 
quality, but in most applications, is made to be a 
constant throughout the domain of integration.  The 
domain of integration should be smaller than the actual 
extent of the composite map in order to ensure that the 
offset displacement (x-uΔt, y-vΔt) remains within the 
composite map.  The second term of Eq. (1) is a 
smoothness penalty function that limits the variability in 
space of the Vmn vectors. It is defined as 
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where the integration is only over the (m x n) sub-
areas for which a velocity Vmn is estimated and wv is 
the weight given to this smoothness constraint.  For 
the sake of efficiency, the gradient of the cost function 
is derived as a function of the velocity estimates in 
order to direct the updated guesses along the proper 
direction leading to the true minimum of the overall 
cost function.  Several iteration or guesses, (of the 
order of 100), are attempted in order to locate this 
minimum.  In VET, we use the conjugate-gradient 
algorithm described by Navon and Legler (1987) to 
determine the optimum search direction and the step 
length.  In order to reduce the probability of converging 
towards a secondary minimum, we have developed a 
scaling-guess procedure in which the field is iteratively 
retrieved with increasing grid resolution. For example, 
a coarse resolution V5,5 field first derived over (5x5) 
sub-areas is used as an initial guess for the final V25,25 
field derived over (25 x 25) sub-areas.  We point out 
that the retrieved vector field Vmn is most reliable in the 

regions of precipitation echoes, whereas far away from 
any precipitation area the vectors must be interpreted 
with care, being either extrapolated values or the result 
of tracking a few isolated echoes. 

 
3.2 Description of the user-selectable input 

parameters for the VET module. 
 
 There is a non-negligible number of user-
selectable parameters required as input to the VET 
module that can affect its performance. However, we 

had anticipated that a) there is no single combination 
that is optimum for all weather events and b) that the 
optimum combination will be only slightly better than 
one that has been reasonably well devised. We thus 
simply provide a list and a brief description for only 
those that are most relevant to the research presented 
here. The „default‟ choice for each parameter is in 
parenthesis. 
 
1- Number of maps    (3) 
2- Time difference between each map (20 min) 
3- Amount of smoothing             (3x3) pixels) 
4- Reflectivity threshold    (15 dBZ) 
5- Number of scaling guesses  (2) 
6- Vector density of each scaling guess  (5x5) and 

(25x25) 
7- Relative weights for wz and wv  (0.5 and 1000.0) 
8- Temporal smoothing    (yes) 
 
- Number of maps and their time difference:  A 
minimum of two maps separated by any time 
difference is required in order to estimate the relative 
motion of precipitation echoes.  However a 
minimization procedure performed over both the [Z(to), 
Z(to-Δt)] pair as well as over the [Z(to-Δt)], Z(to-2Δt)] 
pair would be more robust than a similar procedure 
over simply the entire [Z(to), Z(to-2Δt)] combination 

because the former better takes into account the 
temporal evolution of the echo velocities and reduces 
the possibility of matching unrelated echoes.  The 
choice of Δt is dictated by the temporal resolution of 

the data set.  In our case, this time interval is forcibly a 
multiple of the radar scanning cycle of 10 minutes.  A 
small Δt ensures that the precipitation pattern has not 
changed to such a large extent that no recognizable 
features remain.  In fact, a large Δt may cause the 

pattern recognition technique to latch on to unrelated 
echoes and thus yield spurious velocities vectors.  On 
the other hand, considering that the ultimate goal is to 
use the velocity field deduced from VET in order to 
generate precipitation forecasts of up to at least three 
hours, a short 20-minute interval is not suitable for 
such a goal because it may incorporate short-lived 
accelerations or decelerations that are not expected to 
persist over the forecasting period.  It thus seems 
evident that if we decide on using 3 maps, then the 
obvious choice would be Δt = 20 minutes so that the 
ratio of the historical to the forecasting interval, that is, 
40/180 is not too small for a 3-hr forecast. 
 
- Amount of smoothing:  Instantaneous radar 
reflectivity maps are inherently noisy at smaller spatial 
scales of 1 or 2 km and this characteristic may have a 
negative impact on the ability of any pattern 
recognition technique to identify features that are 
evolving in time.  Thus it is preferable to remove any 
random noise by smoothing the composite maps.  The 
amount of smoothing is simply achieved by averaging 
the 2-km resolution data over a (3x3) or (5x5) 
neighborhood.   
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- Reflectivity Threshold:  A radar map may have 
echoes ranging from -20 to 60 dBZ.  For the goal of 
computing velocities for forecasting purposes it is not 
desirable to track echoes with very weak reflectivity 
because these are likely shorter-lived compared with 
stronger echoes.  Weak reflectivities may also be 
associated with snow observed at higher altitudes at 
very far ranges, and thus their apparent motion may 
not be related to the actual motion of rain echoes 
below it.  For summer precipitation a threshold of 15 to 
20 dBZ appears to be adequate. 
 
- Number and vector density of the scaling guesses: In 
the absence of any other information, Laroche and 
Zawadzki (1994) have developed a scaling-guess 
procedure in which the field is iteratively retrieved with 
increasing grid resolution.  A three-step scaling 
procedure is well illustrated in Fig. 7 of Germann and 
Zawadzki (2002).  Since then we have found that the 
„single-vector‟ scaling step can be skipped such that 
the coarser scale involves at least (4x4) vectors 
followed by a 2

nd
 and final scaling that yields the 

desired density of the vector field.  The latter should be 
chosen small enough to allow for large- and medium-
scale rotation, deformation and differential motion 
between precipitation areas in different regions.  But it 
should be large enough to avoid tracking the 
perishable convective scales, particularly if, as already 
mentioned, it is to be used for forecasts of the order of 
three hours.  The number of vectors selected for any 
scale step must be exactly divisible into the size of the 
array over which the minimization is performed. In 
order to avoid boundary problems, this size has been 
chosen to be (400x400) for the Korean composites. A 
set of (25x25) or (50x50) vectors is thus possible.  
 
- Relative weights for wz and wv:  Both wz and wv are 
user-selectable at every scaling resolution but since 
the total number of (i, j) pixels is typically three orders 
of magnitude larger than the (m x n) sub-areas, then 
the ratio wv/wz should follow a similar correspondence, 
as for example, wz=0.5 and of wv= 1000. 
 
- Temporal smoothing:  Even after the application of 

the smoothing constraint in the spatial domain that is 
inherently part of the VET algorithm, the resultant 
velocity field may still incorporate some undesirable 
fluctuations which are noticeable when the images are 
animated in time.  These temporal differences are a 
reflection of some minor instability about a mean 
motion, or the result of a deviation from the true motion 
due to some data artifacts and they could lead to 
slightly worse forecasts when extrapolated hours 
ahead.  It has thus become a practice in nowcasting 
methodology to derive the final vector field Vf by 
weighing the current realization Vc with that of the 
previous cycle Vp, that is, Vf=wcVc+ wpVp.  We have 
arbitrarily chosen the weights to be wc=0.6 and wp=0.4.  
Note that since Vp already incorporates a temporal 
smoothing, the vectors determined at the antecedent 
cycles also have a non-negligible but diminishing 
influence on Vf . 

 
4- DESCRIPTION OF THE SEMI-LAGRANGIAN 

ADVECTION SCHEME 

 
 After obtaining the velocity field of the 
precipitation pattern at the desired vector density 
according to the VET procedure, the actual forecasts 
are generated using a semi-Lagrangian advection 
scheme as proposed by Germann and Zawadzki 
(2002).  The advantage of a field of velocity vectors is 
that, unlike with the single or constant vector, it allows 
for differential motion during the forecasting process 
and is thus capable of simulating rotation at the near 
synoptic scale of the composite radar maps. 
 
 From the velocity field available at the (m x n) 
sub-areas, where typically (m x n) = (25 x 25), a 
velocity vector in units of grid lengths per time step is 
first derived by bilinear interpolation at every grid area 
of the composite map. The actual forecast map is then 
generated using the so-called semi-Lagrangian 
scheme which divides the entire forecast period T into 
N steps of length Δt such that NΔt = T.  The advection 
time step is somewhat arbitrary, but Δt = 1 minute is 
considered sufficiently small to simulate the actual 
motion without introducing quantization effects.  After 
each time step, the velocity vector of the nearest grid 
area is taken in order to determine the length of the 
subsequent step.  The final displacement vector is the 
vector sum of the N fractional vectors of the individual 
time steps. Stationarity of the velocity field is assumed, 
Germann et al. (2006).  There remains the choice of an 
advection scheme that is either „forward in time and 
downstream in space‟ or „backward in time and 
upstream in space‟.  In order to avoid „holes‟ in the 
resultant forecast map caused by a region of 
divergence, a forward scheme requires the 
redistribution or spreading of the advected value to 
neighboring grid points according to some subjective 
radius of influence.  In order to avoid this problem, a 
backward scheme is preferred, that is, we move 
upstream from the grid area (i,j) for which a forecast is 
desired in order to determine the origin (io,jo) of a 
parcel that would end up at (i,j).  When (i,j) is in a 

divergent region, the forecast for its neighboring grid 
areas may have the same source at (io,jo), that is, the 
same (io,jo) pixel is assigned to more than one pixel in 
the neighborhood of (i,j), thus causing a stretching or 

increase in area of the forecast precipitation.  
Conversely, when (i,j) is in a convergent region, the 
result is a decrease in the forecast area of precipitation 
compared to that observed at the time of forecast.  
Both effects combine to distort the original 
configuration of the rainfall pattern.  This departure 
from the conservation of mass, (rainfall flux or 
reflectivity), thus depends on the degree of 
convergence or divergence of the VET velocity field. 
 
 The number and frequency of forecasts are 
user-selectable, a typical specification being 12 
forecasts spaced 20 minutes apart, from 20-min to a 4-
h forecast.  An example of a 2- and of a 4-h forecast
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Fig. 1: On the immediate left, the 0800 KST composite 
map on 4-Jul-2006 used to generate the 2- and 4-h 
forecasts (right column) and the corresponding 
verification maps (left column). The size of the pixels is 
2 km.  The velocity field computed at 0800 KST is 
repeated on all the forecast maps while that on the 
verification maps is the one computed at each 
particular time.  Use a zoom factor of ~200% for better 
viewing the details of these maps. 

  

  
 
 

with the corresponding verification map is illustrated in 
Fig. 1. With faster velocities from the west in the 
southerly portion of the composite map coupled with 
slower motion from the south or southwest being 
deduced for the northern section, the distortion of the 
original image becomes more and more apparent as 
the length of the forecast increases.  Note that at 0800 
KST, the southwestern portion of the precipitation 

pattern is cut off by the maximum range of the radar.  
This artificial feature is of course advected forward 
together with the nodata region behind it.  As a result, 
no comparisons can be made with the corresponding 
pixels of the verification map even though 
measurements are available.  For this example, the 
forecasts reasonably match the verification maps since 
the faster speed in the south and the slower speeds in 
the north persisted throughout the forecast period. 
However, any new growth or dissipation of the 

T0 map at 0800 KST 4-July-2006 

2-h 

4-h 
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precipitation pattern cannot be predicted using this 
“status quo” method.   Some of the changes are real, 
like the area of heavy rain that developed in the south 
by 1200 KST, while others, like the weakening by 1200 
KST of the high rainfall rates in the rainband just off the 
south coast of the Korean Peninsula may be due range 
effects.  Calibration differences among the various 
radars can also cause an apparent reduction in 
forecast skill that should not be attributed to the 
forecast methodology.  One way to partly circumvent 
this problem is to ignore the fine scale differences and 
to compare maps at a much coarser resolution, or in 
terms of thresholds as is the case with the Critical 
Success Index (CSI). 

 
5- VERIFICATION 

 
 The forecast skill has been assessed by 
means of the usual parameters of probability of 
detection (POD), the false-alarm rate (FAR) and the 
critical success index (CSI).  These scores describe 
the skill in predicting the occurrence of precipitation 
above a given threshold rate, which, as just stated, is 
quite suitable for our purpose. The forecast and 
verification map is treated as a binary image of „event‟ 
or of „no event‟ with respect to the selected threshold, 
excluding of course the „nodata‟ region.  Then, for each 
pixel, we define variables as follow: a = hits, b = 
misses, c = false alarms, d = both „no event‟. For the 
sake of brevity, we will present and discuss only the 
CSI scores. Its familiar formulation becomes 
 

CSI = a/(a+b+c) 
 

 Note that the significant changes in intensity 
between the predicted and actual precipitation pattern 
that occur far above or below the selected threshold do 
not affect the value of the above skill scores.  Thus, in 
order to partly compensate for this inadequacy, skill 
scores for 7 rainfall rate thresholds of 0.1, 0.2, 0.5, 1, 
2, 5 and 10 mm/hr have been derived.  For information 
purposes, the per cent frequency distribution of these 

rates has been found to be 11.5, 23.1, 18.5, 17.4, 17.7, 
7.8 and 4.0% respectively from the 4-month data set. 
 
5.1 Verification results using the default VET input 

parameters 
 
 We have first verified the forecasts using the 
default VET input parameters as defined in section 3.2.  
The comparison is performed after applying a (3x3) 
smoother to both the forecast and verification maps, 
implying an effective resolution of 6 km.  In order to 
avoid nearby ground clutter or strong bright band 
features as well as far range effects, pixels within 8 km 
from any radar, or beyond 200 km from all the radars 
are excluded.  We have verified all forecasts for which 
the echo coverage on the smoothed verification map, 
defined as a rainfall rate in excess of 0.1 mm/h, 
exceeded 1000 pixels (4000 km

2
).  On account of the 

various precipitation episodes during the 4-month data 
set, the number of verifiable forecasts made every 20 
minutes depends on the length of the forecast, (~3036, 
the equivalent of 42 days of continuous data for the 20-
minute forecasts and decreasing to ~2635 for the 240-
minute forecasts). 
 

There are two options in presenting the final 
results: 1) In terms of an overall score obtained by first 
summing into the variables a, b and c all the binary 
comparisons of the entire test and then computing CSI 
and 2) in terms of the average score obtained by 
computing CSI for each individual forecast and then 
dividing by the number of forecasts.  With this latter 
option, we have subjectively required that the 
denominator in the CSI definition exceed 100 pixels.  
The overall score is weighted by the radar coverage 
while all the individual forecasts contribute equally to 
the average score after having satisfied the 100 pixels 
requirement.  We tend to prefer the overall score 
because it avoids the need for such a subjective 
requirement prior each comparison.  Since the 
magnitude of the individual scores tends to increase 
with radar coverage, the overall scores are generally 
higher than the average scores as shown in Fig. 2. 
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Fig. 2: ‘Overall’ and ‘average’ CSI scores as a function of forecast length and of the indicated rainfall rate 
thresholds obtained from the entire 4-month data set using the default VET inputs and after applying a (3x3) 
smoother to the observed and forecast maps at 2-km resolution. 

 
 

The decrease of the CSI with forecast length 
and with increasing rainfall rate is well illustrated.  The 
steepest drop with the forecast length occurs before 
the first 100 minutes and then falls off in a linear 
fashion.  The inability to accurately forecast higher 
rainfall rates (> 5 mm/h) is evidenced by overall 
(average) CSI scores of the order of 20% and less for 
forecasts longer than just two (one) hours.  We prefer 
to use the CSI skill scores at the 0.5 mm/h rain rate 
level, (rather than the „rain-no-rain‟ threshold of 0.1 
mm/h) because of its greater hydrological relevance.  
We thus obtain overall CSI scores of 58, 46, 39 and of 
30% for 1-, 2-, 3- and 4-h forecasts respectively.  
Comparison of these scores with those reported on our 
publications is not necessarily recommended because 
of their different geographical location and of their 
known dependence on the type of precipitation and 
resolution scale.  The usefulness of these scores is not 
in their absolute magnitude but in assessing the 
relative skill of forecasts obtained with vectors derived 
with different VET inputs, or under different verification 
constraints. 
 
 The major source of error of the presented 
scores is mainly due to the inherent inability of any 
nowcasting procedure to forecast the position of an 
intensity cell with an accuracy equivalent to the 2-km 
resolution of the map, a direct consequence of the 
stochastic rearrangement of the structure of 
precipitation patterns that occurs even within relatively 
short periods of time, of the order of minutes. This 
observation supports our earlier argument regarding 

the stochastic nature of the precipitation patterns being 
a limiting factor in forecasting skill.  This statement will  
 

 
Fig. 3: Variation of the overall CSI for 0.5 mm/h with 
the level of smoothing applied to the observed and 
forecast maps prior verification. 
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remain true even if storm growth and decay were to be 
successfully taken into account. 
 
 The uncertainty in the detailed structure of 
precipitation patterns can of course be circumvented 
by additional smoothing prior the verification 
procedure, resulting in improved scores as shown in 
Fig. 3 where a (5x5) smoother has been attempted.  
Here, and in subsequent results, we have selected the 
score from the CSI parameter for a rain rate of 0.5 
mm/h as representative of all the other scores 
obtained. Additional smoothing and removal of 
perishable information as described by Turner et al. 
(2004) and by Germann et al. (2006) becomes 
essential when precipitation nowcasts are to be 
assimilated into other algorithms such as hydrological 
modeling. 
 

 
Fig. 4: Variation of the overall CSI for 0.5 mm/h with 
the maximum range of verification. 

 
The discrepancy between the forecast and 

observed maps is also due to the quality of the radar 
data.  This quality is known to be reduced as the radar 
range increases, thus affecting the verification scores 
as illustrated in Fig 4.  CSI scores are seen to be 
appreciably increased when comparisons are done 
only over pixels that are relatively close (<100 km) to 
at least one radar.  Other factors like calibration 
differences among the various radars of the network 
are not taken into account by this analysis.  
 
5.3 Verification results after varying the VET input 

parameters 
 
 We now examine how a modification of the 
various default VET input parameters affect the quality 

of the resultant forecasts.  We begin with Fig. 5 
showing how a different choice for the density of the 
final vector field, that is, a (5x5) and (50x50) rather 
 

 
Fig. 5: Variation of the overall CSI for 0.5 mm/h as a 
function of the VET vector density.  The curve for a 
‘single’ vector computed from the average of the 
(25x25) vector field as well as that obtained after 
assuming ‘zero velocity’ are also shown. 

 
than the default of (25x25), affects the CSI scores for 
rain rates of 0.5 mm/h.  In addition we show two other 
curves: one obtained from a „single‟ vector forecast 
and the other representing the Eulerian forecast, that 
is, the assumption of „zero velocity‟ of the precipitation 
pattern, or, persistence in time and space. The „single‟ 
vector has been computed from the vector sum of the 
default (25x25) field of vectors.  We realize that the 
density of vectors only marginally affects the final 
outcome, with the sparse (5x5) field performing slightly 
better for forecasts longer than 2 hours and negligibly 
worse for shorter forecasts as may have been 
expected.  The more detailed (50x50) field fails to even 
negligibly improve the short-term forecasts and is 
slightly worse that the default beyond 2 hours.  These 
results are related to the expected persistence of the 
velocity fields which seem to behave in a manner 
equivalent to that for reflectivity fields.  Therefore, just 
as in the case of the small perishable reflectivity 
scales, the detailed motion of a precipitation pattern is 
not expected to be long lasting while the coarser field 
has greater forecastability in the longer term.  In fact, a 
close examination of the curves beyond 3 hours 
reveals that the single vector forecasts are actually 
better than those from the default (25x25) vector field, 
and only slightly inferior to those from the (5x5) field.  
In Fig. 5 the curve representing the results of an 
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Eulerian forecast obtained by assuming no velocity of 
the precipitation patterns is meant to be interpreted as 
the level of no skill.  The difference of the Lagrangian 
curves from this Eulerian curve is interpreted as the 
skill provided by the Lagrangian advection scheme.  
The magnitude of the Eulerian score is related to the 
scale length (echo coverage) of the precipitation 
pattern to a greater extent than the Lagrangian 
forecasts.  Hence this difference is not as large as may 
have been anticipated on account of the relatively 
extensive precipitation areas present over the Korean 
Peninsula during the period analyzed. 
 
 In Fig. 6, we explore the effects of varying 
three of the VET input parameters but as we can see, 
the three curves are virtually overlapping, and hence 
the results are essentially unchanged.  The curve 
labeled “2 maps” has been derived using only two 
maps 20 minutes apart, rather than the default of 3 
maps at T0, T0-20 minutes and T0-40 minutes.  The 
second curve giving the scores obtained without 
temporal smoothing likewise yield undistinguishable 
results.  Negligibly improved scores seem to be 
obtained for shorter term forecasts with the third curve 
in which a (5x5), rather than the default (3x3) 
smoother, has been applied to the three composite 
radar maps prior their use by the VET algorithm.  
 

 
Fig. 6: Variation of the overall CSI for 0.5 mm/h as a 
function of three different sets of inputs to VET.  See 
the text for more details. 

 
We next examine the results obtained by varying 

the minimum reflectivity threshold from its default value 
of 15 dBZ.  The VET procedure sets to „no echo‟ all 
reflectivities below the selected threshold, which thus 
have no influence on the computation of the velocity  

 

 

 
Fig. 7: Variation of the overall CSI for 0.5 and 2.0 mm/h 
as a function of the VET reflectivity threshold for a 
selected subset of five events from the entire sample. 

 
field.  The velocity field obtained with a higher 
threshold should thus be more appropriate for the 
motion of the stronger intensities.  However, because 
of the requirement of at least 1000 pixels with a 
reflectivity above the selected threshold for the VET 
procedure to be attempted, the number of forecasts 
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made and then verified is a strong function of this 
threshold.  Thus, when this test was applied to the 
entire 4-month sample, the result was strongly affected 
by sampling differences.  It is thus necessary to only 
verify a sample for which the same number of 
forecasts is made. This has been achieved by 
selecting five events with strong and widespread 
precipitation patterns resulting into about 310 and 255 
forecasts respectively for the 20-min and 4-h forecast 
length for all thresholds attempted.  The verification 
curves for the 0.5 mm/h rate reveal that the default 
threshold of 15 dBZ is very close to being the optimum 
choice for the entire forecast period, with the 20 dBZ 
threshold being marginally better for forecasts beyond 
3 hours. For the forecast of rainfall rates > 2.0 mm/h, 
the 20 dBZ threshold provides a measurable 
improvement after 2.5 hours. However, it may not be 
considered sufficiently large to justify a hybrid-
procedure that use vector fields derived from different 
thresholds depending on the rain rates being 
forecasted. Note that the 10 dBZ threshold which is of 
equal skill as the default 15 dBZ threshold for shorter 
forecasts, is progressively less skillful for longer 
forecasts, particularly, as may be expected, for the 
higher rain rate of 2.0 mm/h.  The nowcasting from 
velocity vectors obtained from cells 30 dBZ and higher 
are seen to be less reliable, yielding worse forecasts, 
regardless of forecast length and rain rate intensity. 
 
 The effects of varying the weights assigned to 
the constraint for the conservation of reflectivity and to 
the velocity smoothing constraint are examined in Fig. 
8a and 8b respectively.  We realize once again, that in 
spite of the fact that the weights have been altered 
drastically from their default values of wz=0.5 and 
wv=1000, differences in the outcome are barely 
noticeable.  Note that the combination (wz=0.1, 
wv=1000) is equivalent to (wz=0.5, wv=5000), both 
providing a relatively higher weight to the smoothing 
constraint and (wz=5.0, wv=1000) is equivalent to 
(wz=0.5, wv=100), both favoring a higher weight for the 
conservation of reflectivity.  The latter yields more 
spatially variable velocity fields and thus are seen to 
result into negligibly worse forecasts compared with 
the more smoothly varying fields obtained by giving a 
higher weight to the smoothing constraint. 
 

 

 
Fig. 8: Variation of the overall CSI for 0.5 mm/h as a 
function of the weights applied to a) the constraint for 
the conservation of reflectivity and b) the smoothness 
constraint on the velocity vectors. 

 
We had assumed that when using 3 input maps in 

our VET procedure, the obvious choice would be a 
time interval of 20 minutes, rather than of 10 minutes, 
so as to avoid the generation of forecasts from a 
velocity field representing short-lived accelerations or 
decelerations that are not expected to persist over 
longer forecasting periods.  The results of Fig. 9 

(a) 

(b) 
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confirms our choice because the 10-minute interval 
provides a very marginal improvement only for 
forecasts less than one hour but would result into a 
larger deterioration in the quality of the longer term 
forecasts (> 2 h).  However, the rather substantial loss 
in skill with 3 maps 10 minutes apart, for a total interval 
of 20 minutes prior T0, is somewhat surprising 
compared with the results obtained with 2 maps 20 
minutes apart which, as seen in then 2

nd
 curve of Fig. 

6, yielded nearly identical results to those of the default 
procedure. We suspect that quantization effects may 
be responsible. 

 

 
Fig. 9: Variation of the overall CSI for 0.5 mm/h as a 
function of the time interval between the 3 maps used 
as input to the VET procedure. 

 
 

6- CONCLUSIONS 
 

 We have verified the skill of the MAPLE 
nowcasting scheme on a 4-month data set from the 
South Korean radar composite.  CSI scores for 7 
rainfall rates of 0.1, 0.2, 0.5, 1, 2, 5 and 10 mm/h have 
been computed for forecasts ranging from 20 minutes 
to 4 hours using the default VET input parameters, 
resulting into overall CSI scores of 58, 46, 39 and of 
30% for 1-, 2-, 3- and 4-h forecasts respectively.  Skill 
scores have also been presented as a function of radar 
range and the amount of smoothing. 
 
 Sensitivity tests have also been performed to 
determine the change in the quality of the forecasts 
using other plausible combinations of the VET input 
parameters.  They have revealed that our initial choice 
of default input values essentially represents the 
optimum combination, although different vector 

densities and time interval between maps may slightly 
benefit (or worsen) shorter or longer term forecasts as 
seen for example in Figs 5 and 9.  In other instances, 
the results from the entire sample remained essentially 
unchanged, although a more detailed analysis of 
individual events would be required to identify 
situations which may benefit from a particular 
combination of VET inputs. 
 
 The relatively small sensitivity to significant 
variations of the VET default parameters is a direct 
consequence of the fact that the major source of the  
loss in forecast skill cannot be attributed to errors in 
the forecast motion, but to the unpredictable nature of 
the storm growth and decay.  The analysis using data 
from the real-time experiment presented in Part 2 
further substantiates` this assertion. 
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