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1. BACKGROUND 

Internal gravity waves exist abundantly in our 
world in stably-stratified fluids, such as the ocean 
and atmosphere. A stably-stratified fluid is one 
where the density of the fluid continuously 
decreases with increasing elevation. When a finite 
amount of fluid from a stratified environment is 
removed from its equilibrium density location by 
moving it upward or downward, buoyancy forces 
will compel the fluid to return to its original 
location. If the fluid is forced to oscillate at any 
frequency below the buoyancy frequency, it may 
oscillate in the horizontal direction in addition to 
the vertical direction. These multidimensional 
oscillations evolve into internal gravity waves, 
which will propagate throughout the fluid like 
regular surface water waves, but different in that 
they may propagate in three directions, and are 
not restricted to the horizontal plane of a liquid - 
gas interface. The wave phase and group speeds 
propagate orthogonally.  

These waves are created through disturbances or 
perturbations in any stratified fluid, which occur 
regularly through natural forces, such as air or 
water currents moving over topography, 
interactions of fluid flows, or the breakdown of 
large waves into smaller scale waves or 
turbulence. Internal waves range in size, with 
wavelengths measured in scales of tens or 
hundreds of kilometers, and as such carry 
significant kinetic energy. These waves 
significantly affect the dynamic flows of the ocean 
and atmosphere. They contribute to the mixing of 

pollutants, organisms, and heat in the ocean and 
atmosphere, and transport momentum. Figures 1 
and 2 illustrate how gravity waves may become 
visible in our atmosphere. As the fluid oscillates, 
water condenses and forms visible clouds in the 
crests of waves. 

 

Figure 1 Internal gravity waves propagate in a stra tefied 
fluid, sometimes leading to visible wave clouds. 
www.weathervortex.com 

 

Figure 2 Gravity wave clouds formed by winds over 
Amsterdam Island.  visibleearth.nasa.gov 

 
 
Corresponding author address: Brian P. Casaday, Brigham Young 
University, Department of Mechanical Engineering, Provo, UT, 
84604 801-422-2320 briancasaday@gmail.com 
J. C. Vanderhoff, Brigham Young University, Department of 
Mechanical Engineering, Provo, UT, 84604 jvanderhoff@byu.edu 



2 

The scales of practically applicable flows in the 
atmosphere range in size from kilometers to 
millimeters or smaller. This creates a series of 
problems regarding observational data collection 
as well as resolution of numerical models. Due to 
computational cost, numerical models are often 
simplified by adopting linearized equations or two-
dimensional simulation. These simplifications 
result in limitations, in that with the onset of 
turbulence, linear models break down and two-
dimensional simulations lose validity. However, 
simplified models are usually preferred when 
numerous flows are analyzed. Nappo (2002) 
explained that linear simulations were generally 
adequate and often preferred for many internal 
wave simulations in the middle and upper 
atmospheres.  

Of particular interest are interactions of internal 
waves with other geophysical flows, because of 
their regular occurrence in the environment. 
Winters and D’Asaro (1989) numerically studied 
the interaction between small scale internal waves 
and a strong steady shear, where the background 
wind continuously increases with altitude. The 
result is a critical level, where the phase speed of 
the wave matches the mean velocity of the 
background flow, and the relative frequency of the 
wave approaches zero. Critical levels are common 
in natural environments, such as where a wind 
blows above a region of topography where internal 
waves are generated. This point represents an 
imaginary boundary where instability is likely to 
occur, and critical level theory predicts that internal 
waves are incapable of propagating past this 
point. The background shear, or the rate of 
horizontal velocity change with elevation, causes 
the direction of the wave propagation to become 
more horizontal as it approaches the critical level.  
Winters and D’Asaro showed that if the amplitude 
of the internal waves were sufficiently small, 
energy from the waves approaching a critical level 
was lost to the background flow, accelerating the 
flow near that region. If the amplitude of the waves 
were larger, the waves would steepen and could 
potentially overturn and break, as discussed in 
later works of Winters and D’Asaro (1994). As 
these waves would steepen and overturn, 
analogous to water waves approaching a shore, 
energy was lost to turbulence and viscous 
dissipation. Perturbations from the overturning 
waves resulted in the formation of new, smaller 
internal waves that propagated past the critical 
level. Some waves were reflected from the critical 
level and propagated away in the direction from 
whence they appeared. Thorpe (1981) researched 

this interaction experimentally and found that wave 
behavior was surprisingly accurate for his 
numerical model, for which later researchers 
compared and validated their results.  

Linear models are advantageous for critical level 
simulations, due to significantly increased 
computational speed. Winters and D’Asaro 
showed that two-dimensional simulations are 
adequate prior to wave breaking and turbulence. 
This research is helpful in understanding large 
scale energy budgets and knowing where the 
energy is distributed or lost. Steady critical levels 
have been extensively studied, yet less research 
has been done with time dependent critical levels, 
which are more prevalent in the environment. 

2.  METHODS 

A linear ray-tracing program was used to simulate 
the interaction of internal waves approaching a 
critical level, as well as waves approaching a time 
dependent critical level and a large-scale inertial 
wave. The ray tracing program was written in 
MATLAB and used an R-K 4 method for solving 
differential equations. 

The program uses linear WKB theory to calculate 
the dynamic properties of the interacting waves, 
and used the following assumptions:  

• The interaction of the small wave does not 
affect or change the background winds. 

• Buoyancy frequency is constant and average 
fluid density is treated as constant. 

• Fluid viscosity is neglected.  
• The WKB approximation is valid prior to wave 

breaking or inflection. 
 

Many inputs are taken into the ray-tracing 
program, and for the atmospheric simulations 
discussed in this paper, many of the values were 
kept constant such as the following variables. 
These were the same variables used by other 
authors. (Sartelet 2003) (Vand 2008) 

Coriolis frequency at mid-latitude: f = 0.0001t-1  

Buoyancy frequency: N = 0. 02t-1 

Density of air at about 25-30 km altitude:             
ρ = 0.034 kg/m3  
 

Density gradient approximated from NRLMSISE 
Standard Atmosphere Model 
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For two-dimensional waves, the wavenumbers are 
defined as: 
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2.1  Mid-frequency Approximation 

Assuming 222 fN >>>> ω , which is known as 
the mid-frequency approximation, the WKB 
equations simplify to:  
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For a wave passing through a steady background 
flow with a differentiable flow field and constant k, 
N, and f, and initial wavenumber m, each value of 
horizontal velocity throughout the field produces a 
distinct wavenumber m. 

A critical layer is an area where the phase speed 
of the small wave matches the mean background 
velocity, and the relative frequency goes to zero, 
or f if the fluid is rotating, such as the earth. This is 
defined mathematically as: 
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Simplifying the above equation using the mid-
frequency approximation results in: 

0m

N
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From these simplified equations, we can 
determine the approximate value of m at any point 
within the background flow given the horizontal 
velocity, and it is shown that for a given velocity U: 
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When U = 0, then m = m0, so c = 1: 
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This simple model is valid for values where the 
buoyancy frequency is much larger than the 
Coriolis frequency (which is generally true for any 
stable region of the Earth’s atmosphere) and when 
the value of m is greater than k. The following 
figures show the error associated with the mid-
frequency approximation.  

Simplification Error     f = 0.0001, N = 0.02
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Figure 3 Error associated with the mid-frequency 
approximation.  Typical errors in the mid-frequency  range 
are less than 5%. 
 



4 

The ray tracing program does not use the mid-
frequency approximation, but rather uses the full 
WKB approximation. However, the mid-frequency 
approximation is useful in understanding the 
dynamics of the wave parameters more simply.  

The ray tracing program easily calculates the 
wave action density, proportional to the amplitude 
A, and the wave steepness ζz, using the following 
WKB equations: 
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The local Richardson number is calculated to 
determine instability due to shear forces, this is 
defined as: 
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3.   SIMULATIONS 

3.1  Mean Wind 

As waves approach a mean wind, ray theory 
suggests that waves will not be able to pass 
through the wind if a critical level is present. At the 
point where waves pass the critical level, ray 
theory predicts an infinite action density as well as 
zero vertical group velocity. For this reason, the 

waves will not actually reach the critical level, but 
rather approach it asymptotically, with its action 
density and wave steepness approaching infinity.  

If a critical level is not present, the waves will pass 
through the mean wind. The action density of the 
waves and wave steepness will increase as the 
waves approach the maximum velocity of the 
mean wind, or when the wave is passing through a 
positive velocity gradient. The wave steepness 
and action density decrease as the wave passes 
through the negative velocity gradient, or shear. If 
the conditions on either side of the wind layer are 
identical, then the conditions of the small wave, 
including wave numbers, action density, 
steepness, and frequency, will all return to their 
original values. The wave steepness and action 
density reach a maximum as the waves pass 
through the maximum velocity. There is a solid 
relationship between the wave steepness, action 
density, and the ratio of the maximum wind 
velocity to critical layer velocity. The equations are 
shown below, the first confirmed by the mid-
frequency approximation and then all confirmed 
with the ray tracing program.  
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These relationships are valid for different values of 
the wave number k, maximum wind velocities, and 
wave number ratios m/k, provided that the ratio is 
larger than 1.0, with larger ratios fitting the curves 
more tightly.  

Figures 4 and 5 show two simulations of small 
waves approaching a mean wind, the first with no 
critical level present and the second with a critical 
level present. The wave that doesn’t approach a 
critical level never becomes unstable, but the 
wave that approaches a critical level becomes 
unstable near the critical level. 
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Figure 4 Wave approaches a mean wind with no critic al level. The wave passes through the mean wind, an d the steepness 
of the wave increases during the interaction, but r eturns to its original conditions as the wave exits  the wind. Upper left: 
wave rays plotted in elevation versus time. Upper r ight: Initial background velocity profile. Lower le ft: Relative and actual 
wave steepness of first ray versus time. Lower righ t: Gradient Richardson number versus time for backg round with (and 
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Figure 5 An internal wave approaches a critical lev el and the vertical group velocity decreases asympt otically. The 
steepness increases and the wave becomes unstable.  
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3.2  Moving Mean Wind 

An understanding of the mean wind scenario 
provides the knowledge necessary to understand a 
wind envelope moving in the vertical direction, 
similar to the phase speed of an inertial wave. This 
provides a step to understanding the interaction 
between a small-scale wave propagating through 
an inertial wave.  

In this scenario a small scale internal wave 
approaches a Gaussian envelope of wind, just like 
in the previous scenario. However, this envelope of 
wind, although it has no vertical component to its 
wind velocity, moves as an envelope toward the 
approaching wave at a constant speed. In this way, 
the wave not only approaches the critical level, but 
the critical level then moves through it. Figure 6 
shows the simulation of a wave passing through a 
moving mean wind. From this and other 
simulations it is concluded that once the packet of 
wind has moved through the wave, the wave 
parameters return to their original values before 
they had approached the packet. This scenario, 
although not necessarily prevalent in the real 

world, leads to a better understanding of the 
interaction with inertial waves, where multiple 
packets of wind will pass through an internal wave. 

The variable parameters in this scenario are m, k, 
U0, and M, referring to the speed of the wind 
packet. We use the term M because in the inertial 
wave interactions, the wave number M and the 
Coriolis frequency determine the speed at which 
the wind packets, or wave phases, will pass 
through the wave. 

In the previous scenario we saw that m was 
dependent on the local background velocity, and 
the same is true in this scenario, only that a new 
variable M is added to the equation. To find the 
changing wavenumber m: 
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Figure 6 Wave approaches a moving mean wind. Althou gh a critical level is present, the wave passes thr ough the critical 
level region and returns to its original parameters . The wave behaves as if it isn’t even approaching a critical level.  
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For a downward moving background wind, we can 
simply add the speed of the background wind 
envelope ‘c’ to the vertical velocity of the 
approaching wave. 
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Combining the two allows us to find the change in 
wavenumber with changing velocity 
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Using the condition that m = m0 at U = 0, we find 
that: 
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The vertical velocity that comes from the 
downward propagating background wind can be 
related to the downward propagating phase speed 
of the inertial wave, which is f/M, where M is the 
vertical wavenumber of the inertial wave. 

Also, the background velocity U can be non-
dimensionalized against the critical layer velocity, 
where 
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Combining these with the equation above we get: 
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From the above equation, as m becomes large 
relative to its initial value, it increases linearly with 
background velocity. 

As the wave passes through the packet of wind (or 
the wind passes through the wave) m continually 
increases until it passes the peak wind velocity. 
After which it decreases in the negative 
background shear and returns to its original value.    

In the previous scenario, where the background did 
not change with time, the wave action density, 
directly related to the wave amplitude, would 
increase and decrease with an increasing or 
decreasing wavenumber m. However, with moving 
critical levels, the wave action density reaches a 
maximum value near a velocity at about twice the 
critical layer velocity. This is shown in figures 8a-8d 
on the following page. 

All action density figures appear similar, though not 
necessarily with the same length scales. As 
different simulations were run with a different 
inertial wave number M, the action density versus 
the velocity increased linearly. Similarly, as the 
wavenumber k of the short wave is increased, the 
change in wave action density is linearly 
decreased. This fully agrees with the previous 
scenario of the waves approaching a mean wind. 
In those cases, the speed of the envelope of wind 
is zero, which corresponds to an infinite value of 
‘M.’ In these cases, the wave does not pass 
through the wind when the background velocity is 
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greater than the critical layer velocity, and the 
action density approaches infinity at the critical 
layer. 

In addition to the wave action density, it is 
important to know the wave steepness, which will 
cause the internal wave to theoretically overturn 
when the steepness is equal to unity. (Vand 2008) 
Steepness plots are shown in figures 7a-7b. 

Many tests were run with moving envelopes of 
wind, and qualities were found. As mentioned 
before, the action density increases with larger 
values of M, as well as smaller values of k. This is 
true when the background velocity is significantly 
larger than the critical layer velocity. For velocities 
much lower than the critical layer velocities, the 
action density diminishes. 

Theoretically, the action density and steepness 
from this moving wind should be a good estimate 
of the action density and steepness from an 
interaction with an inertial wave. 

 

 

 

Figure 7 The wave steepness depends on the wave act ion 
density and the frequency of the wave. The steepnes s is 
therefore more dependent on the wavenumber k than t he 
speed of the moving wind packet.   

 

Figure 8 The wave action density increases based on  the 
relative background velocity and speed of the movin g wind 
packet. During an interaction, the wave action dens ity 
doesn't increase much with winds greater than two t imes 
the critical level velocity.   
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3.3  Reverse Mean Wind 

When a small amplitude wave interacts with a 
large inertial wave, not only will it encounter 
moving critical levels from envelopes of positive 
horizontal wind, but also envelopes of negative 
horizontal wind. If the negative wind is sufficiently 
strong, it may cause the wave to change its vertical 
group speed direction. If the wave is able to 
propagate past the region of inflection, the vertical 
wavenumber becomes imaginary and the 
disturbance decays exponentially. (PedloskyThe 
inflection occurs when the frequency of the small 
wave matches the local value of N. By the 
dispersion relation: 
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The point at which the frequency comes closest to 
the buoyancy frequency is the point at which m 
changes signs. The chance of inflection increases 
with increased maximum negative background 
velocity, larger k, smaller m, and smaller 
wavenumber M of the inertial wave. 

3.4  Inertial Gravity Waves 

Inertial gravity waves are internal waves which 
exist in any rotating fluid and have a frequency 
close to the Coriolis frequency. At 10 to 50 km 
above sea level. R. O . R. Y. Thompson (1978) 
showed that inertial waves are not present in the 
troposphere, but are common in the stratosphere 
though their source often comes from below. Sato, 
O’Sullivan, and Dunkerton (1997) found inertial 
gravity waves over Japan with a period of about 20 
hr, and are dominant at an altitude of about 22 km, 
where background winds are small. Guest, 

Reeder, Marks, and Karoly (1999) determined the 
properties of internal waves in the stratosphere 
south of Australia. Sato, O’Sullivan, and Dunkerton 
detected inertial gravity waves 20 – 24 km over 
Shigaraki, Japan which had wind oscillations of 2.5 
to 3 m/s. All sources found similar properties of 
inertial waves, with a vertical wavelength between 
1 and 7 km, and horizontal wavelengths around 
1000 km. The frequency of the waves are near the 
Coriolis frequency, and the phases of the waves 
propagated downward.  

3.5  Inertial Wave interaction 

Many experiments were run where small internal 
waves propagated through an inertial wave, with 
the inertial phases propagating downward. The 
inertial waves were given a vertical wavelength 
from 0.5 km to 7 km, with an infinite horizontal 
wavelength. As the wave propagated through 
phases where the background velocity is positive 
in the horizontal direction, the wave steepness and 
the wave action density increase, while the vertical 
group velocity decreases. As the small waves 
propagate through phases of negative velocity, the 
steepness and action density decrease, while the 
vertical group velocity increases. Excepting cases 
of inflection or overturning, the steepness, action 
density, and group velocities return to their original 
values once the small waves have propagated 
through the inertial wave. This assumes that the 
background wind velocities are identical on either 
side of the inertial wave packet. 

With some small variation, the wave action density 
and steepness are similar to the scenarios of the 
moving wind envelopes. The variation arises from 
the non uniform phases within the inertial wave 
envelope.  

Wave instability arises when the steepness of the 
wave exceeds unity, or when the background 
shear causes the local Richardson number to 
decrease below a value of 0.25. (Winters, D’Asaro 
1994) Figures 9-10 illustrate two unstable 
interactions resulting in instability principally from 
shear and steepness, respectively. 
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Figure 9 An internal wave interacts with an inertia l wave. The lower plot shows an illustrated instabi lity approximation 
using the wave steepness and local Richardson numbe r. Orange and red regions represent areas of instab ility.High 
background shears cause the small scale wave to bec ome unstable, even though the wave steepness remain s low. 
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Figure 7 An internal wave interacts with an inertia l wave. The wave becomes unstable due to excessive wave steepness. 
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4.   CONCLUSIONS 

Time-dependent critical levels affect small scale 
waves differently than stationary critical levels. 
Although critical level regions may be regions of 
instability, they do not permanently affect internal 
waves as much as stationary critical levels. 
Specifically, time-dependent critical levels 
decrease chances of wave instability during the 
interaction compared to stationary critical levels. 

Wave instability, which may lead to breaking, 
arises from background shear and wave 
steepness, although one may dominate the 
approach to overturning. Detected inertial waves 
in the atmosphere typically do not produce low 
Richardson numbers (high shears) capable of 
instability. If wave instability arises during an 
inertial wave interaction, it is typically due to an 
excessive wave steepness of the approaching 
wave. This is dependent on the initial wave 
steepness before the interaction. 

Waves propagating through larger inertial waves 
are less likely to become unstable and break 
compared to waves approaching stationary critical 
levels. 

5.   FUTURE WORK 

These scenarios will be validated against non-
linear simulations or observational data. Other 
parameters may be necessary to amend the ray-
tracing program to increase its accuracy. 

Wave energy parameters will be incorporated into 
the simulations. It is of particular interest to 
determine how much energy is transported or lost 
during an interaction. The ray-tracing program will 
be enhanced to calculate the energy loss due to 
wave breaking and energy loss due to transfer to 
the mean flow. 

6.   ANTICIPATED CONTRIBUTIONS 

This research on internal waves has many large 
scale global applications, and an understanding is 
necessary in creating global meteorological 
models. As internal waves break, they become a 
significant source of mixing within the middle and 

upper atmosphere, influencing the amount of 
pollutants or organisms in any given area. Internal 
waves maintain environmental energy budgets by 
transporting mass, momentum, and heat 
throughout the global spectra. Because these 
waves are found in abundance over vast volumes 
of space, much energy is constantly being 
deposited or accumulated due to their propagation 
and breaking. An understanding of these 
processes is necessary to understand internal 
waves’ effect on global processes. 
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