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ABSTRACT

Small-scale internal gravity waves can affect large scale atmospheric motions. A parameterization of
their influence is necessary to understand the mesosphere and lower thermosphere thermal structure
and constituent transport. Mixing induced by dissipating gravity waves in the atmosphere is impor-
tant to the vertical transport of chemicals, energy, and momentum, which when transferred in large
amounts to the local mean flow plays a central role in driving the mean meridional circulation. In ad-
dition, global circulation patterns in the middle atmosphere including the quasi-biennial oscillation of
the equatorial lower stratosphere and the semiannual oscillations of the equatorial upper stratosphere
and mesosphere are driven by the drag and diffusion caused by internal wave breaking. These internal
waves can encounter many other phenomena, the most widely studied being a steady shear background
wind. Although this is realistic, it is not the whole picture. Large-scale inertial frequency waves over a
short time period act much like a steady shear, but are time-dependent and influence small-scale gravity
wave propagation in a dynamically different way than a steady shear. The waves which may generally
reach a critical level (where their relative frequency approaches zero) and distribute their momentum to
the mean flow, do not because the critical level generated by the inertial wave is not steady. The effects
of time-dependent shear are quantified through linear, Wentzel-Kramers-Brillouin (WKB) ray theory,
with which thousands of waves are tested, and complemented by fully nonlinear numerical simulations
of a few representative waves. It is found that internal gravity waves interacting with inertial waves are
continually being shifted, altered, and break in different regions. These waves have the propensity to
distribute their energy hundreds of kilometers from their expected location if that position is calculated
only taking into account constant winds. The result is a significant shift in probable breaking locations
of waves and changes in overall momentum flux of the waves throughout their propagation. Some
waves gain energy, some lose energy, and some are unaffected, but shifted spatially. Others may even
break during the interaction with the inertial wave, dissipating their energy prematurely. The investiga-
tion of momentum fluxes of smaller-scale internal waves within larger mesoscale inertial gravity waves
is accomplished. Probable interactions are identified and results are quantified.

1. Introduction

Internal waves are continuously generated and
breaking throughout the atmosphere. Strong gener-
ation regions include mountain ranges, convection,
wind shear, adjustment of unbalanced flows near jet
streams and frontal systems, and body forcing accom-
panying localized wave dissipation (Fritts and Alexan-
der (2003)). Wave breaking can effectively mix pol-
lutants through the atmosphere and may contribute to
driving some larger-scale flows. Gravity waves are af-
fected by other waves, winds, and the changing stratifi-
cation as they propagate. Each of these interactions, in
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addition to gravity wave dissipation, may contribute to
the vertical flux of horizontal momentum and the uni-
versal frequency spectrum, slopes near −5/4, seen in
the middle atmosphere (VanZandt (1982); Balsley and
Carter (1982); Nakamura, Tsuda, Fukao, Kato, Man-
son, and Meek (1993); Collins, Nomura, and Gardner
(1994)). The importance of each of these individual in-
teractions is unknown and the resulting spectral shapes
and wave breaking are not well understood (Gardner
(1996)).

Internal gravity waves with frequencies near the
Coriolis frequency are inertial waves. These waves
have long horizontal wavelengths (up to 3000km in
the troposphere (Ratnam, Babu, Rao, Rao, and Rao
(2008))) and much shorter vertical wavelengths (1 −
7km). These scales are larger in the troposphere and
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decrease in the lower stratosphere. These waves can
be propagating either upward or downward. Zhang
and Yi (2007) found the tropospheric jet generated an
equal number of upward and downward traveling in-
ertial waves. These waves are similar to a time de-
pendent shear. Other internal gravity waves interacting
with these inertial waves lead to unsteady critical lev-
els (Sartelet (2003a,b)) or strong refraction (Broutman,
Macaskill, McIntyre, and Rottman (1997); Vanderhoff,
Nomura, Rottman, and Macaskill (2008); Sonmor and
Klaasen (2000)) depending on the relative size and di-
rection between the waves.

This study attempts to characterize interactions be-
tween high frequency internal gravity waves and in-
ertial waves. Both fully non-linear numerical sim-
ulations and ray theory are utilized to understand a
range of cases. We assume internal gravity waves
of a range of scales are propagating upward through
an inertial wave with energy propagating in either the
same or opposite direction. The inertial wave propoer-
ties are defined by Serafimovich, Zülicke, Hoffmann,
Peters, Dalin, and Singer (2006) and Guest, Reeder,
Marks, and Karoly (2000). Results quantify interac-
tions between these waves and define which small-
scale waves will continue to propagate upwards into
the upper stratosphere, which will have a change in
their properties as they continue upward, and which
will break.

In the next section, background information on the
idealized problem and solution methods, ray tracing,
and numerical simulations, is presented. In Section
3 the results of small-scale wave propagation through
different mediums is addressed for both ray tracing and
numerical simulations. Conclusions are drawn in Sec-
tion 4.

2. Setup

In this section we will cover the different setups of
the ray tracing calculations and numerical simulations.

a. The idealized problem

In the ray tracing and numerical simulations we con-
sider the case of a packet of high frequency waves ap-
proaching a single inertia packet either from above or
below, as described in Vanderhoff, Nomura, Rottman,
and Macaskill (2008), and shown in Fig.1. The coor-
dinate system is (x, y, z) with z positive upwards, x
positive eastward, and y positive northward. We as-
sume that the buoyancy frequency N and the Coriolis
parameter f are both constant.

The inertial packet has wavenumber K = (0, 0,M),
whereM = 2π/λi and λi is the vertical wavelength of

FIG. 1. Schematic of a short wave packet approaching
an inertia-wave packet with basic parameters shown.
(Capital letters denote inertial wave properties)

the wave. The corresponding velocity field is uniform,
horizontally, u = (u, v, 0), but confined in the vertical
by a Gaussian envelope:

U + iV = U0 e
−z2/L2

ei(Mz−ft) (1)

where L and U0 are constants, real and complex re-
spectively. The envelope of the inertia-wave packet as-
sumed stationary, since the vertical component of the
group velocity vanishes at the inertial frequency. The
phases move vertically (either upward or downward)
through the packet at speed C = f/M .

The high frequency waves have wavenumber k =
(k, 0,m), with k constant, and intrinsic frequency ω̂,
which is the Doppler-shifted frequency, where

ω̂2 = (N2k2 + f2m2)/(k2 +m2) (2)

We take m and ω̂ to be positive, and allow k to have
either sign. The vertical group velocity cg = ∂ω̂/∂m
is negative ifm is positive and positive ifm is negative.

The vertical displacement of the high frequency
waves is ζ = ζ0 exp(iθ), from which the wavenum-
ber and wave frequency are given by k = ∇θ and
ω = −θt, respectively, and where ω = ω̂ + kU . The
wave-energy density E is related to ζ0 by
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where ρ0 is the mean density of the fluid.
The numerical simulations are initialized at time t =

0 with a short wave packet whose vertical displacement
field ζ(x, z, t) has the initial form

ζ(x, z, 0) = Re
{
ζ0 e
−(z−z0)

2/`2ei(kx+mz)
}

(4)

where ` and z0 are real constants and ζ0 is a complex
constant. The initial vertical position z0 is specified
such that the high frequency wave packet is below the
inertia-wave packet since cg > 0.

Wave-breaking is defined when isopycnals are verti-
cal, ζz > 1, leading to overturning within the fluid and
resulting turbulence. This can be calculated in the nu-
merical simulations by finding ∆ζ/∆z. For calculat-
ing wave steepness in ray theory we use the dispersion
relation and (3) to derive:

ζz = −m

∣∣∣∣∣
(

2Aω̂
ρ0

)1/2

N−1

∣∣∣∣∣ . (5)

Here A = E/ω̂ is the wave-action density.
For the ray tracing and numerical simulation re-

sults shown in this paper, we use the following range
of atmospheric parameters: M = 2π/(7000 m),
k = 2π/(100000 m) to 2π/(10000 m), f = 1.361 ×
10−4s−1 (69.3 deg North), N = 0.02s−1, and U0 =
5m/s for the inertial wave. For the numerical simula-
tions, the initial steepness |ζz| = |mζ0| = 0.1, where
subscript z represents the partial derivative with re-
spect to z. We will alter the vertical wavenumber, m,
to realize different group speeds of the short wave. The
vertical wavelength never exceeds 30km so the change
in background density over a wavelength is not signif-
icant in the calculations.

b. Ray Theory

Using ray theory we can calculate approximately the
behavior of the high frequency wave encounter with
the inertial wave group. To do this we assume that the
inertial wave is unaffected by the short wave interac-
tion. Another necessary assumption is that the inertial
wave has a much larger length scale than that of the
short wave, which is not always the case for these at-
mospheric waves. Thus the interaction is tested with
the numerical simulations and since the result of these
show the inertial waves is unchanged by the interaction
with the higher frequency wave, ray tracing is used.
Also we assume the short wave is determined by the

linear dispersion relation. Then an evolution equation
in characteristic form can be found for k. For further
detail see Vanderhoff et al. (2008).

1) THE RAY EQUATIONS

The ray-tracing results in this paper are obtained
with the following pair of ray equations, for the vertical
position of the ray path and the vertical wavenumber
respectively:

dx
dt

= cg + U,
dm

dt
= −k∂u

∂z
. (6)

Here d/dt = ∂/∂t+cg •∇. Because the expression
(1) has no dependence on x or y, the horizontal compo-
nents (k, 0) of the wavenumber of the short waves are
conserved along the ray. These equations are solved
using the Matlab ODE45 solver which is based on
an explicit Runge-Kutta formula, the Dormand-Prince
pair, Dormand and Prince (1980), which is a one-step
solver. The tolerances are set at 10−4 for the relative
error and 10−6 for the absolute error.

2) ANALYTIC RAY SOLUTIONS

An analytic ray solution describing high frequency
wave refraction by inertia waves propagating oppo-
site to the small scale waves appears in Broutman and
Young (1986) and is obtained by letting L approach
infinity in equation (1). The inertia-wave velocity U
is then purely sinusoidal. In a reference frame moving
at the inertial-wave phase speed C, the inertial current
appears steady. Solutions then exist for which the high
frequency wave has a frequency in the inertial-wave
reference frame

Ω = ω̂ + kU − Cm ≈ constant. (7)

When the vertical group speed of the high frequency
wave is in the same direction as the inertial wave the
result is transient critical levels. A critical level occurs
when the relative frequency of the internal wave tends
to the Coriolis frequency, f . Yet in this case no such
levels exist When an inertial wave is present

Ω = f + kU − Cm . (8)

When high frequency waves are traveling upward
through the inertial wave the value of the horizontal
phase speed at the critical level is merely a different
sign if the wave is traveling in the positive or nega-
tive x-direction. If k is positive (high frequency wave
traveling in positive x-direction, here traveling to the
east) and m is negative (high frequency wave traveling
upward), the value of the background velocity at the
critical level is positive, and for upward, west traveling
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waves, the background velocity at the critical level is
also to the west.

When the high frequency waves are propagating op-
posite the the inertial wave caustic interactions occur.
For our idealized model, caustics occur when

cg = C . (9)

Vanderhoff et al. (2008) show results for these types
of interactions. Strong refraction may occur and en-
hanced amplitudes are expected at refraction sites. The
most interesting final result occurs if the high fre-
quency wave is initially traveling more slowly verti-
cally than the inertial wave. In this case the high fre-
quency extracts energy from the inertial wave and re-
fracts to a higher frequency.

c. Numerical Simulations

Numerical results are obtained by integrating the
fully nonlinear inviscid, Boussinesq equations of mo-
tion. In their vorticity-streamfunction form, these are:

∂2ψ

∂x2
+
∂2ψ

∂z2
= q (10)

∂q

∂t
− J(ψ, q)− ∂σ

∂x
− f ∂v

∂z
= 0 (11)

∂v

∂t
− J(ψ, v) + fu = 0 (12)

∂σ

∂t
− J(ψ, σ)−N2w = 0, (13)

where q is the y-component of vorticity and J(ψ, q)
the Jacobian with respect to (x, z). Here the fluid ve-
locity u = (u, v, w), and the stream function ψ is
defined such that u = ∂ψ/∂z, w = −∂ψ/∂x, and
q = ∂u/∂z − ∂w/∂x. The scaled density perturba-
tion due to the presence of internal wave motions is
σ = gρ′/ρ0 where g is the acceleration due to gravity;
the density ρ = ρ′ + ρ0, with ρ0(z) the mean density
profile. Because of rotation, there is a nonzero v field,
but all variables are assumed to be independent of y.
The scale height is not included because the relatively
small vertical scale of the waves results in insignificant
changes in density over the height of the wave.

Periodic boundary conditions are imposed in both
the x- and z-directions, and the equations are solved
using a Fourier spectral collocation technique with
Runge-Kutta time stepping. The computational do-
main contains one horizontal wavelength of the high
frequency waves in the horizontal direction and one
vertical wavelength of the inertia waves in the vertical
direction.

There are 512 grid points in the vertical direction,
but only 16 grid points in the horizontal direction.

The low horizontal resolution suffices for this prob-
lem – as has been verified by tests at higher reso-
lution – because the high frequency waves, though
strongly refracted, are not strongly amplified, and re-
main well below breaking threshold. The maximum
wave-steepness ∂ζ/∂z of the high frequency waves
over the duration of the simulation does not exceed
unity (except in a special case as discussed later). No
viscosity or filtering was necessary to stabilize the cal-
culations.

3. Results

Results of the numerical simulations are presented
first to provide justification for use of ray theory for
the statistical calculations.

a. Numerical simulations through an inertial wave

Figure 2 shows the fully nonlinear numerical sim-
ulation of a high frequency wave propagating through
an inertial wave going in the same direction. The group
speed of the inertial wave cannot be seen in the simu-
lations due to the very slow speed. The high frequency
wave vertical wavelength is 5000 m and the horizon-
tal wavelength is 100000 m. The inertial wave vertical
wavelength is 7000 m and the horizontal wavelength is
1000000 m. The inertial wave is in the center of the do-
main. As the high frequency wave interacts both waves
seem slightly affected, but after the short wave has
propagated through, the inertial wave is unchanged.
The high frequency wave has spread slightly, as can
be seen in both plots in Fig. 2, though only slightly for
this case. Since waves are traveling in the same direc-
tion an unsteady critical level is approached from afar,
but not reached. Here, with an inertial wave maximum
horizontal velocity of 5 m/s and the value for a crit-
ical level at approximately 16m/s, even an unsteady
critical level approach will not be strong. This can be
seen by the lack of an increase in the perturbation den-
sity of the waves. If an unsteady critical level were
approached, where the background horizontal velocity
was greater than the necessary condition, a significant
increase in perturbation density of the high frequency
wave would be expected. In this case, it is not expected
due to the low horizontal velocity of the inertial wave.
Since observed inertial waves have low horizontal ve-
locities, critical levels may not be approached.

Figure 3 is the wave steepness of the interaction
from Fig. 2. It can be seen the steepness within the
interaction increases, but does not increase over unity
(which defines wave breaking). Thus an assumption
of no wave breaking can be made. This is also neces-
sary to successfully utilize two-dimesional and linear
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FIG. 2. Fully nonlinear numerical simulation of a high frequency wave propagating through an inertial wave. Both
waves are propagating in the same direction. Left is the perturbation density. Right is the vertical wavenumber
spectra. Initial spectra are shown with dashed line, and final is solid line.

FIG. 3. Wave steepness for simulations of Fig. 2.
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theory as breaking is both three-dimensional and non-
linear. The specifics of this interaction must be studied
in further detail for a better understanding of the dy-
namics during the interaction. Since the final output
results in an unchanged inertial wave and a high fre-
quency wave that has slightly spread (as expected) it
assumed ray theory can be used for conclusions about
parts of this type of interaction.

When the inertial wave is propagating downward
the high frequency wave spreads more, but the iner-
tial wave again stays unchanged. This can be seen in
Fig. 4. This increased spreading is expected and was
found by Vanderhoff et al. (2008) when the inertial
wave was modeled as an unsteady background shear
with no density perturbation associated. The high fre-
quency wave refracts strongly while inside the iner-
tial wave and can leave with new properties. Here
the waves have generally spread to higher frequencies.
This is most likely due to the dynamics of the refrac-
tion. At a higher frequency the waves propagate faster
in the vertical and are more likely to escape the inertial
wave envelope. Thus the basic dynamics of the inter-
action are captured while the inertial wave sustains no
changes. Again the steepness increases during the in-
teraction (not shown), but not to a level where breaking
is expected. These simulations of waves propagating
in opposite directions where only the high frequency
waves are permanantly affected support the use of ray
tracing for further study of these interactions.

The vertical flux of horizontal momentum is cap-
tured in the numerical simulations through calculating
u′w′. Figure 5a shows u′w′ averaged over the first half
of the time domain for the interaction when the waves
are propagating in the same direction. Averaging over
the first half of the interaction effectively captures the
single interaction before the wave enters again due to
the periodic boundary conditions. It can be seen that
the average of the oscillations from the wave motion
average to just over zero before the interaction, and
slightly higher afterwards. Thus there has been an in-
crease in the vertical flux of horizontal momentum for
the interaction. Figure 5b shows the case where the
waves are propagating in the opposite direction. Here
the average vertical flux of horizontal momentum is
negative initially, due to some initial transients from
the generation of the large scale wave (currently trying
to be resolved). After the interaction, though, the aver-
age has definitely increased as expected due to strong
refraction.

Numerical simulations have shown what will be ex-
pected from other wave interactions which will be
studied using ray theory. Waves propagating in the
same direction may increase in amplitude slightly dur-

ing the interaction, but are expected to be basically
unmodified due to the interactions. Waves propagat-
ing in opposite directions may result in high frequency
waves increasing in amplitude during the interaction,
but after the interaction it should decrease due to the
spreading of the wave spatially and among different
frequencies. Wave spreading is dependent upon initial
properties and location of the high frequency waves.

b. Ray Tracing through an inertial wave

When the inertial wave is defined with a vertical
wavelength of 7000 m (Guest et al. (2000)) and max-
imum horizontal velocity of 5 m/s, results of ray trac-
ing two high frequency waves are shown in Fig. 6. The
high frequency waves are defined by m = 2π/5000
and k = 2π/100000. Figure 6a shows the path of the
waves. Both are initially propoagating upward, but the
solid line is a wave interacting with an inertial wave
which is also propagating upward, whereas the dashed
line represents an interaction with a downward prop-
agating inertial wave. The region of action is much
smaller than the envelope of the inertial wave due to
the slow horizontal velocity of the inertial wave. The
high frequency waves are unaffected except near the
maximum velocity of the inertial wave. Both types of
interactions show the high frequency waves affected by
the inertial wave, but when both waves are propagat-
ing in the same direction there are only small changes
in the high frequency wave propagation. It looks as if
it just waves as it begins to approach a critical level,
but then the critical level disappears. The waves prop-
agating in opposite directions result in strong refrac-
tion, as seen in Vanderhoff et al. (2008). Figure 6c dis-
plays the change in the vertical wavenumber through-
out the interaction. It can be seen that in the case where
waves are propagating in the same direction there is
no net change in the vertical wavenumber. Yet in the
case where the waves are propagating in opposite ver-
tical directions there is a final increase in the vertical
wavelength which corresponds to an increase in ver-
tical group velocity of the high frequency waves and
thus an increase in the vertical flux of horizontal mo-
mentum.

As the rays are strongly refracted, resulting in the
turning seen in Fig. 6a, the wave action density (am-
plitude squared) increases as seen in Fig. 6b. Although
the amplitude is undefined with the current equations,
the maximum amplitude is calculated using an Airy
function patching technique described in Vanderhoff
et al. (2008). Here the maximum wave action den-
sity normalized by its initial value is found to be 3.46,
which corresponds to wave steepness only about three
and a half times the initial, Fig. 6d. None of these
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FIG. 4. As in Fig. 2 but where the high frequency and inertial wave are propagating in opposite directions.

FIG. 5. Vertical flux of horizontal momentum ( ¯u′w′) averaged over the first half of the time domain. (a) represents
the case where the waves are propagating in the same direction, as in Fig. 2. (b) represents the case where the
waves are propagating in opposite directions, as in Fig. 4.
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FIG. 6. High frequency waves propagating through an inertial wave with vertical wavelength of 7000 m and
frequency 1.72 × 10−4s−1. Solid lines for both waves propagating in the same direction. Dashed lines represent
waves propagating in opposite directions. (a) is the location of the waves as they propagate. (b) shows the wave
action density normalized by the initial value. (c) is the changing vertical wavelength of the high frequency wave.
(d) is the wave steepness normalized by the initial value.
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waves seem likely to break due to the interaction (as
was postulated previously from the numerical simula-
tions).

As in Fritts and Alexander (2003), the vertical flux
of horizontal momentum, ¯u′w′ = cgzE/ω̂ which can
be easily applied to ray tracing. Averaging only over
the interaction, the second wave in Fig. 7 actually has
an decrease in vertical flux of horizontal momentum.
This is due to the strong refraction to slow vertical
group velocity during the interaction, and corresponds
to the drop in vertical wavelength seen in Fig. 6c. Yet
just after the interaction the vertical flux of horizontal
momentum has increased by about 20%.

For the case when the inertial wave has a smaller
vertical wavelength than the high frequency wave as in
Serafimovich, Zülicke, Hoffmann, Peters, Dalin, and
Singer (2006), Fig. 8 and Fig. 9 show the correspond-
ing rays and their changing properties. It can be seen
that here the first location of refraction does not appear
as strong as in the previous case. This is due to the in-
ertial wave envelope. The high frequency wave is ap-
proaching a caustic, but due to the still opening enve-
lope the velocity necessary quickly propagates through
and the refraction site is not as strong as expected.
Thus the amplitude does not increase to infinity and
a true caustic is not reached. But the second interac-
tion is a strong refraction site. Here the amplitude in-
creases, but again we can calculate the maximum am-
plitude which it is near 3. This wave, too, is not likely
to break due to the refraction occurring during the in-
teraction, but does result in an increase in vertical flux
of horizontal momentum for the high frequency wave.
Here the increase is near 30%.

Thus far the general ray tracing results have com-
pared well with the numerical simulations. Thus we
take the next step and utilize the advantage to ray the-
ory: the ability to test thousands of cases in a matter of
minutes.

Figure 10a and 10b are the total change in vertical
flux of horizontal momentum for 10, 000 rays when the
inertial wave has a vertical wavelength of 4600 m and
7000 m respectively. On the average initially slowly
traveling vertical waves exit the interaction with an in-
creased overall vertical flux of horizontal momentum.
The specific increase is dependent on the initial po-
sition of the internal wave and actual initial vertical
group velocity. The slowest waves can increase over
ten times the original and the faster waves can decrease
over ten times. The data cross the line of unchanging
flux where the vertical group velocity of the high fre-
quency waves is equal to the vertical phase speed, C,
of the inertial wave. Waves which significantly change
in energy flux are those interacting with a downward

propagating inertial wave. These waves strongly re-
fract and can result in a permanant change in wave
properties. High frequency waves with vertical group
velocities up to 25 m/s were tested, but waves with an
initial group velocity over 2 m/s did not have a signifi-
cant change in momentum flux over the interaction.

4. Discussion

In an attempt to better understand how unsteady
shear affects high frequency waves in the atmosphere
ray tracing and fully nonlinear numerical simulations
were accomplished. Ray tracing results related well
to fully nonlinear numerical simulations of situations
expected in the atmosphere. This set a basis for the
use of ray theory for further estimations of internal
wave behavior. High frequency waves were set to
interact with an inertial wave either propagating up-
ward or downward. When upward propagating high
frequency waves interacted with an upward propagat-
ing inertial wave the high frequency wave was spread
slightly to both higher and lower frequencies. The gen-
eral result, however, was an unchanged high frequency
wave which was unlikely to break during the interac-
tion. When waves were propagating in opposite direc-
tions, the high frequency waves studied in detail here
had a net increase in the vertical flux of horizontal mo-
mentum due to the interaction. Although during the in-
teraction it decreased. Due to the weak velocities of the
inertial waves in the atmosphere, high frequency wave
steepness during the interaction did not reach critical
levels and the waves are expected to continue propa-
gating past the inertial wave.

High frequency waves near the same vertical scale
as inertial waves propagating upward in the atmo-
sphere are pushed back and forth along with the back-
ground velocity, but for representative scales, no crit-
ical level is reached. It seems no critical level is even
approached with such low horizontal velocities. When
The representative waves studied here are propagating
in opposite directions it is expected that the inertial
wave effectively changes the vertical group speed of
the lowest frequency waves. The very lowest increase
in vertical flux of horizontal momentum, whereas those
with initially faster group velocities (greater than the
vertical phase speed of the inertial wave) may have
a decrease. Yet many of the fastest high frequency
waves, vertical group velocities above approximately
2 m/s, remained unaffected by inertial waves traveling
in either direction.
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FIG. 7. Vertical flux of horizontal momentum for high frequency waves from Fig. 6 where solid and dashed lines
have the same meaning.

FIG. 8. Plots are as in Fig. 6. Inertial wave vertical wavelength is 4600 m.
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FIG. 9. Plots are as in Fig. 7. Inertial wave vertical wavelength is 4600 m and frequency is 3.12× 10−4s−1.

FIG. 10. Vertical flux of horizontal momentum after interaction normalized by initial in terms of high frequency
wave initial vertical group speed. 10, 000 rays were traced through either an upward or downward propagating in-
ertial wave and were started at random locations below the inertial wave packet. (a) Represents waves propagating
through an inertial wave with vertical wavelength 4600 m and frequency 3.12 × 10−4s−1. (b) Represents waves
propagating through an inertial wave with vertical wavelength 7000 m and frequency 1.72× 10−4s−1.
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