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Abstract 

 
Past results of applying the maximum likelihood (ML) method to simulated raindrop samples demonstrated that ML 
estimators can yield more accurate estimates of raindrop size distribution parameters than moment method (MM) 
estimators when samples include the full range of drop sizes; this is true whether small or large samples are consid-
ered. However, in the absence of small drops in the samples (typical disdrometer minimum size thresholds are 
0.3-0.5 mm) ML estimators ignoring this truncation problem show large bias; this bias does not decrease much with 
increasing sample size. Therefore, ML estimators require adaptation to deal with the problem of missing data on 
small drops. The present work provides the mathematical description of ML estimators modified for left-truncated 
distributions. This approach is tested via simulation with known gamma distributions. Our results show that modified 
ML estimators (c.f. Mallet and Barthes 2009) provide more accurate estimates than MM estimators even when sam-
ples are missing small drops due to instrument constraints. 
 
1. INTRODUCTION 

 
The traditional approach with experimental raindrop 

size data is to use the method of moments (MM) to es-
timate the parameters for the raindrop size distribution 
(DSD) functions. However, the moment method is 
known to be biased and can have substantial errors 
(Robertson and Fryer 1970; Smith and Kliche 2005; 
Smith et al. 2009). While the bias with the method of 

moments may be acceptably small for large sample 
sizes, the variability in these estimates may be consi-
derable. 

Superior alternative approaches to fitting the ob-
served DSDs are available, and results of applying the 
maximum likelihood (ML) method to simulated raindrop 
samples demonstrated that ML estimators can yield 
more accurate estimates of DSD parameters than MM 
estimators when samples include the full range of drop 
sizes (Kliche 2007; Kliche et al. 2008). However, one 
important limitation of disdrometer instruments is the 
effect of truncating the observed size distributions at 
smaller drop diameters (typical disdrometer minimum 
size thresholds are 0.3-0.5 mm). In the absence of small 
drops in the samples ML estimators ignoring this trunca-
tion problem show large bias, and this bias does not 
decrease much with increasing sample size (Kliche 
2007; Kliche et al. 2008). Consequently the ML estima-
tors require some modifications to deal with situations 
where data on the small drops are lacking. 

The goal of the present work is to provide the math-
ematical descriptions of the adaptations needed for both 
the ML and MM estimators in order to deal with the ef-
fects of missing small drops in the data. We focus on 
the gamma DSD function advocated by Ulbrich (1983) 
and Willis (1984), among others, since it can give an 
appropriate description of the natural variations of ob-
served DSDs and the exponential distribution is a spe-
cial case. This modified approach is then tested with 
simulated raindrop samples. We investigate how the

 
modified ML estimators compare with the modified MM 
estimators and how the modifications to these methods 
improve parameter estimation when data on small drops 
are missing. 

 
2. PARAMETER-FITTING PROCEDURES 

 

From the statistical point of view, disdrometer mea-
surements of raindrop sizes provide approximate de-
scriptions of the populations from which they are taken. 
In particular, an analytical expression may be fit to the 
sample data to describe the underlying population of 
raindrops. The process begins by assuming that rain-
drop size has a distribution function which is a member 
of some family of distributions. For example, one may 
assume that some gamma distribution should reasona-
bly describe the raindrop spectrum. Then, using the 
sample data, the particular distribution may be deter-
mined by estimating the unknown parameters of the 
assumed family of distributions.  

Because it involves quantities having physical signi-
ficance and is mathematically simple, the method of 
moments has been widely used to estimate these pa-
rameters. However, the bias and errors in the moment 
method lead to estimated parameters that often differ 
significantly from the true parameters of the population 
(e.g., Robertson and Fryer 1970; Smith and Kliche 
2005; Kliche 2007; Kliche et al. 2008; Smith et al. 2009). 
The erroneous values can lead to wrong conclusions 
about the features of the DSDs being sampled. 

Consequently, maximum likelihood (ML), advocated 
by Haddad et al. (1996, 1997), may be better suited to 
this problem. Maximum likelihood estimators, generally 
speaking, outperform other estimates, especially when 
the sample size is moderate to large (see, for example, 
Norden 1972, 1973). As noted in the introduction the ML 
method requires modification to deal with typical DSD 
observations where data on the small drops in the popu-
lation are missing. Our approach employs a truncated 
form of the gamma DSD function. 

The untruncated gamma distribution has a conve-
nient representation in terms of the total drop number 
concentration NT (Chandrasekar and Bringi 1987). The 
DSD adopted by Kliche et al. (2008) and Smith et al. 
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(2009) incorporated the mass-weighted mean diameter 

Dm = ( + 4)/, shown below: 
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Here, the parameters are NT, the shape parameter  
( > -1) and Dm (Dm > 0), and  is the gamma function. 

This form can be recognized as the product of the mean 
total number concentration, NT, and the gamma proba-

bility density function (PDF) of drop size. Equation (1) is 
similar to the one recommended by Chandrasekar and 
Bringi (1987), but we use Dm instead of their use of the 

median volume diameter D0. When  = 0, the gamma 

DSD reduces to the exponential DSD. 
 The truncated gamma DSD distribution function is 
given by 
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where 
T

N
 
is the number concentration for the truncated 

part of the DSD and  

    
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0
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is the incomplete gamma function. To see how (2) fol-
lows from (1) note, in general, that if f (x) is the untrun-
cated density, then f (x)/[1 - F(Dmin)] is the truncated 

density where F (x) = P(X  x) is the cumulative distribu-

tion function. Note that we don’t see any observations 
below the cutoff Dmin (note the distinction between Dm 
and Dmin). Also, in the special case that Dmin is zero, the 

incomplete gamma function  takes on the value 0 and 
we reduce back to the untruncated case. 

 Note, by the way, that once estimates 
min

ˆˆ ˆ, ,D    of 

the parameters Dmin, ,  have been determined,  
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is an estimate of the proportion of missing drops. 
 
2.1 THE MODIFIED MAXIMUM LIKELIHOOD  

METHOD FOR TRUNCATED GAMMA DSDS 
 

The method of maximum likelihood (ML) is a tradi-

tional method used by statisticians to estimate the pa-
rameters of an assumed parametric model. The likeli-
hood function represents a fundamental concept in sta-
tistical inference, and indicates how likely a particular 
population is to produce an observed sample. Kliche 

(2007) applied standard ML estimators to simulated 
samples of untruncated gamma DSD data and illu-
strated the improvement obtained over moment estima-
tors; examples of her results appear in Kliche et al. 

(2008). ML in this untruncated case is somewhat biased 
but the bias decreases with increasing sample size 
(see, for example, Choi and Wette 1969).  

Given an independent sample of observations D1, 

D2, …, Dc from the truncated gamma density  
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the likelihood function L is given by the expression be-

low: 
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when the observations D1, D2, …, Dc are all greater than Dmin and zero otherwise. This leads to a maximum likelih-
ood estimator for Dmin of 

min 1 2
ˆ min( , ,..., )CD D D D  

 

To find the maximum likelihood estimates of  and  note that maximizing the likelihood L is equivalent to maximiz-

ing  
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over  and  (which generalizes (A3) of Kliche et al. 

2008). This maximization was accomplished by using 
the R software package (R Development Core Team 
2009). In particular, the optim( ) command of R was 
used along with the R function likelihood given in the 
Appendix. The optim( ) command implements the non-
linear optimization procedure discussed in Nelder and 
Mead (1965). Method of moments estimates for the 
untruncated case were used as a starting point for this 
iterative, numerical procedure. 
 
2.2 THE MODIFIED MOMENT METHOD FOR 

TRUNCATED GAMMA DSDS 

 
Various combinations of moments based on sam-

ples from the DSDs have commonly been used by at-
mospheric scientists to estimate the parameters of the 
underlying population distributions. For example, in the 
case of the gamma distribution, Szyrmer et al. (2005) 
used the zero moment, the 3

rd
 moment, and the 6

th
 mo-

ment in their fitting procedure; Smith (2003) suggested 
the combination of the 2

nd
 moment, the 3

rd
 moment, and 

the 4
th

 moment; Ulbrich (1983), Kozu and Nakamura 
(1991), and Tokay and Short (1996) used the 3

rd
, 4

th
, 

and 6
th

 moments, while Ulbrich and Atlas (1998) and 
Vivekanandan et al. (2004) used the 2

nd
, 4

th
, and 6

th
 

moments. It should be mentioned, by the way, that Vi-
vekanandan et al. (2004) consider observations which 

come from a truncated gamma distribution. 
The bias is stronger and the errors greater when 

higher order moments are used in calculating the para-
meters. When good sample values of the first moment 
are unavailable, as is often the case, the combination of 
2

nd
, 3

rd
, and 4

th
 moments typically gives the smallest 

bias and error.  
The general form for the moments Mi of the untrun-

cated gamma DSD function (1) can be written as 
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where i is a non-negative integer and, for a sample of 
size C, the sample moments are 
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Setting E(Mi) = Mi for i equal to 2,3,4 gives three equa-

tions in the three unknowns , , NT (here we use Dm = 
( + 4)/). Solving these gives the method of moments 
estimates 
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Likewise, for the truncated gamma DSD (2) we 

have the following generalization of (5) 
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There are four unknown parameters to estimate in this 

truncated case – namely , ,TN    and Dmin. Consequent-

ly, we may set E(Mi) = Mi for four values of i to obtain a 

system of four equations in four unknowns to estimate 
these. Instead, we go with the (somewhat conservative) 
maximum likelihood estimate of Dmin 
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and set E(Mi) = Mi for i equal to 2,3,4 to estimate 

, , .TN    In particular, we can solve these three equa-

tions by successfully minimizing the function 
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(Note, by the way, from (3) that we may estimate TN  in 

(1) by taking the estimate of 
T

N  and dividing it by 

ˆ(1 ).)p  

Once again, this optimization problem may be ac-
complished by using the R software package (R Devel-
opment Core Team 2009). The optim( ) command of R 
was used to minimize the R function MM234 given in 
the Appendix. As before, method of moments estimates 
for the untruncated case were used as a starting point 
for this iterative, numerical procedure. 

(6) 



 

 

3. SIMULATION PROCEDURE 

 Comparisons of parameter-fitting procedures to 
evaluate biases and errors are readily done through 
computer simulation of repetitive sampling from known 
raindrop populations. The simulated gamma DSDs are 
represented as the product between the total drop num-
ber concentration, NT, assumed to follow a Poisson dis-
tribution, and the corresponding probability density func-
tion (PDF) of drop size, as in (1). (We used the rpois( ) 
and rgamma( ) functions in the R package to generate 
these random observations.) In our simulations we took 
the mean number of drops in the samples to be the nu-
merical value of NT, and organized the results by the 
value of NT. This approach can be interpreted as 

representing an instrument with a sample volume of 
1 m

3
 (independent of the drop size), or a sample volume 

of  m
3
 with a mean drop concentration of / .TN   

The size range for the computer-generated gamma 

raindrop populations is 0 < D < ; we used about 

1,000,000 drops for the simulated samples. For exam-
ple, we drew 20,000 samples with NT = 50 and 1,000 

samples with NT = 1,000.   
Two distinct gamma populations were generated: 

one had shape parameter   = 2 with scale parameter 

λ = 3 mm
-1

 and the other had shape parameter   = 2 

and scale parameter λ = 5 mm
-1

. These two gamma 
densities are displayed, using a log scale, in Figure 1.  

To investigate the effect of instrumental limitations 
at small drop sizes (disdrometers typically cannot re-
spond to drop sizes < 0.3 mm or so), we withdrew from 
each generated sample the drops with sizes Di ≤ 0.313 
mm, which represents the lower threshold in the case of 
the Joss-Waldvogel disdrometer (JWD). In a gamma 
DSD with shape parameter   = 2 and scale parameter 

λ = 3 mm
-1

, 6.9% of the drops in the population have Di 
≤ 0.313 mm. Thus on average with NT = 100 seven of 

the drops will be removed from each sample by impos-
ing this threshold. For a gamma distribution having 
  = 2 and λ = 5 mm

-1
, about 20.8% of drops in the 

population have Di ≤ 0.313 mm, so that on average with 
NT = 100 about 21 drops will be removed from each 

sample. 
 

4. COMPARISON OF ESTIMATORS 

 We begin this section by comparing the perfor-
mance of the truncated maximum likelihood method 
(recall (4) above) with the ordinary maximum likelihood 
method which does not account for truncation (this 
amounts to maximizing (4) with 

minD̂  set to zero – see 

(A3) of Kliche et al. (2008)). Boxplots of the various es-
timates of   and λ appear in Figures 2 and 3, respec-

tively, for the case   = 2, λ = 5 mm
-1

, NT = 50. The 

truncated ML estimates, denoted ML(T) in the figures, of 
both   and λ for this case show considerably less bias 

than the ordinary ML estimates. In particular, note that 
the median values of the truncated estimates of each 
parameter are very nearly equal to the population val-
ues while the ordinary estimates are nearly always 
overestimates. Figures 4 and 6 and Tables 1, 2, 3 and 4 
demonstrate the trends with increasing sample sizes. As 
NT increases these patterns persist for both   = 2, λ = 3 

mm
-1

 and   = 2, λ = 5 mm
-1

; we continue to see little 

bias for the truncated method and strong positive bias 
with the ordinary ML method. With both ML methods the 
amount of variability in the estimates decreases with 
increasing NT. As the theoretical value of the mean 

squared error of an estimate is its variance plus the 
square of its bias, the sample root mean squared (RMS) 
error values shown for our ML estimates in Figures 5 
and 7 are not surprising. In particular, note that for both 
  and λ the RMS values for the truncated estimates 

become smaller and smaller as NT increases - reflecting 

the small bias and decreasing variability. With the ordi-
nary ML method the RMS values do decrease some-
what with increasing values of NT, but apparently level 

off at positive values because of the continuing bias 
even with increasing values of NT.  

Figure 1. Plots of the two gamma densities consi-
dered in this study. The dashed vertical line indi-
cates the data truncation point used in the simula-
tions. 

Figure 2. Comparative boxplots of estimates of   in 

the case  = 2, λ = 5 mm
-1

, NT = 50. ML and ML(T) 

denote ordinary and truncated ML estimators; MM234 
and MM234(T) denote ordinary and truncated moment 
estimators based on sample moments 2, 3 and 4. 

 



 

 

 The larger bias and larger variability for the ordinary 
ML method compared to the truncated ML method are 
less pronounced for the  = 2, λ = 3 mm

-1 
case than for 

the   = 2, λ = 5 mm
-1 

case. This is a consequence of a 

smaller fraction of drops being truncated in the former 
case. Compare Tables 1 and 2 with Tables 3 and 4 in 
this regard.  
 We now turn to the method of moment estimators 
of   and λ using the second, third and fourth moments 

of drop sizes, with the ordinary method of moment esti-
mators (denoted MM234 in the figures) given in (6) and 
the truncated method of moment estimators (denoted 
MM234(T)) given by minimizing (8) along with (7). The 
truncated method tends to slightly outperform the ordi-
nary method – though the difference is not nearly as 
striking as that for the ML methods. In the boxplots in 
Figures 2 and 3 for the case  = 2, λ = 5 mm

-1
, NT  = 50, 

for example, we see comparable performance in the 
estimates. As NT increases, whether for these values of 
 and λ or   = 2, λ = 3 mm

-1
, the biases and variabili-

ties of both methods decrease with slightly smaller bi-
ases and variabilities generally being associated with 
the truncated MM procedure. Figures 4 and 6 show how 
the median values of the truncated MM estimates ap-
proach the population values as NT increases.  

 A few words comparing the ML estimates with the 
MM estimates are in order. Consider again Figures 2 
and 3 involving the case   = 2, λ = 5 mm

-1
, NT = 50. 

Here, for the modest sample size NT = 50
 
we see that 

the truncated maximum likelihood procedure outper-
forms the method of moments procedures both in terms 
of bias and variability. This was generally seen to be 
true for a variety of values of   and λ. Furthermore, 

while the bias for the truncated ML procedure and the 
two method of moments procedures each apparently go 
to zero for both   and λ as NT increases, the variabili-

ties in the truncated ML estimates are substantially less 
than those for the method of moment procedures. 

 

Figure 3. Comparative boxplots (as in Fig. 2) of esti-
mates of λ in the case   = 2, λ = 5 mm

-1
, NT = 50. 

 
Figure 4. Median estimates of   for both ML pro-

cedures and the truncated MM procedure as a 
function of NT. Filled-in circles are used for the 
ordinary ML procedure, triangles are used for the 
truncated ML procedure and squares are used for 
the truncated MM procedure. The case   = 2, λ = 

5 mm
-1

 is shown in red, and the case   = 2, λ = 3 

mm
-1

 is shown in black. 

 

Figure 5. Root mean squared (RMS) error values of 
  estimates for both ML procedures and the trun-

cated MM procedure as a function of NT. Filled-in 
circles are used for the ordinary ML procedure, trian-
gles are used for the truncated ML procedure and 
squares are used for the truncated MM procedure. 

The case   = 2, λ = 5 mm
-1

 is shown in red, and the 

case   = 2, λ = 3 mm
-1 

is shown in black.  

 



 

 

Figure 7. As in Fig. 5, root mean squared (RMS) 

error values of ˆ /   estimates are given for both 

ML procedures and the truncated MM procedure as 
a function of NT.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Performance of   estimators as a function of sample size, for both ML procedures and both MM procedures 

in the case   = 2, λ = 3 mm
-1

. 

 ML ML(T) MM234(T) MM234 

TN  Mean; Median; RMS Mean; Median; RMS Mean; Median; RMS Mean; Median; RMS 

10 5.408; 3.843 ; 6.019 1.692; 0.980; 1.899 9.917; 7.618 ; 7.678 10.110 ; 7.827; 7.656 

20 3.747 ; 3.389 ; 1.224 1.686 ; 1.445; 0.878 6.029 ; 5.370 ; 2.770 6.015 ; 5.349 ; 2.768 

50 3.273 ; 3.165 ; 0.752 1.853 ; 1.761 ; 0.502 4.048 ; 3.837 ; 1.474 3.926 ; 3.765 ; 1.461 

100 3.156 ; 3.108 ; 0.639 1.934 ; 1.893 ; 0.347 3.289 ; 3.181 ; 1.002 3.172 ; 3.123 ; 0.999 

200 3.084 ; 3.067 ; 0.572 1.952 ; 1.928 ; 0.241 2.750 ; 2.704 ; 0.688 2.694 ; 2.677 ; 0.703 

500 3.067 ; 3.060 ; 0.546 1.997 ; 1.987 ; 0.153 2.383 ; 2.370 ; 0.455 2.376 ; 2.395 ; 0.471 

1000 3.047 ; 3.049 ; 0.530 1.988 ; 1.978 ; 0.107 2.204 ; 2.209 ; 0.345 2.214 ; 2.231 ; 0.362 

 
Table 2. Performance of λ estimators as a function of sample size, for both ML procedures and both MM procedures 
in the case   = 2, λ = 3 mm

-1
. 

 ML ML(T) MM234(T) MM234 

TN  Mean; Median; RMS Mean; Median; RMS Mean; Median; RMS Mean; Median; RMS 

10 6.545; 4.695 ; 5.177 3.438; 2.486 ; 1.637 9.967; 7.414 ; 6.001 10.080 ; 7.505 ; 5.922 

20 4.603 ; 4.194 ; 0.842 3.000 ; 2.662 ; 0.549 6.167 ; 5.432 ; 1.576 6.142 ; 5.406 ; 1.575 

50 4.077 ; 3.960 ; 0.467 2.969 ; 2.853 ; 0.302 4.508 ; 4.268 ; 0.768 4.409 ; 4.195 ; 0.760 

100 3.945 ; 3.885 ; 0.375 2.988 ; 2.929 ; 0.213 3.925 ; 3.799 ; 0.507 3.833 ; 3.738 ; 0.505 

200 3.866 ; 3.844 ; 0.319 2.978 ; 2.955 ; 0.146 3.522 ; 3.474 ; 0.337 3.473 ; 3.449 ; 0.343 

500 3.845 ; 3.838 ; 0.295 3.005 ; 2.995 ; 0.094 3.266 ; 3.247 ; 0.218 3.250 ; 3.250 ; 0.225 

1000 3.831 ; 3.827 ; 0.283 2.998 ; 3.000 ; 0.065 3.144 ; 3.145 ; 0.162 3.139 ; 3.153 ; 0.170 

 

Figure 6. As Fig. 4, showing median estimates of ˆ /  for 

both ML procedures and the truncated MM procedure as 
a function of NT.   

 

 



 

 

 

Table 3. Performance of   estimators as a function of sample size, for both ML procedures and both MM procedures 

in the case  = 2, λ = 5 mm
-1

. 

 ML ML(T) MM234(T) MM234 

TN  Mean; Median; RMS Mean; Median; RMS Mean; Median; RMS Mean; Median; RMS 

10 9.629 ; 6.154 ; 14.871 2.329 ; 0.713 ; 3.397 12.550 ; 8.486 ; 15.884 13.090 ; 9.058 ; 15.426 

20 6.172 ; 5.480 ; 2.668  2.032 ; 1.459 ; 1.419 6.975 ; 5.987 ; 3.577 7.310 ; 6.284 ; 3.680 

50 5.176 ; 4.989 ; 1.727 1.926 ; 1.753 ; 0.791 4.521 ; 4.303 ; 1.815 4.583 ; 4.300 ; 1.825 

100 4.951 ; 4.866 ; 1.541 1.965 ; 1.884 ; 0.549 3.746 ; 3.714 ; 1.275 3.675 ; 3.598 ; 1.247 

200 4.852 ; 4.817 ; 1.458 1.981 ; 1.943 ; 0.384 3.164 ; 3.066 ; 0.865 3.173 ; 3.177 ; 0.914 

500 4.784 ; 4.760 ; 1.405  1.997 ; 1.979 ; 0.241 2.662 ; 2.603 ; 0.544 2.708 ; 2.731 ; 0.612 

1000 4.764 ; 4.759 ; 1.390 2.000 ; 2.006 ; 0.166 2.347 ; 2.365 ; 0.377 2.528 ; 2.551 ; 0.449 

 

Table 4. Performance of λ estimators as a function of sample size, for both ML procedures and both MM procedures 

in the case   = 2, λ = 5 mm
-1

. 

 ML ML(T) MM234(T) MM234 

TN  Mean; Median; RMS Mean; Median; RMS Mean; Median; RMS Mean; Median; RMS 

10 16.920 ; 10.570 ; 13.238 7.074 ; 4.267 ; 2.939 20.310 ; 12.540 ; 13.870 20.750 ; 13.120 ; 13.252 

20 10.580; 9.305 ; 1.614 5.648 ; 4.585 ; 0.856 11.330 ; 9.556 ; 1.993 11.630 ; 9.837 ; 2.043 

50 8.913 ; 8.547 ; 0.913 5.115 ; 4.771 ; 0.425 7.962 ; 7.474 ; 0.904 7.943 ; 7.426 ; 0.906 

100 8.536 ; 8.367 ; 0.770 5.057 ; 4.901 ; 0.290 6.981 ; 6.748 ; 0.608 6.810 ; 6.633 ; 0.592 

200 8.374 ; 8.294 ; 0.707 5.030 ; 4.966 ; 0.202 6.309 ; 6.153 ; 0.406 6.207 ; 6.152 ; 0.420 

500 8.252 ; 8.213 ; 0.663 5.011 ; 4.982 ; 0.126 5.722 ; 5.624 ; 0.247 5.660 ; 5.653 ; 0.270 

1000 8.230 ; 8.206 ; 0.652 5.010 ; 5.001 ; 0.087 5.369 ; 5.376 ; 0.168 5.458 ; 5.447 ; 0.191 

 
 
5. CONCLUSIONS FOR FITTING GAMMA  

DISTRIBUTIONS 
 

 When observing truncated data, the truncated max-
imum likelihood procedure is recommended over the 
two method of moments procedures given above. With 
small to moderate sample sizes the method of moments 
procedures have both larger bias and larger variability. 
With large sample sizes the bias of the method of mo-
ment procedure may be acceptably small, but we do not 
recommend method of moments estimates even in this 
situation because of much larger estimate variability.  

The ordinary maximum likelihood procedure is not 
recommended for fitting DSDs in any situation where 
data truncation is thought to be a possibility. In this case 
the estimates of the shape and scale parameters are 
biased, with the amount of the bias increasing with the 
amount of truncation. 

 
6.  PUBLISHED WORK ON TRUNCATED  
 GAMMA ML EQUATIONS 

 

As this paper was being written the article of Mallet 
and Barthes (2009) appeared. These authors present a 
similar modification of maximum likelihood estimators 
for µ and λ to account for data truncation. In fact, Mallet 
and Barthes (2009) account for both lower and upper 
truncation of the sample. In this case the truncated den-
sity is not f (x)/[1 - F(Dmin)] as pointed out in Section 2 
above but, using obvious notation, f (x)/[F(Dmax - F(Dmin)].  

 
While upper truncation may be readily incorporated into 
both (4) and (8) above, we note that the theoretical frac-
tion of observations above the upper limit of D = 8 mm 
considered by Mallet and Barthes (2009) is quite small 
for the cases we considered above. In particular, in the 
case µ = 2, λ = 5 mm

-1
, the theoretical fraction of drops 

above 8 mm is about 3.6 x 10
-15

; in the case µ = 2, λ = 3 
mm

-1
, the theoretical fraction of drops above 8 mm is 

about 1.2 x 10
-8

. 
Mallet and Barthes (2009) provide few details about 

the implementation of their numerical procedures. Their 
work is formulated to deal specifically with data from 
surface disdrometers, while our expressions apply di-
rectly to volume samples. If the drop fall speeds are 
approximated by a power-law relationship vt(D) = αD

β
, 

the ML(T) estimators based on (4) can be used with 

disdrometer data to estimate '  = (µ + β) and λ. For 

volume samples we assume a Poisson distribution and 
use the sample size, modified as necessary by the trun-
cated fraction, as the ML estimator for NT; for surface 
samples a more complicated estimator is required for 
either NT  or N0

*
.  
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APPENDIX – R CODE 
 

For the below, it is understood that 
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Also, the pgamma and lgamma functions, namely 
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are standard functions in R. 
 

a. Function likelihood – for use in finding the maximum likelihood estimates of , 
 
for data from a truncated gam-

ma:  
 

likelihood <- function(x){ 

 x1 <- x[1]        # mu 

 x2 <- x[2]        # lambda 

 if ((x1>-1) & (x2>0)) 

   {return(log(1.0-pgamma(f*x2,x1+1))-(x1+1)*log(x2)+lgamma(x1+1)-g*x1+h*x2)} 

 else 

   {return(Inf)} 

} 

 

b. Function MM234 – for use in finding method of moments estimates of , ,TN    for data from a truncated gamma: 

 

MM234 <- function(x){ 

 x1 <- x[1]        # mu 

 x2 <- x[2]        # lambda 

 x3 <- x[3]        # N 

 if ((x1>-1) & (x2>0)) 

  {return(   ( 1.0 - (x3/M2)*((x1+1)/x2)*((x1+2)/x2)* 

                     (1-pgamma(f*x2,x1+3))/(1-pgamma(f*x2,x1+1))  )^2 + 

                  ( 1.0 - (x3/M3)*((x1+1)/x2)*((x1+2)/x2)*((x1+3)/x2)* 

        (1-pgamma(f*x2,x1+4))/(1-pgamma(f*x2,x1+1))  )^2 + 

                  ( 1.0 - (x3/M4)*((x1+1)/x2)*((x1+2)/x2)*((x1+3)/x2)*((x1+4)/x2)* 

        (1-pgamma(f*x2,x1+5))/(1-pgamma(f*x2,x1+1))  )^2   )} 

else 

  {return(Inf)} 

}     

 


