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1. INTRODUCTION 

 The core satellite of the Global Precipita-
tion Measurement (GPM) mission will be launched in 
2013 with Dual-frequency Precipitation Radar (DPR) 
on.  DPR is the successor of the Precipitation Radar 
(PR) on the Tropical Rainfall Measuring Mission 
(TRMM) satellite.  DPR consists of a Ku-band 
(13.6GHz) radar and a Ka-band (35.5GHz) radar, the 
former of which is similar to PR.  DPR is expected 
to give more accurate estimates in rain drop size 
distribution (DSD) and rain rate by taking advantages 
of dual-frequency observations.  Methods to re-
trieve DSD and rain rate from dual-frequency ob-
servations have been studied for more than 20 years.  
Echo power observed by a space-borne precipitation 
radar is converted to radar reflectively factor (Zm) at 
some ranges and surface backscattering cross sec-
tion (σ0) at earth surface.  The number of observa-
tions by DPR is ideally 2n + 2, where n is the number 
of ranges.  For simplicity, we assume ideally perfect 
conditions of observation so that many obstacles 
such as ground clutter can be ignored. 
 Meneghini et al. (1992; called ME92) de-
veloped a retrieval method for an airborne 
dual-frequency precipitation radar.  ME92 assumed 
that DSD obeys a two-parameter gamma function 
and they retrieved 2n DSD parameters from 2n + 2 
observations.  They applied a surface reference 
technique (SRT) to estimate path integrated at-
tenuation (PIA) by comparing σ0 at a target pixel and 
σ0 at nearby no-rain pixels (reference pixels).  In 
SRT, it is generally assumed that the surface condi-
tions between a target pixel and the reference pixels 
are same in terms of σ0, but this assumption is not 
guaranteed and the difference in surface conditions 

often causes biases in PIA.  A SRT is applied in the 
standard algorithm of PR (Iguchi et al. 2009) and 
Seto and Iguchi (2007) found that rainfall-induced 
changes in surface conditions affect σ0 and yield 
biases in PIA and rain rate estimates.  Moreover, 
instantaneous rain rate estimates over land could be 
largely biased if the land surface type of a target pixel 
is drastically different from that of the reference pix-
els.  In case of airborne observations, unstable 
attitude of an airborne could change σ0 and cause 
bias in PIA and rain rate estimates (Mardiana et al. 
2004; called MA04). 
 MA04 proposed a new retrieval method 
without SRT and tested it with air-borne 
dual-frequency observations.  While PIA is esti-
mated by means of SRT before the retrieval in ME92, 
PIA is assumed before the retrieval in MA04.  After 
the retrieval, PIA can be calculated from the retrieved 
DSD and is compared with the assumed PIA.  Until 
calculated and assumed PIAs are judged to be same, 
the assumed PIA is modified and the retrieval is iter-
ated.  The details of methods in ME92 and MA04 
will be given in Section 3.  MA04’s method showed 
a good performance for the air-borne observations in 
their paper, but some following researches such as 
Rose and Chandrasekar (2005) and Liao and Me-
neghini (2005) claimed that MA04’s method fails for 
relatively heavy rainfall cases.  Adhikari et al. 
(2007) also showed cases of failure in MA04’s 
method and proposed a modified method by using 
differential attenuation (DA) between the two fre-
quencies.  As DA can be estimated accurately only 
when rain rate is vertically constant or the Mie effect 
is negligible, the modified method can not be widely 
used. 
 As no methods without SRT are found to 
work for all cases, the necessity of SRT is strongly 
implied.  This study examines the reason why 
MA04’s method fails for heavier rainfall, confirms the 
necessity of SRT, proposes a new retrieval method, 
and discusses on the accuracy of SRT required to 
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retrieve surface rain rate within a certain error toler-
ance. 
 
2. OBSERVATIONS BY DPR 

2.1. Assumptions 

 DPR observes precipitation in nadir direc-
tion (with the incident angle of 0 degree) to obtain Zm 
at n ranges and σ0 at the surface (Fig. 1).  The 
depth of each range is constant to be L [km].  
Throughout this study, L is set as 0.25 km.  Num-
bers 1 to n are assigned to ranges from the top to the 
bottom, then the height of precipitation can be given 
as n×L.  Rain drops are equally distributed in each 
range both vertically and horizontally, and the DSD 
follows a gamma distribution function as shown in Eq. 
(1). 

[ ]00 /)67.3(exp)( DDDNDN μμ +−= , (1) 
where D [mm] is drop size and N [mm-1 m-3] is 
number density.  N0 [mm-1-μ m-3], D0 [mm], and μ [-] 
are DSD parameters.  In this study, μ is treated as a 
known parameter, and N0 and D0 are parameters to 
be estimated.  Other particles than rain drops can 
be totally ignored. 

 
2.2. Theory 

 Rain rate (denoted by R [mm h-1]) can be 
calculated from the DSD parameters as Eq. (2). 
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where CR is a constant for unit conversion (=0.6π×
10-3) and v(D) [m s-1] is the falling velocity of rain 
drop and is dependent on D.  According to Gunn 
and Kinzer (1949), we employ the following Eq. (3) to 
calculate v(D).  
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 Real (non-attenuated) radar reflectively 
factor (denoted by Ze [mm6 m-3]) and attenuation 
coefficient (denoted by k [dB km-1]) are given as Eqs. 
(4) and (5). 
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where σb(D) [mm2] and σt(D) [mm2] are backscat-
tering cross section and total extinction cross section 
and the both are calculated from Mie theory.  Ck is 
equal to 0.01×log10(e), and CZ is given in Eq. (6). 
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where λ [cm] is the wavelength of microwave, nw [-] 
is the refractivity index of water, which depends on 
the physical temperature of water (denoted by T [K]). 
 Measured (attenuated) radar reflectivity 
factor (denoted by Zm [mm6 m-3]) at the distance of r 
[km] from the top of precipitation is calculated as Eq. 
(7). 
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where s is a dummy parameter of r.  Equation (7) 
can be rewritten in dB unit as Eq. (8). 
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where dBX indicates 10log10(X) for any variable X.  
Given that r=rs at the earth surface, PIA [dB] can be 

Fig. 1 A schematic figure of assumed DPR ob-
servation. 



written as Eq. (9).  
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2.3. In discrete form 

 At a range, dBZe and k are determined 
only by parameters of the range, so they can be 
written as Eq. (10) and Eq. (11). 

dBZe(N0,D0)=10log10N0+F(D0),  (10) 
k(N0,D0)=N0×G(D0),   (11) 

where F and G are functions of D0 and the details are 
given as below. 
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 On the other hand, Zm at a range can not 
be determined by parameters of the range.  When 
the range locates between r=r0-L/2 and r=r0+L/2 (Fig. 
2), the average of Zm (denoted by [Zm]) at the range 
can be calculated as Eq. (14). 
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As Ze and k are constant within the range, Eq. (14) 
can be simplified as Eq. (15). 
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where c is equal to 0.2×(ln10)×k.  As c and L are 
positive, [Zm] is always larger than Zm(r0).  When c 
or L approaches to zero, [Zm] approaches to Zm(r0).  
In other words, when the rainfall is weak enough or 
when the width of the range is thin enough, the at-
tenuation from which the range suffers can be re-
garded to occur along the two-way path between the 
top of precipitation and the center of the range.  
This attenuation is indicated by dBA as shown in Fig. 
2.  Generally, the attenuation can be different from 
dBA, but it should be larger than dBA[-] and should 
be smaller than dBA[+], where dBA[-] (dBA[+]) are 
the attenuation along the two-way path between the 
top of precipitation and the top (bottom) of the range. 
 In many previous researches including 
ME92 and MA04, the attenuation is set as dBA[+], 

while the attenuation is set as dBA in some re-
searches such as Kozu et al. (1991).  No re-
searches are found to set the attenuation as dBA[-].  
To compare our results with those of ME92 and 
MA04, the attenuation is set as dBA[+] also in this 
study (except for section 6d), therefore dBZm is given 
as Eq. (16). 

dBZm＝dBZe－dBA[+].  (16) 
Please confirm that the following Eq. (17) is hold. 

dBA[-]+kL=dBA=dBA[+]－kL  (17) 
For the discussion later in this paper, we define a 
pseudo observation variable dBZe[-2] as Eq. (18). 

dBZe[-2]≡dBZe－2×kL=dBZm+dBA[-] (18) 
Generally, dBZe[α] is defined as Eq. (19). 

dBZe[α]≡dBZe＋α×kL  (19) 
dBZe[α] at a range, for any value of α, is independent 
of the other ranges as dBZe (=dBZe[0]) is. 
 
2.4. Primitive problem 

 The primitive problem in this study is to 
retrieve (N0, D0) of n ranges from dBZm of n ranges at 
the two frequencies of the DPR.  This is a set of 2n 
non-linear equations with 2n unknowns.  As shown 

Fig. 2 Different definitions of attenuation for a 
discrete range. 



in section 2a, ideal conditions can be assumed.  
Moreover, dBZm is assumed to be free from obser-
vation errors.  SRT can be used to give estimates 
PIA, but the accuracy of PIA is not guaranteed. 
 
3. RETRIEVAL METHODS 

3.1. Forward method (FM) 

 In forward method (FM), DSD parameters 
are sequentially determined from near range (range 
1) to far range (range n) without the use of SRT.  At 
range 1, dBA[-] is assumed to be zero (as no at-
tenuation occurs over the top of precipitation) and 
dBZm is observed, so according to Eq. (18) dBZe[-2] 
is calculated at the two frequencies.  Here, we have 
a smaller problem or a lemma to retrieve (N0, D0) 
from dBZe[-2] at the two frequencies.  This lemma is 
just a set of 2 non-linear equations with 2 unknowns, 
and is indicated by Lemma[-2].  Generally, a lemma 
to retrieve (N0, D0) from dBZe[α] of the two frequen-
cies is indicated by Lemma[α].  When the 
Lemma[-2] is solved at range 1, all the variables at 
range 1 become known; dBA[+] can be calculated as 
dBA[-]+2kL.  As dBA[-] at range 2 is known to be 
equal to dBA[+] at range 1, the same process can be 
applied to range 2 after range 1.  By repeating this 
process up to range n, (N0, D0) and other variables of 
n ranges can be retrieved. 

 
3.2. Backward method (BM) 

 In backward method (BM), DSD parame-
ters are sequentially determined from far range 
(range n) to near range (range 1) with the use of SRT.  
At range n, dBA[+] is no other than PIA, which can 
be estimated by SRT, and that dBZm is observed, 
then dBZe can be easily calculated according to Eq. 
(16).  Here, we have a lemma to retrieve (N0, D0) 
from dBZe at the two frequencies.  As dBZe is same 
as dBZe[0], the lemma can be indicated by Lemma[0].  
When the Lemma[0] is solved at range n, all the 
variables at range n become known; dBA[-] can be 
calculated as dBA[+]-2kL.  As dBA[+] at range (n-1) 
is known to be equal to dBA[-] at range n, the same 
process can be applied to range (n-1) after range n.  
By repeating this process up to range 1, (N0, D0) and 
other related variables of n ranges can be obtained.  

BM is essentially same with the retrieval method in 
ME92. 
 
3.3. Iterative backward method (IBM) 

 In iterative backward method (IBM), the 
same procedure with BM is applied without SRT.  At 
first, PIA is assumed arbitrarily, then (N0, D0) are 
sequentially retrieved from range n to range 1 as BM.  
Once (N0, D0) of n ranges are retrieved, PIA is cal-
culated from the retrieved (N0, D0), and the calcu-
lated PIA is compared with the assumed PIA.  This 
comparison is equivalent to check that dBA[-] at 
range 1 is zero or not.  If the calculated PIA and the 
assumed PIA are not same (dBA[-] at range 1 is not 
zero), assumed PIA turns out wrong.  By using dif-
ferently assumed PIA, the same procedure is iter-
ated till the calculated PIA and the assumed PIA 
becomes same.  In MA04, PIA is assumed to be 
zero at the first iteration, then at the second iteration 
and later, PIA is assumed to be same with the cal-
culated PIA at the previous iteration. 
 
3.4. Comparison of methods 

 As no attenuation occurs over the top of 
precipitation, dBA[-] at range 1 should be zero.  
Hereafter, it is called upper boundary condition.  
The upper boundary condition is satisfied in FM and 
IBM, but it is not checked in BM.  On the other hand, 
dBA[+] at range n should be equal to the true PIA.  
It is called lower boundary condition.  The lower 
boundary condition is checked neither in FM nor in 
IBM.  From the view point of the boundary condi-
tions on attenuation, FM and IBM are equivalent, 
while BM is something different from the other two 
methods.  According to the categorization of re-
trieval methods for single-frequency radar (Iguchi et 
al, 1994), FM and IBM are kinds of initial value 
method, while BM is a kind of final value method. 
 
4. SOLUTIONS OF LEMMAS 

 Any of the three retrieval methods for DPR 
consists of Lemma[α] (α=-2 or α=0).  Except for 
solving lemmas, no difficulties are involved in the 
methods.  Therefore, in this section, solutions of the 
lemmas are investigated.  As defined, Lemma[α] is 



the problem to retrieve (N0, D0) from dBZe[α] at the 
two frequencies.  dBZe[α] can be rewritten as Eq. 
(20) from Eqs. (10), (11), and (19). 

dBZe[α]i=10log10(N0)+Fi(D0)+α×N0×Gi(D0)×L,   (20) 
where subscript i indicates the frequency; 1 is for 
Ku-band and 2 is for Ka-band.  Hereafter, the sub-
script i can be attached to variables and functions 
dependent on the frequency. 
 For α=0, the third term of the right hand 
side in Eq. (20) is zero, and Eq. (20) can be simpli-
fied as follows. 

dBZe[0]1=10log10(N0)+F1(D0), (21-1) 
dBZe[0]2=10log10(N0)+F2(D0). (21-2) 

By taking the difference of the two equations in Eq. 
(21), the first term of the right hand side is cancelled 
as Eq. (22). 

dBZe[0]δ=Fδ(D0),  (22) 
where subscript δ indicates the difference of Ka band 
and Ku band, or Xδ=X2-X1 is hold for any variable X.  
Eq. (22) has only one unknown parameter D0.  Fig-
ure 3 draws the function of Fδ(D0) with μ=3.0 and 
T=300[K].  Fδ(D0) takes a local maximum when D0 
is 0.97mm.  As far as investigated in our study and 
also in previous studies, Fδ(D0) takes only one local 
maximum in case of rain drops.  D0 which gives the 
local maximum of Fδ(D0) is indicated by D0s.  If 
dBZe[0]δ is negative, D0 is uniquely determined from 
Eq. (22).  However, if dBZe[0]δ is positive, two dif-
ferent D0 can satisfy Eq. (22) except for the case of 

dBZe[0]δ=Fδ(D0s).  One of the two D0 is larger than 
D0s and another is smaller than D0s, the former of 
which yields higher rain rates than the latter.  In 
order not to miss heavy rainfall rather weak rainfall, it 
is a reasonable way to assume that D0 is larger than 
or equal to D0s.  With this assumption (called 
D0s-assumption), D0 is always uniquely determined.  
When D0 is determined, by substituting D0 into Eq. 
(21-1) or (21-2), N0 can be calculated.  As shown 
above, Lemma[0] has only one solution under 
D0s-assumption.  Still, when dBZe[0]δ is given to be 
larger than Fδ(D0s) because of some errors (such as 
biases in PIA), no D0 can satisfy Eq. (22).  In such 
cases, Lemma[0] has no solutions. 
 Next, Lemma[-2] is considered. dBZe[-2] 
can be written as follows. 
dBZe[-2]1=10log10(N0)+F1(D0)－2×N0×G1(D0)×L, (23-1) 
dBZe[-2]2=10log10(N0)+F2(D0)－2×N0×G2(D0)×L. (23-2) 

And, the difference in dBZe[-2] between the two fre-
quencies is given as Eq. (24). 

dBZe[-2]δ=Fδ(D0)－2×N0×Gδ(D0)×L. (24) 
Here, the solution of (N0, D0) in Lemma[-2] can be 
visually investigated by Fig. 4, where the horizontal 
axis is D0 and the vertical axis is dBZe[-2]�.  When 
dBZe[-2]� and D0 are known, N0 can be calculated 
from Eq. (24), and dBZe[-2]i (i=1 or 2) can be calcu-
lated by substituting N0 and D0 into Eq. (23).  In Fig. 

Fig. 3 A function of Fδ(D0) in case of T=300 and 
μ=3. 

Fig. 4 Contours of dBZe[-2]2 in case of T=300 
and μ=3.  Gray region indicates no solu-
tions are given.  Dotted line indicates 
that ∂dBZe[-2]2/∂D0=0. 



4, the contours of dBZe[-2]2 are drawn with μ=3 and 
T=300K.  Gray shade indicates the region where a 
negative N0 is calculated.  On the border line of the 
gray shade region, N0=0.  We can confirm that the 
border line is same with the line drawn in Fig. 3. 
 The solutions of Lemma[-2] correspond to 
the crossing points of the line for a given dBZe[-2]δ 
(parallel to the horizontal axis) and the contour line 
for a given dBZe[-2]2.  It is implied by a visual inves-
tigation that Lemma[-2] has two solutions and that 
one solution is located left to the dotted line, which 
corresponds to ∂dBZe[-2]2/∂D0=0, and another 
solution is located right to the dotted line.  For ex-
ample, when dBZe[-2]1=40dB and dBZe[-2]2=35dB 
(dBZe[-2]δ=-5dB), two solutions are found around 
D0=1.4mm and D0=2.1mm.  In this case, the both 
solutions have D0 larger than D0s, therefore two so-
lutions coexist even with D0s-assumption.  Generally, 
it can be concluded that the number of solutions of 
Lemma[-2] is two without D0s-assumption and one or 
two with D0s-assumption.  Exceptionally, Lemma[-2] 
can have no solutions when biased dBZe[-2]i are 
given. 
 
5. SOLUTIONS OF PRIMITIVE PROBLEMS: 

CASE STUDIES 

 When FM is applied without 
D0s-assumption, a primitive problem has multiple 
solutions including the right solution.  Even with 
D0s-assumption, multiple solutions exist for some 
cases.  When BM is applied with D0s-assumption, 
only one solution is derived, but it is not necessarily 
the right solution as the PIA estimate may be biased.  
In this section, BM is applied with PIA estimates of 
different biases in order to evaluate how biases in 
PIA affect the estimate of surface rain rate (rain rate 
at range n; indicated by Rs).  From this analysis, we 
can also see the limitations of IBM and FM. 
 For the above purposes, simple rainfall 
cases are tested.  In all the cases, DSD parameters 
(N0, D0, μ) and T are set to be constant over n ranges 
for simplicity though it is not physically realistic par-
ticularly for T.  μ=3 and T=300K and they are known 
parameters.  (N0, D0) are unknown and the retrieval 
methods do not assume that the parameters are 
constant over n ranges.  PIA estimates have biases 
of between -5 dB and 5 dB independently of the 

frequencies.  D0s-assumption is employed.  When 
PIA is biased, dBZe[0]� may become larger than 
Fδ(D0s).  In such case, any D0 can not satisfy Eq. 
(22) and the retrieval has to be terminated.  When 
DSD parameters are retrieved up to range 1, dBA[-]i 
at range 1 (hereafter, simply denoted by dBA[-]i) is 
calculated.  As is explained, the upper boundary 
condition that both dBA[-]1 and dBA[-]2 are zero is 
generally not satisfied in BM. 
 In Fig. 5, the horizontal axis is for the bias 
of PIA at Ku-band (indicated by ΔPIA1) and the ver-
tical axis is for the bias of PIA at Ka-band (indicated 
by ΔPIA2).  The lower boundary condition is satis-
fied at the origin (indicated by O; ΔPIA1=0 and 
ΔPIA2=0).  Solid line indicates that dBA[-]1=0 and 
dotted line indicates that dBA[-]2=0.  The upper 
boundary condition is satisfied at the crossing points 
of the two lines. 
 
5.1. Necessity of SRT 

 In case 1, N0=10000, D0=1.5mm, and 
n=10.  Rain rate is as weak as about 2.1 mm h-1.  
Fig. 5a is shown for this case, where it should be 
noted that no lines are drawn as the retrieval is ter-
minated in the left upper part.  The upper boundary 
condition is satisfied only at O, where the lower 
boundary condition is satisfied.  In this case, the 
upper boundary condition and the lower boundary 
condition are equivalent, and it is implied that IBM 
can give the right solution for this case. 
 In case 2, N0=10000, D0=2.0mm, and 
n=10.  Rain rate is about 19.1 mm h-1 and is much 
heavier than case 1.  In Fig. 5b, the dotted line is 
almost overlapped with the solid line while the dotted 
contour line is also drawn in the right part of this 
figure.  It means that the upper boundary condition 
is almost or exactly satisfied not only at O.  In other 
words, in some cases that PIA is assumed wrongly 
(the lower boundary condition is not satisfied), the 
upper boundary condition is almost or exactly satis-
fied.  For such cases, it can not be expected that 
IBM gives the right solution. 
 To investigate the reason of the difference 
between case 1 and case 2, supplemental cases 
with smaller n are tested.  Case 1-1 is same with 
case 1, but n=1.  As the two lines are overlapped 
only at the origin (Fig. 5c), it is suggested that IBM 



can give the right solution.  When FM is applied for 
this case, Lemma[-2] has two solutions; (N0, 
D0)=(10000, 1.5) and (82082120, 0.626).  As the 
latter (wrong) solution has D0 smaller than D0s, it is 
not satisfied with D0s-assumption.  Therefore, FM 
as well as IBM has only one solution for case 1-1.  
For cases with any n (DSD parameters are same as 
case 1) including case 1 itself, FM should have only 
one solution.  Moreover, considering the equiva-
lence between FM and IBM, it is suggested that IBM 
has only one solution for such cases. 
 Case 2-1 is same with case 2, but n=1.  
As shown in Fig. 5d, the upper boundary condition is 
satisfied at two points: O and another point (indicated 
by A).  It means that IBM has two solutions (indi-
cated by the solution O and the solution A).  When 
FM is applied for this case, Lemma[-2] has two solu-
tions; (N0, D0)=(10000, 2.0) and (125862, 1.596).  
The former corresponds to the solution O and the 

latter corresponds to the solution A.  As D0 of the 
solution A is larger than D0s, the solution A is not 
rejected by D0s-assumption.  As a result, FM as well 
as IBM has 2 solutions for case 2-1. 
 Case 2-2 is same with case 2, but n=2.  
In Fig. 5e, the upper boundary condition is satisfied 
at two points O and A.  The point A in Fig. 5e is 
exactly same as the point A in Fig. 5d.  When FM is 
applied for this case, Lemma[-2] at range 1 is same 
as of the case 2-1.  If the right solution is selected at 
range 1, Lemma[-2] at range 2 is also same as of the 
case 2-1.  The right solution is obtained when the 
selection is right at the two ranges.  If the selection 
is right at range 1 but wrong at range 2, the calcu-
lated PIA is biased to the point A.  If the selection is 
wrong at range 1, as dBA[+] at range 1 (=dBA[-] at 
range 2) is wrongly estimated, Lemma[-2] at range 2 
becomes something different from that at range 1.  
In this case, as dBZe[-2]i are biased, this Lemma[-2] 

 
Fig. 5 Figures to check if the upper boundary condition is satisfied or not.  On the solid (dotted) line, the 

upper boundary condition at Ku-band (Ka-band) is satisfied.  a) is for case 1, b) is for case 2, c) is for 
case 1-1, d) is for case 2-1, e) is for case 2-2, and f) is for case 2-5.  In b), part of dotted line is 
overlapped with solid line.  In d) to f), an open circle indicates the point A. 



at range 2 has no solutions. 
 It can be said that FM has only two solu-
tions O and A for any n larger than 1 (DSD parame-
ters are same as case 2).  Generally, the solution A 
can be defined that the right solution is selected at 
ranges 1 through (n-1) but the wrong solution is se-
lected at range n (as conceptually shown in Fig. 6).  
If the wrong solution is selected at any range up to 
(n-1), Lemma[-2] at the next range has no solutions.  
Accordingly, this primitive problem can not have 
other solutions than O and A in case 2 (n=10).  
Considering the equivalence of FM and IBM, IBM 
should have only two solutions in case 2.  Although 
it is difficult to see in Fig. 5b if the two contour lines 
overlap with each other exactly or not, it is now clear 
that the two contour lines cross only at the two points 
O and A.  Still, along the straight line linking O and A, 
the upper boundary condition is almost satisfied.  If 
any PIA on the straight line OA is assumed in IBM, as 
the upper boundary condition is almost satisfied, the 
biased PIA can be judged to be right unless nu-
merical calculation is done with very high precision. 
 Here, we acknowledge that IBM has two 
kinds of solutions; they can be called “exact solu-
tions” and “approximate solutions”.  The exact solu-
tions satisfy the upper boundary condition exactly 
and the approximate solutions satisfy the upper 
boundary condition with small error which is difficult 
to be detected in practical numerical calculation.  
The approximate solutions become apparent as n 
increases.  Fig. 5f is for the case same with case 2 
but n=5.  The two contour lines are close to each 
other compared with case 2-1 (n=1) and case 2-2 
(n=2), still can be distinguished differently from case 
2 (n=10).  When multiple solutions exist, IBM can 
not select the right solution objectively.  In such 
cases, PIA estimates by SRT are required to distin-
guish the right solution from other exact and ap-
proximate solutions. 
 
5.2. Required accuracy of PIA 

 The relative error in surface rain rate de-
rived by BM with biased PIA estimates for case 2 is 
shown in Fig. 7.  The relative error is calculated as 
[Rs-Rs(O)]/Rs(O), where Rs(O) is surface rain rate of 
the right solution.  When PIA2 is biased, larger error 
in Rs is generated than when PIA1 is biased to the 

Fig. 6 A schematic figure of multiple solutions for 
primitive problem.  Horizontal direction 
corresponds to the bias in attenuation.  
Closed circles indicate the right solution 
and open circles indicate the wrong solu-
tion at each range.  The profile of solution 
A is shown by thick solid lines.  At range 
2, there may exist other two solutions as 
shown by gray circles, but not in case 2. 

Fig. 7 The relative error in Rs derived by BM with 
biased PIA for case 2.  Dotted line shows 
the straight line linking the points O and A, 
where candidates of solutions are as-
sumed to exist. 



same extent. 
 In IBM, by checking the upper boundary 
condition, (ΔPIA1, ΔPIA2) is constrained.  It can be 
assumed in case 2 that candidates of solutions exist 
on the straight line linking the points O and A.  
Therefore, to select unique solution, PIA estimates at 
both frequencies are not necessary.  If a PIA esti-
mate at either frequency is given by SRT, by com-
bining this estimate with IBM, unique solution can be 
obtained.  This is a modified IBM.  Instead of a PIA 
estimate at single frequency, the difference of PIA 
estimates at dual frequencies (PIAδ≡PIA2-PIA1) can 
be used.  As was explained in section 1, PIA esti-
mates are subject to biases caused by the change of 
land surface conditions.  It is expected that PIAδ has 
smaller biases than PIA1 and PIA2 as biases in PIA1 
and PIA2 are partly cancelled, though it has not been 
supported yet by observations.  This modified IBM 
is similar to a method proposed in Adhikari et al. 
(2007), which used DA instead of PIAδ. 
 Approximate solutions with relative error 
in Rs of 10% (50%) are called solution B (C).  For 
case 2, (ΔPIA1, ΔPIA2) is (0.045dB, 0.418dB) for 
solution B and (0.138dB, 1.697dB) for solution C.  
Required accuracy in PIA at Ku-band is much higher 
than that at Ka-band.  It seems very difficult to sat-
isfy the required accuracy at Ku-band from the ex-
perience of TRMM/PR.  Although the authors have 
no information on possible accuracy of PIA estimates 
at Ka-band by SRT, it is assumed to be same as that 
at Ku-band in the rest of this paper.  It may be pos-
sible to satisfy the required accuracy at Ka-band if 
the relative error in Rs of 50% is allowed.  
 
6. SOLUTIONS OF PRIMITIVE PROBLEMS: 

GENERAL RESULTS 

 In previous section, solutions of primitive 
problems are investigated for some cases.  In this 
section, more general cases are investigated to de-
rive robust results. 
 
6.1.The dependence on D0 

 Same as the previous section, DSD pa-
rameters (N0, D0, μ) and T are set to be constant 
over n ranges.  N0=10000, μ=3, T=300K, and D0 is 
different by cases (between 0.5mm and 3.5mm).  

Learned from the results of the previous section, the 
solution A is focused.  Particularly, (N0, D0) at range 
n, Rs, and ΔPIAi of the solution A are examined (Fig. 
8).  Actually, these variables are independent of n, 
so they can be obtained just by solving the 
Lemma[-2].  Hereafter, if not explicitly notified, (N0, 
D0) indicates values at range n.  An estimate of the 
solution X is indicated by putting (X) to the variable.  
For example, D0(A) indicates the D0 at range n of the 
solution A. 
 
1) Categorization 
 Here, the primitive problem can be cate-
gorized into several types by D0(O).  When D0(O) is 
smaller than D0s(=0.97mm), the right solution can not 
be selected as we assume that D0 should be larger 
or equal to D0s.  In this case, the primitive problem 
is categorized as type-0 and is excluded from this 
study. 
 When D0(O) becomes larger than D0s, it 
holds that D0(A)<D0(O), Rs(A)>Rs(O), ΔPIA1(A)>0, 
and ΔPIA2(A)>0.  As long as the inequalities hold, 
the primitive problem is categorized as type-1.  The 
upper limit of D0(O) in type-1 is indicated by D0x.  
When D0(O)=D0x, the solution A becomes identical 
with the solution O.  Here, D0x=2.17mm and the 
corresponding Rs(O) is 35.4 mm h-1.  Type-1 is fur-
ther divided into type-1a and type-1b by comparing 
D0(A) and D0s.  When D0(A) is smaller than D0s, by 
D0s-assumption, the right solution O is uniquely se-
lected.  In this case, the primitive problem is cate-
gorized as type-1a.  On the other hand, when D0(A) 
is larger than D0s, the solution A can not be rejected 
by D0s-assumption, and the primitive problem is 
categorized as type-1b.  D0(O) of type-1a is smaller 
than that of type-1b, and the threshold of D0(O) be-
tween the two types is indicated as D0w.  Here, D0w 
is 1.77mm and the corresponding Rs(O) is 7.57 mm 
h-1.  The case 1 is involved in type-1a and the case 
2 is involved in type-1b. 
 When D0(O) becomes larger than D0x, it 
holds that D0(A)>D0(O), Rs(A)<Rs(O), ΔPIA1(A)<0, 
and ΔPIA2(A)<0.  The upper limit of D0(O) to satisfy 
the inequalities is indicated by D0y.  When D0(O) 
approaches to D0y, D0(A) diverges to positive infinity.  
D0y is estimated to be around 2.67mm and the cor-
responding Rs(O) is about 167 mm h-1.  When D0(O) 



is between D0x and D0y, the primitive problem is 
categorized as type-2. 
 More two types are defined for D0(O) lar-
ger than D0y.  When D0(O) exceeds to D0y, D0(A) 
starts to decrease and it holds that D0(A)>D0(O), 
Rs(A)>Rs(O), ΔPIA1(A)>0, and ΔPIA2(A)<0.  In 
these cases, the primitive problem is categorized as 

type-3.  The upper limit of D0(O) in type-3 is indi-
cated by D0z.  Here, D0z is 2.99mm and the corre-
sponding Rs(O) is 385 mm h-1.  When D0(O) is 
equal to D0z, the solution A becomes identical with 
the solution O.  When D0(O) is larger than D0z, the 
primitive problem is categorized as type-4.  In 
type-4, D0(A) is smaller than D0(O) and PIA1(A) is 

 
Fig. 8 Categorization of the primitive problem with different D0(O).  a) D0, b) surface rain rate, c) PIA at 

Ku-band, and d) PIA at Ka-band of the right and wrong solutions are shown. 



smaller than PIA1(O), but the order of Rs(A) and 
Rs(O) and that of PIA2(A) and PIA2(O) are not fixed.  
It might not be very important to consider type 3 and 
type 4 because rain echoes at near surface are 
masked under extremely heavy rainfall. 
 
2) The role of SRT 
 The role of SRT is examined for each type.  
Approximate solutions B and C are defined as in 
section 5, but if the relative error in Rs(A) is negative, 
approximate solutions with relative error in Rs of 
-10% (-50%) are called solution B (C).  If the rela-
tive error in Rs(A) is within 10%, the solutions B and 
C are not defined.  If the relative error in Rs(A) is 
within 50%, the solution C is not defined.  In Fig. 8c 
and 8d, ΔPIA1 and ΔPIA2 of the solutions B and C 
are shown as well as those of the solution A. 
 While SRT is not necessary for type-1a as 
the solution A is rejected by D0s-assumption, SRT is 
necessary for the other types.  In type-1b, both 
ΔPIA1(A) and ΔPIA2(A) are positive and that 
ΔPIA2(A) is nearly ten times as large as ΔPIA1(A).  
Therefore, it is much effective to estimate PIA by 
SRT at Ka-band rather than at Ku-band for the modi-
fied IBM.  ΔPIA1(A) and ΔPIA2(A) become zero 
when D0(O) approaches to D0s or D0x.  It becomes 
more difficult but less necessary to distinguish O and 
A, as the difference in Rs between O and A becomes 
small.  In type 1b, as ΔPIA1(B) is smaller than 0.1dB 
and ΔPIA2(B) is smaller than 0.5dB, it seems to be 
difficult to distinguish O from B unless SRT would be 
significantly improved compared with the TRMM era.  
On the other hand, it can be expected to distinguish 
O from C as ΔPIA2(C) is larger than 1dB, while 
ΔPIA1(C) is smaller than 0.2dB. 
 Required accuracy in PIAδ is slightly 
higher than PIA2.  Still, if biases in PIAi are effec-
tively cancelled by taking the difference, using PIAδ 
leads to better estimates in Rs than using PIA2. 
 In type 2, both ΔPIA1(A) and ΔPIA2(A) are 
negative and that |ΔPIA2| is nearly ten times as large 
as |ΔPIA1|.  Same as type 1, it is much effective to 
estimate PIA at Ka-band than at Ku-band.  When 
D0(O) increases, ΔPIA1(A) and ΔPIA2(A) increase 
rapidly, therefore it is not difficult to distinguish O 
from A.  There is some possibility to distinguish O 
from B by means of SRT at Ka-band as ΔPIA2(B) is 

larger than 0.5dB, while ΔPIA1(B) is around 0.1dB.  
Moreover, as ΔPIA1(C) is near to 1dB and ΔPIA2(C) 
is larger than 4dB, it can be expected to distinguish 
O from C by SRT at Ku-band as well as by SRT at 
Ka-band. 

Fig. 9 Categorization of the primitive problem is 
shown by different background colors 
(gray for type-0, light pink for type-1a, 
dark pink for type-1b, blue for type-2, 
green for type-3, and purple for type-4).  
a) Rs(O) and b) ΔPIA2(C) are shown as 
contours.  μ is set to be 3. 



 In type 3 and in part of type 4, ΔPIA1(A) 
and ΔPIA2(A) have different signs and |ΔPIA1(A)| is 
generally larger than |ΔPIA2(A)|.  It is more effective 
to use PIA at Ku-band rather than at Ka-band.  If 
PIA at both frequencies are available, using PIAδ 
may gives better accuracy. 

 
6.2.The dependence on N0 

 The same simulation with the previous 
subsection 6a is done but for different N0 ranging 
from 1,000 (dBN0=30dB) to 1,000,000 (dBN0=60dB) 
with the step of 1dB, where dBN0 indicates 
10log10N0. 
 In Fig. 9a, different types are shown by 
different background colors on the plane of (D0, 
dBN0) with the contour of Rs(O).  Note that D0s is 
independent of N0 as it is determined by Eq. (22).  
D0w, D0x, D0y, and D0z are dependent on N0, and they 
tend to become small as N0 becomes large.  When 
N0 is larger than 54dB, type-1a does not exist.  
Furthermore, when N0 is larger than 57dB, type-1b is 
not found.  Except for these high N0 cases, Rs(O) at 
the border of different types are not very sensitive to 
N0.  The upper limit of Rs(O) in type-1a is 5 to 10 
mm h-1, that in type-1b is around 20 to 50 mm h-1, 
that in type-2 is around 150 to 200 mm h-1, and that 
in type-3 is nearly 500 mm h-1.  Roughly speaking, 
SRT is not necessary when Rs(O) is lower than 5 mm 
h-1, on the other hand, SRT is required when Rs(O) is 
higher than 10 mm h-1. 
 The contour of ΔPIA2(C) is shown in Fig. 
9b.  When D0(O) is close to D0x or D0z, as the solu-
tion C does not exist, ΔPIA2(A) is shown instead of 
ΔPIA2(C).  In type 1b, |ΔPIA2(C)| is generally larger 
than 1dB where N0 is smaller than 50dB.  In type 2, 
except for the case that D0(O) is close to D0x, 
|ΔPIA2(C)| is larger than 1dB and exceeds to 4dB 
when N0 is smaller. 
 
6.3.The dependence on μ 

 Up to here, the third DSD parameter μ is 
fixed to be 3, but the results may be significantly 
changed by different μ.  In this subsection, μ is fixed 
to be 1, and the same simulation with subsection 6b 
is done (Fig. 10).  D0s for μ=1 is 0.71mm and 
smaller than that for μ=3.  Other thresholds of D0(O) 

are also smaller for μ=1 than those for μ=3.  How-
ever, the upper limit of Rs(O) in each type is nearly 
same with the case of μ=3.  Moreover, the contour 
of ΔPIA2(C) for μ=1 shown in Fig. 10b is basically 
similar to that for μ=3 in Fig. 9b.  It means that re-
quired accuracy of SRT at Ka-band is not very sen-
sitive to μ. 
 Rose and Chandrasekar (2005) tested 

Fig. 10 Same as Fig. 9, but for μ=1.  In a), the 
threshold below which MA04’s method 
can give the right solution is shown ac-
cording to RC05. 



MA04’s method (a kind of IBM) for many cases with 
μ=1, and empirically determined the conditions that 
MA04’s method could give the right solution.  If D0 is 
smaller than D0* given in the Eq. (25) [as Eq. (41) of 
their paper], the right solution is selected by MA04’s 
method.  
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where Nw is normalized intercept parameter of 
gamma distribution, and can be related with D0, N0, 
and μ by Eq. (26). 
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Two variables of Eq. (25) a and b were empirically 
determined and were dependent on n.  The lines 
corresponding to Eq. (25) are drawn in Fig. 10a for 
the cases of n=6, 9, and 12.  As values of a and b 
were derived under the conditions that Nw is not 
larger than 8000 and D0 is not larger than 2.5mm, the 
lines in Fig. 10a are drawn within in this limit.  It is 
seen that the three lines are drawn in the region of 
type 1b.  As MA04’s method tends to select the 
solution with the smallest PIA among multiple can-
didates of solutions, it generally selects the solution 
O rather than the solution A for type-1b.  As it be-
comes difficult to distinguish O from approximate 
solutions when n increases, it is convincing that the 
lines shift to weaker Rs(O) when n increases. 
 Adhikari et al. (2007) also tested MA04’s 
method and showed (N0, D0)=(8000, 1.1) as a suc-
cessful case and (N0, D0)=(8000, 1.5) as a failure 
case.  In their study, it was set that μ=0 and n=17.  
We confirmed that the former case belongs to 
type-1a and the latter case belongs to type-1b by 
drawing the same figure with Fig. 10a but for μ=0 
(not shown).  The previous studies found the limita-
tion of MA04’s method in the region of type 1b. 

 
6.4.The dependence on the discrete from of dBZm 

 As explained in Section 2c, dBZm at a 
discrete range is defined in Eq. (16) up to here in this 
paper.  However in this subsection, the attenuation 

is set as dBA as shown in Eq. (27), to check if dif-
ferent definitions of dBZm affect the conclusions of 
this paper. 

dBZm=dBZe－dBA.   (27) 

Fig. 11 Figures to visually examine the solutions 
of Lemma[α].  a) α×N0 when dBZe[α]� 
and D0 are given.  Shaded area indi-
cates α×N0>0 and plain area indicates α
×N0<0.  Contours are drawn for dB|α×
N0|.  b) Contours of dBZe[α]2.  Dotted 
line indicates that ∂ dBZe[α]2/ ∂ D0=0.  
α=1 for shaded area and α=-1 for plain 
area. 



With this definition, the second equality of Eq. (18) 
does not hold.  Instead of that, the following two 
equations hold. 
dBZm＋dBA[-]=dBZe－1×k×L≡dBZe[-1],   (28-1) 
dBZm＋dBA[+]=dBZe＋1×k×L≡dBZe[1].   (28-2) 

In FM, dBZe[-1] is given instead of dBZe[-2], then a 
Lemma[-1] has to be solved at each range.  In BM 
(and IBM), dBZe[1] is given instead of dBZe[0], then a 
Lemma[1] has to be solved at each range. 
 The characteristics of Lemma[-1] and 
Lemma[1] are explained in a general way as below.  
Following Eq. (29) can be derived from Eqs. (10), 
(11), and (19) for any �. 

dBZe[α]δ=Fδ(D0)+α×N0×Gδ(D0)×L (29) 
When dBZe[α]� and D0 are given, α×N0 can be 
calculated.  In Fig. 11a, where the horizontal axis is 
D0 and the vertical axis is dBZe[α]δ, gray shaded area 
indicates that α×N0>0 and plain area indicates that 
α×N0<0.  Contours are drawn for dB|α×N0|.  As 
N0 should be positive, solutions of Lemma[α] can 
exist only in gray shaded area when α>0 and only in 
plain area when α<0.  It can be seen that the 
boundary of shaded area and plain area (α×N0=0) 
is identical with the line in Fig. 3.  If α=-2 is applied 
for plain area, dBZe[-2]2 can be calculated as shown 
in Fig. 4.  Same as this, α=-1 is applied for plain 
area and dBZe[-1]2 is calculated.  On the other hand, 
α=1 is applied for shaded area and dBZe[1]2 is cal-
culated.  In Fig. 11b, dBZe[-1]2 and dBZe[1]2 are 
shown together.  The dotted line indicates ∂

dBZe[α]2/∂D0=0 (α=-1 for plain area and α=1 for 
gray shaded area).  From a visual investigation, the 
followings are strongly suggested.  Lemma[-1] has 
two solutions, and at least one of them has D0 larger 
than D0s.  It is not always possible to get unique 
solution even with D0s-assumption.  Lemma[1] has 
unique solution when dBZe[1]� is negative and it has 
three solutions in some cases when dBZe[1]� is 
positive.  In the latter case, two of the three solu-
tions have D0 smaller than D0s.  Therefore, it is al-
ways possible to get unique solution of Lemma[1] 
with D0s-assumption.  In addition to the above, it 
should be kept in mind that the lemmas have no 
solutions in some cases that biased dBZe[α]i are 
given. 
 Figure 12 is same as Fig. 9 but with the 
definition of Eq. (27).  D0(O) at the boundary of 

different types is slightly larger in Fig. 12a than in Fig. 
9a.  Corresponding Rs(O) is also slightly larger in 
Fig. 12a than in Fig. 9a.  ΔPIA2(C) as shown in Fig. 
12b is nearly same with that in Fig. 9b.  It can be 
concluded that the main results of this study are not 
significantly changed by different definitions of dBZm. 

 
7. SUMMARY AND CONCLUSIONS 

 
Fig. 12 Same as Fig. 9, but the Eq. (27) is used to 

define the attenuation at a discrete range 
in stead of Eq. (16). 



 A primitive problem for the GPM/DPR, 
which derives DSD parameters from observed Zm, is 
investigated in this study.  This can be treated as a 
mathematical problem to estimate 2n unknowns from 
2n equations.  Retrieval methods of this problem 
such as FM, BM, and IBM, can be decomposed into 
lemmas to estimate 2 unknowns from 2 equations.  
Lemmas involved in FM generally have two solutions, 
so FM yields multiple solutions for the primitive 
problem.  On the other hand, lemmas in BM have 
unique solution under D0s-assumption, therefore BM 
can yield the right solution if the PIA is accurately 
estimated by SRT. 
 IBM is equivalent to FM as the upper 
boundary condition is checked but the lower bound-
ary condition is not checked in both methods.  
There are two types of solutions in IBM: exact solu-
tions and approximate solutions.  Exact solutions 
satisfy the upper boundary condition exactly and 
they are equivalent to solutions derived in FM.  
Approximate solutions almost satisfy the upper 
boundary condition.  When n increases, as the 
numerical error is accumulated, approximate solu-
tions become apparent. 
 The primitive algorithm is categorized into 
several types.  In type-1a, as the right solution can 
be selected by D0s-assumption, IBM can yield the 
right solution.  In type-1b, as the solution A can not 
be objectively rejected, IBM can not be expected to 
always yield the right solution.  However, in MA04’s 
method (a kind of IBM), which tends to select the 
solution with the smallest PIA, the right solution is 
selected when rain rate is relatively weak.  The 
upper limit of Rs(O) in type-1b is generally less than 
50 mm h-1 (though it is dependent on N0 and μ), but 
the upper limit of Rs(O) when the right solution can 
be derived in MA04’s method is much smaller be-
cause of approximate solutions. 
 SRT is necessary to solve the primitive 
problem except for some weak rainfall cases.  By 
combining with IBM, PIA estimate by SRT at either 
frequency gives unique solution.  In type 1b and 
type 2, required accuracy of PIA estimate by SRT is 
much higher at Ku-band than at Ka-band.  So, it is 
much effective to estimate PIA at Ka-band if the ac-
curacy of SRT is same at both frequencies.  To 
estimate Rs with a relative error of 50% or better, the 

required accuracy of PIA estimates at Ka-band is 
around 1dB in type 1b and around 4dB in type 2.  
The above results are not strongly dependent on N0, 
μ, and the definition of dBZm in discrete form. 
 Though some part of this paper is not 
mathematically rigorous (such that the number of 
solutions is judged by a visual investigation), the 
results are believed to be right for most cases.  It is 
necessary to note that this study assumes many 
ideal conditions (such that no observation errors in 
Zm).  To compensate such errors, higher accuracy 
should be required for SRT.  On the other hand, this 
study does not assume that the relationship between 
ranges.  As Rose and Chandrasekar (2006) as-
sumes that DSD parameters are expressed by linear 
function of altitude, additional constraint may relax 
the requirement for SRT. 
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