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1.  INTRODUCTION 
 

A stably-stratified fluid is one in which the 
density increases continuously with depth, such as 
the ocean or the atmosphere.  Perturbations of a 
stably-stratified fluid, such as winds over 
topography, move fluid particles of one height and 
neutrally-buoyant state to a height in which they 
are surrounded by fluid particles of a different 
density.  Oscillations less than the natural 
frequency create internal waves which play an 
integral role in oceanic and atmospheric dynamics. 

Numerical methods are common for simulating 
internal wave propagation and wave interactions 
with other fluid phenomena, studying them from 
every point in space and time, and comparing the 
results with what is known from observation and 
experimentation.  However, reconciling theoretical 
predictions with experimental data is sometimes 
problematic since, during wave propagation and 
interactions, the transport of energy may be at 
such small scales that observations lack sufficient 
resolution and the onset of turbulence invalidates 
two-dimensional linear theories.  With three-
dimensional-simulation capabilities, we can more 
completely study scenarios involving internal 
waves in the ocean and atmosphere and apply 
more accurate theories and approximations.  

Internal waves interact with a myriad of flow 
phenomena, including other internal waves of 
similar and different scales.  Javam, Imberger, and 
Armfield (2000) numerically researched 
interactions of internal waves of similar scales and 
found these interactions were nonlinear and 
involved wave breaking.  Broutman and Young 
(1986) used ray theory (to be described later) to 
numerically track the changes of small-scale 
internal waves (on the order of tens of meters) 
interacting with a large-scale internal wave 
background (on the order of kilometers and 
greater).  They confirmed theoretical predictions 
for conditions of internal waves prior to and 
following the interactions.  Winters and D’Asaro  

 

(1989) used a two-dimensional model to 
numerically simulate the propagation of internal 
waves into a slowly-varying mean shear 
background.  Nonlinearity and three-
dimensionality overcome the simulated waves 
when the internal waves become unstable and 
turbulence begins, breaking down the internal 
waves.  Later, three-dimensional considerations 
were discussed in Winter and D’Asaro (1994).  
Convective instabilities yielded counter-rotating 
vortices, the effects of which were magnified by 
wave shear.  The combination of convection and 
shear in these interactions obligate three-
dimensional analysis.  This obligation is a 
representative result of all the studies cited thus 
far and is essential to the continuing discussion. 

Vortices are a common occurrence in large, 
geophysical flows as a result of shear and 
turbulence in a rotating fluid.  Moulin and Flór 
(2006) numerically demonstrated a three-
dimensional interaction between a large-scale 
internal wave and a Rankine-type vortex.  By 
varying the initial locations of the internal waves, 
the authors demonstrated that each wave-vortex 
interaction resulted in a different scenario with 
different effects on the internal waves.  In some 
cases, the waves reflected; in others, they were 
absorbed into the rotating flow; still other 
combinations produced breaking waves.  Despite 
the wealth of information gained from these 
simulations, questions remain about what happens 
to the energy of internal waves during the onset of 
turbulence and other three-dimensional 
characteristics during wave-vortex interactions.  
While we know the waves may break, it is unclear 
what mechanisms are responsible for their 
evolution to breaking and how and why turbulence 
begins. 

Godoy-Diana, Chomaz and Donnadieu (2006) 
discussed the experimental interaction of internal 
waves with a Lamb-Chaplygin pancake vortex 
dipole, an exact solution of the Euler equations 
(Billant, Brancher, and Chomaz (1999)).  A vortex 
dipole involves two side-by-side, counter-rotating 
vortices.  Two scenarios of wave-vortex 
interactions were conducted: one in which the 
internal wave’s horizontal group speed propagated 
with the flow and one in which it propagated 
against the flow.  The former scenario showed the 
wave beam bending to the horizontal and being 
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absorbed by the vortex, yielding its energy to the 
dipole.  The latter scenario resulted in the beam of 
internal waves steepening to the vertical and 
possibly reflecting.  The results of this experiment 
suggest three-dimensional effects are essential in 
understanding this type of interaction.  A numerical 
analysis of this experiment illuminates the three-
dimensional mechanisms of these effects, 
showing what happens to the internal wave 
properties and energy.  It gives insight into 
possible interactions that may lead to wave 
breaking and turbulence. 

This paper details the work that has been 
done and discusses work to still be done to 
numerically model a set of small-scale internal 
waves interacting in three dimensions with a 
vortex dipole of constant translational speed.  
Section 2 relates the experimental setup of 
Godoy-Diana et al. (2006) and the corresponding 
numerical setup for the current study, including the 
mathematical theory involved.  Section 3 presents 
and discusses the results of the interaction 
simulations, including comparisons to the 
experiment of Godoy-Diana et al. (2006).  Section 
4 considers the practical impact of this numerical 
study, summarizing its results and expected 
further research. 

 
2.  METHODS 

 
The experimental internal wave-vortex 

interaction of Godoy-Diana, et al. (2006) was 
completed in a salt-stratified water tank, the setup 
of which is sketched in Figure 1.  The dipole was 
created by closing two flaps at one end of the 
tank.  The dipole approached a screen which 
allowed only a thin slice of the dipole to pass into 
the test section of the tank.  The internal-wave 
beams were generated by oscillating a cylinder at 
a frequency less than the natural buoyancy 
frequency of the fluid.  Figure 2 shows a close-up 
view of the two experimental interactions of 
Godoy-Diana, et al. (2006): co-propagating, for 
which the waves propagated in the same direction 
as the translating vortex dipole; and counter-
propagating, for which the waves propagated in a 
direction opposite to the translating vortex dipole.  
In both cases, the wave beams are generated 
along the axis of the dipole.  The expected 
outcome of the experiment can be seen as the co-
propagating wave beam is absorbed into the flow 
of the dipole at a critical level (defined as the 
depth where the relative frequency of the internal 
waves equals the natural buoyancy frequency of 
the fluid), and the counter-propagating 
representation of the wave beam is reflected away 

from the dipole at a turning point (defined as the 
depth where the relative frequency of the internal 
waves approaches zero). 
 

 
Figure 1: Saltwater-stratified experimental tank (Godoy-Diana 
et al. (2006)).  The dipole was created by flaps at one end of 
the tank and approached a screen which allowed a slice of the 
dipole to pass into the test section of the tank where a 
horizontal cylinder generated internal waves. 
 

 
Figure 2: Close-up view of oscillating cylinder generating 
internal waves relative to the dipole’s vertical velocity profile 
(Godoy-Diana, et al. (2006)).  The internal waves were 
generated along the axis of the dipole.  The co-propagating 
case shows the internal waves being absorbed by the dipole at 
a critical level (zC).  The counter-propagating case shows the 
internal waves reflecting off the dipole at a turning point (zT). 
 

The numerical code for the current study was 
written in Matlab.  It has been modified from a two-
dimensional code and developed for three-
dimensional simulations.  At the code’s core, ray 
theory governs the numerical simulation.  Ray 
theory, often called ray tracing, traces the 
directions of internal-wave energy propagation 
before, during, and after the wave-vortex 
interaction.  Ray theory is linear, so the basic 
propagation of the waves can be simply modeled.  
In addition, calculations can be made to analyze 
wave amplitudes which may result in wave 
breaking and possibly lead to turbulence.  Ray 
theory is quick in its application, providing a 
method of research much faster and less 
expensive than experimentation, observation, and 
fully nonlinear numerical simulations. 

Ray theory is a method of solving the Navier-
Stokes equations, the governing equations of fluid 
flow.  To simplify the Navier-Stokes equations for 
this case, the translation of the vortex is assumed 
slowly varying while the only side-effects of the 



interaction are changes to the characteristics of 
the small-scale internal waves.  This is the linear, 
inviscid Wentzel-Kramer-Brillouin (WKB) 
approximation.  It is the foundation of ray theory, 
allowing the dispersion relation (see Equation (2) 
below) to be locally valid.  While it is not 
representative of all wave-vortex interactions, this 
assumption is realistic when waves are interacting 
with large-scale geophysical flows.  Another 
simplification is the Boussinesq approximation, 
which states that changes in density are negligible 
except in terms where the acceleration due to 
gravity is a multiplier.  The solution to the Navier-
Stokes equations is then in a form of the wave 
equation. 

The complete ray theory equations for a mean 
velocity field V= (v1,v2,v3) through which the 
internal waves propagate with frequency relative 
to the background are now presented.   

The Doppler relation defines the relation 
between the frequencies of the background Ω and 
the intrinsic frequency of the internal wave ωr,  

 

jjr kv−Ω=ω    (1) 

 
where vj is the component of the background 
velocity and kj is the component of the small-scale 
wavenumber vector k= (k1,k2,k3) in the same 
direction.  The dispersion relation defines ωr as a 
function of wavenumber, the buoyancy frequency 
N, and the Coriolis force (which is insignificant for 
the simulations at hand), 
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The velocities of the internal waves are 

defined by the sum of the background velocity and 
the group velocity of the internal waves, 
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for which x=(x1,x2,x3) defines the space of the 
domain and where the group velocity is given by 
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The law governing refraction is given by 
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To define the change of the relative frequency 

with respect to time, 
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For this simulation, the partial derivative of ωr 

with respect to space is zero because k, N, nor f in 
the dispersion relation is a function of space.  
Thus the right hand sides of the last two equations 
reduce to only their first terms. 

In order for ray theory to trace the interactions, 
the numerical vortex dipole was created following 
the equations for a Lamb-Chaplygin vortex dipole 
set forth by Billant, et al. (1999).  Inside the dipole, 
the stream function and axial vorticity are defined 
respectively as 
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Outside the dipole they are 
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In Equations (7) through (10), U is the translating 
velocity of the dipole, R is the dipole radius, J0 and 
J1 are the zero- and first-order Bessel functions, 
and µ1 = 3.8317 is the first zero of J1.  The 
numerically-generated vortex dipole is shown in 
Figure 3 as if one were looking from above into the 
tank with the dipole translating right to left.  The 
vectors represent qualitatively the magnitude and 
direction of the velocity at that point in space.  The 
velocity profile along the depth of the vortex dipole 
is a normal Gaussian curve and is given in Figure 
4. 



 
Figure 3: Lamb-Chaplygin vortex dipole.  The vectors represent 
qualitatively the magnitude and direction of the velocity at that 
point in space. 

 
Figure 4: Velocity profile along the depth of the vortex dipole.  
 
3.  RESULTS AND DISCUSSION OF RESULTS 
 

To validate the results of the numerical 
simulations, they are compared to the 
experimental results of Godoy-Diana, et al. (2006).  
Figure 5 shows four images taken during the 
experiment, demonstrating the evolution of the co-
propagating scenario.  Figure 5a shows the beams 
of internal waves before interaction with the dipole.  
Figure 5b shows one of the beams bending to the 
velocity profile of the dipole.  Figures 5c and 5d 
show the beams being absorbed by the vortex. 

Figure 6 shows a possible wave-vortex 
interaction done numerically in a three-
dimensional domain.  The lines are rays traced for 
various internal waves.  The waves begin at the 
same position along the length and along the 
depth of the domain, but at different positions 
along the width.  They also begin with the same 
wave numbers.  The center ray may be directly 
compared to Godoy-Diana, et al. (2006). 

a)  c)  
 

b)  d)  
Figure 5: View of co-propagating experimental results from 
Godoy-Diana, et al. (2006) showing the wave beams changing 
along the depth with respect to the length of the tank.  a) shows 
the internal wave beams prior to the interaction; b) shows one 
wave beam being absorbed; c) and d) show the evolution of 
the interaction as the dipole absorbs the wave beams. 

 

 
Figure 6: Three-dimensional view of the numerical co-
propagating simulation.  The lines are the rays traced by ray 
theory and represent internal waves over time.  They begin at 
the same position along the length and the depth in the 
domain, but at different positions along the width.  The center 
ray is seen absorbed by the dipole at a critical level. 
 

The rays follow the patterns expected in an 
interaction with a vortex dipole over time.  Most of 
the off-center rays interacted briefly before 
escaping the dipole, while two in particular were 
caught for a time in the circulation of the vortices 
before escaping.  The center ray was absorbed by 
the vortex dipole as it reached a critical level, as in 
Godoy-Diana et al. (2006) (see Figure 5).  This 
can be more clearly seen in Figure 7, plotting the 
rays with respect to depth and a nondimensional 
time t / TN, where TN is the natural buoyancy 
period of the fluid.  In this figure, the center ray 
(top) is shown first interacting with the dipole near 
3 meters in depth.  Its slope flattens to zero once 
the critical level is reached at approximately 2.5 
meters.  There the internal waves yield their 
energy to the dipole. 



 
Figure 7: View of numerical solution showing how rays change 
along the depth with respect to a nondimensional time t/TN, 
where TN is the natural buoyancy period of the fluid.  The top 
ray is the center ray of Figure 6, and is entirely absorbed by the 
dipole at a critical level.  Off-center rays escape the dipole at 
angles different than before the interaction, some nearing a 
slope of zero but not quite reaching a critical level. 
 

The numerical simulation above does not 
account for all three components of the 
wavenumber vector.  The time dependence of k2 
according to Equation (5) was neglected, holding 
k2 constant throughout the simulation.  The 
following numerical simulations demonstrate 
three-dimensional effects of wave-vortex 
interactions and, when compared to the previous 
simulation, show the import of fully three-
dimensional numerical simulations. 

The first results of a simulation incorporating 
the time-change of k2 is shown in Figures 8 and 9.  
The initial positions of the rays remained the same 
as the previous simulation, as did the initial value 
of the wavenumber vector.  Figure 8 is a three-
dimensional view showing greater refraction of the 
off-center rays as they exit the interaction than 
when the third dimension is neglected.  Their 
spreading is more significant, acknowledging a 
transfer of energy among wavelengths. 

The center ray is again absorbed by the 
dipole, as can be confirmed in Figure 9, plotting a 
nondimensional time against the depth.  However, 
in the horizontal, the center ray has periodic 
perturbations.  As a check, the first simulation was 
rerun to allow the rays more time to propagate.  It 
was found that the center ray was also perturbed 
in this earlier example.  As will be shown in the 
next example, this seems to be an effect of the 
relative positioning in the length of the rays to the 
dipole. 

 
Figure 8: Results of numerical simulation accounting for time 
changes of all wavenumber vector components.  The off-center 
rays spread more than previously.  The center ray again 
reaches a critical level, but now has small, periodic 
perturbations in the horizontal. 

 

 
Figure 9: Ray propagation along the depth plotted in a 
nondimensional time.  This simulation incorporated time 
changes of the wavenumber vector in all three dimensions.  
The center ray of the interaction is seen reaching the critical 
level, as before, near 2.5 meters. 
 

The initial positions of the rays in the next 
simulation are different than the previous two only 
along the length of the domain, beginning nearer 
to zero by more than 10 meters.  The initial 
wavenumber vector remained unchanged.  The 
change in initial position affected the position of 
earliest interaction between the waves and dipole.  
In this case, the waves interacted with the dipole 
farther back along the length of the domain. 

Significant spreading still occurred among the 
off-center rays, as can be seen in Figure 10.  
However, the center ray, which has been bolded 
for convenience, was not absorbed by the dipole.  
This is confirmed by plotting the depth of the rays 
against a nondimensional time in Figure 11.  The 
center ray is the higher ray on the plot.  Its slope 
flattens, but only slightly.  As it never reaches a 

 



critical level, it does not lose its energy to the 
dipole. 

 
Figure 10: The rays are more than 10 meters nearer to zero in 
the length than the previous simulations.  The off-center rays 
briefly interacted and spread as before.  The center ray, in 
bold, was not absorbed by the dipole. 

 
Figure 11: The depth of rays plotted against a nondimensional 
time.  With the initial position of the rays along the length of the 
domain farther back relative to the dipole than before, the 
center ray did not reach a critical level. 
 

Though the center ray did not reach a critical 
level in this scenario, neither did it have any 
perturbations in the horizontal.  Figure 12 shows a 
view of the domain from one end of the tank where 
the dipole is translating out of the page.  It can be 
clearly seen that the center ray never verged from 
the dipole axis.  This appears to indicate that the 
perturbations seen in the previous simulations are 
results of the initial positioning of the rays. 

 
Figure 12: View of wave-vortex interaction from end of tank, 
with the vortex dipole translating out of the page.  With the 
initial positions of the rays beginning nearer to zero in the 
length, the interaction began farther back on the dipole.  The 
center ray was never perturbed. 
 
4.  CONCLUSION 
 

Several points of interest have arisen from this 
study.  First, the impact of utilizing all three 
dimensions of the wavenumber vector is shown in 
a comparison of the first numerical simulation with 
the second.  The difference is seen qualitatively in 
comparing the spreading of the off-center rays; 
they spread more significantly when all three 
components of the wavenumber vector are 
affected in time due to the interaction.  This 
confirms thoughts shared by Godoy-Diana, et al. 
(2006) regarding the importance of three 
dimensions in wave-vortex interactions. 

Second, with the fully three-dimensional 
simulations, it is interesting to note the relative 
spreading of the rays depending on their initial 
locations.  The third simulation initialized the rays 
approximately 10 meters nearer to zero in the 
length than the second simulation.  As a result, the 
wave-vortex interaction occurred farther back 
relative to the dipole.  The spreading of this 
simulation was less than that of the second, in 
which the rays interacted with the dipole nearer to 
its center.  The greater spreading is a sign of 
greater energy transfer among the wavelengths.  
This may be significant when considering relative 
wave amplitudes in regards to breaking and 
turbulence and the prediction of their times and 
locations of occurrence. 

Finally, the initial location of the ray in line with 
the dipole axis also seems to affect the solution of 
that ray’s interaction with the dipole.  The third 
simulation showed the center ray moving directly 
along the plane of the dipole axis.  Though not 
absorbed, it didn’t vary in the horizontal.  In the 



second simulation (also mentioned with the first), 
the center ray had unexpected perturbations in the 
horizontal even though it was fully absorbed by the 
dipole at the critical level.  Other possible 
explanations for this include potential breaking, in 
which case analyses involving the wave energy 
and amplitude would imply such.  Also, it may be a 
numerical bug making zero a very small but 
nonzero value.  Currently, work is being done to 
determine the true reason. 

Further work includes modifying the current 
code to simulate the counter-propagating wave-
vortex interaction.  With both experiments of 
Godoy-Diana, et al. (2006) numerically set, work 
will begin to evaluate wave energies and 
amplitudes and to modify initial conditions with the 
ray properties, not just locations.  This will lead to 
conditions that result in wave breaking.  Also, work 
will be done to parameterize the code so that 
numerical simulation may be done on large scales. 
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