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1. INTRODUCTION

The core satellite of the Global Precipita-
tion Measurement (GPM) mission will be launched in
2013 with Dual-frequency Precipitation Radar (DPR)
on. DPRis the successor of the Precipitation Radar
(PR) on the Tropical Rainfall Measuring Mission
(TRMM) satellite. DPR consists of a Ku-band
(13.6GHz) radar and a Ka-band (35.5GHz) radar, the
former of which is similar to PR. DPR is expected
to give more accurate estimates in rain drop size
distribution (DSD) and rain rate by taking advantages
of dual-frequency observations. Methods to re-
trieve DSD and rain rate from dual-frequency ob-

servations have been studied for more than 20 years.

Echo power observed by a space-borne precipitation
radar is converted to radar reflectively factor (Zn) at
some ranges and surface backscattering cross sec-
tion (co) at earth surface. The number of observa-
tions by DPR is ideally 2n + 2, where n is the number
of ranges. For simplicity, we assume ideally perfect
conditions of observation so that many obstacles
such as ground clutter can be ignored.

Meneghini et al. (1992; called ME92) de-
veloped a retrieval method for an airborne
dual-frequency precipitation radar. ME92 assumed
that DSD obeys a two-parameter gamma function
and they retrieved 2n DSD parameters from 2n + 2
observations. They applied a surface reference
technique (SRT) to estimate path integrated at-
tenuation (PIA) by comparing o’ ata target pixel and
o° at nearby no-rain pixels (reference pixels). In
SRT, it is generally assumed that the surface condi-
tions between a target pixel and the reference pixels
are same in terms of °, but this assumption is not
guaranteed and the difference in surface conditions
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often causes biases in PIA. A SRT is applied in the
standard algorithm of PR (Iguchi et al. 2009) and
Seto and Iguchi (2007) found that rainfall-induced
changes in surface conditions affect ¢° and yield
biases in PIA and rain rate estimates. Moreover,
instantaneous rain rate estimates over land could be
largely biased if the land surface type of a target pixel
is drastically different from that of the reference pix-
els. In case of airborne observations, unstable
attitude of an airborne could change o° and cause
bias in PIA and rain rate estimates (Mardiana et al.
2004; called MA04).

MAO4 proposed a new retrieval method
without SRT and tested it with air-borne
dual-frequency observations. While PIA is esti-
mated by means of SRT before the retrieval in ME92,
PIA is assumed before the retrieval in MAO4. After
the retrieval, PIA can be calculated from the retrieved
DSD and is compared with the assumed PIA. Until
calculated and assumed PIAs are judged to be same,
the assumed PIA is modified and the retrieval is iter-
ated. The details of methods in ME92 and MAO4
will be given in Section 3. MAO04’s method showed
a good performance for the air-borne observations in
their paper, but some following researches such as
Rose and Chandrasekar (2005) and Liao and Me-
neghini (2005) claimed that MAO4’s method fails for
relatively heavy rainfall cases. Adhikari et al.
(2007) also showed cases of failure in MAO04's
method and proposed a modified method by using
differential attenuation (DA) between the two fre-
guencies. As DA can be estimated accurately only
when rain rate is vertically constant or the Mie effect
is negligible, the modified method can not be widely
used.

As no methods without SRT are found to
work for all cases, the necessity of SRT is strongly
implied. This study examines the reason why
MAO4's method fails for heavier rainfall, confirms the
necessity of SRT, proposes a new retrieval method,
and discusses on the accuracy of SRT required to



retrieve surface rain rate within a certain error toler-
ance.

2. OBSERVATIONS BY DPR
2.1. Assumptions

DPR observes precipitation in nadir direc-
tion (with the incident angle of 0 degree) to obtain Z,
at n ranges and o° at the surface (Fig. 1). The
depth of each range is constant to be L [km].
Throughout this study, L is set as 0.25 km. Num-
bers 1 to n are assigned to ranges from the top to the
bottom, then the height of precipitation can be given
as nXL. Rain drops are equally distributed in each
range both vertically and horizontally, and the DSD

follows a gamma distribution function as shown in Eq.

).

N (D)= N,D* exp[- (3.67 + x)D/D,] 1)

where D [mm] is drop size and N [mm™ m¥] is
number density. No [mm™** m®], Do [mm], and 4 [-]
are DSD parameters. In this study, xis treated as a
known parameter, and No and Do are parameters to
be estimated. Other particles than rain drops can
be totally ignored.

2.2. Theory

Rain rate (denoted by R [mm h'l]) can be
calculated from the DSD parameters as Eq. (2).

R=CRII:ZOV(D)D3N(D)dD’ o
where Cr is a constant for unit conversion (=0.67 X
10 and v(D) [m s™] is the falling velocity of rain
drop and is dependent on D. According to Gunn
and Kinzer (1949), we employ the following Eq. (3) to
calculate v(D).

V(D) =4.854x D xexp(-0.195D) @)

Real (non-attenuated) radar reflectively
factor (denoted by Ze [mm6 m-3]) and attenuation
coefficient (denoted by k [dB km™]) are given as Egs.
(4) and (5).

Z.=C, J'::Oo-b(D)N(D)dD @

k =Ck.|;:00t(D)N(D)dD, .
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Fig.1 A schematic figure of assumed DPR ob-
servation.

where op(D) [mm?] and o(D) [mm?] are backscat-
tering cross section and total extinction cross section
and the both are calculated from Mie theory. Cx is
equal to 0.01 X logio(e), and C; is given in Eq. (6).
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: (6)
where A [cm] is the wavelength of microwave, ny [-]
is the refractivity index of water, which depends on
the physical temperature of water (denoted by T [K]).
Measured (attenuated) radar reflectivity
factor (denoted by Zn, [mm® m™)) at the distance of r
[km] from the top of precipitation is calculated as Eqg.

).
Z ()= Ze(r)exp(— 0.2% Inloxjiok(s)ds)
a (7)
where s is a dummy parameter of r. Equation (7)
can be rewritten in dB unit as Eq. (8).

dBZ,,(r) = dBZ,(r)-2[ k(s)d
(1) = dBZ,(1) =2[[_ k(s)ds ©

where dBX indicates 10logio(X) for any variable X.
Given that r=rs at the earth surface, PIA [dB] can be



written as Eq. (9).

PIA=2 js’iok(s)ds o

2.3. In discrete form

At a range, dBZ. and k are determined
only by parameters of the range, so they can be
written as Eq. (10) and Eq. (11).

0dBZ¢(No,Do)=10l0g10No+F (Do), (20)
K(No,Do)=No X G(Do), (11)
where F and G are functions of Dy and the details are

given as below.

F(D,) =10log,, {cz [, o(D)D” exp[~(3.67+ £)D/ DU]dD} (12)

G(D,)=C, E:Oo-[(D)D“ exp[—(3.67 + #)D/D,]dD a3)
On the other hand, Z,, at a range can not
be determined by parameters of the range. When
the range locates between r=ro-L/2 and r=ro+L/2 (Fig.
2), the average of Z,, (denoted by [Z]) at the range
can be calculated as Eq. (14).
12,]= % [z, (e = % [ :’;ze(r)exp(— 0.2xIn20x ':Ok(s)ds)dr (14)
As Z. and k are constant within the range, Eq. (14)
can be simplified as Eq. (15).

(Z.1=2.(t) [exp(cL/2)-exp(-cL/2)] (15)
cL

where c is equal to 0.2X(In10) Xk. As c and L are
positive, [Zm] is always larger than Zm(ro). When ¢
or L approaches to zero, [Zm] approaches to Zny(ro).
In other words, when the rainfall is weak enough or
when the width of the range is thin enough, the at-
tenuation from which the range suffers can be re-
garded to occur along the two-way path between the
top of precipitation and the center of the range.
This attenuation is indicated by dBA as shown in Fig.
2. Generally, the attenuation can be different from
dBA, but it should be larger than dBA[-] and should
be smaller than dBA[+], where dBA[-] (dBA[+]) are
the attenuation along the two-way path between the
top of precipitation and the top (bottom) of the range.

In many previous researches including
ME92 and MAO4, the attenuation is set as dBA[+],
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Fig. 2 Different definitions of attenuation for a

discrete range.

while the attenuation is set as dBA in some re-
searches such as Kozu et al. (1991). No re-
searches are found to set the attenuation as dBA[-].
To compare our results with those of ME92 and
MAO4, the attenuation is set as dBA[+] also in this
study (except for section 6d), therefore dBZy, is given
as Eq. (16).

dBZ,=dBZe—dBA[+]. (16)
Please confirm that the following Eqg. (17) is hold.
dBA[-]+kL=dBA=dBA[+]—kL a7)

For the discussion later in this paper, we define a
pseudo observation variable dBZ¢[-2] as Eq. (18).
dBZ¢[-2]=dBZ.—2 X kL=dBZm+dBA[-] (18)
Generally, dBZ¢[a] is defined as Eq. (19).
dBZe[ao]=dBZe+ a X KL (19)
dBZ¢[] at a range, for any value of ¢, is independent
of the other ranges as dBZ. (=dBZ¢[0]) is.

2.4. Primitive problem

The primitive problem in this study is to
retrieve (No, Do) of n ranges from dBZ, of n ranges at
the two frequencies of the DPR. This is a set of 2n
non-linear equations with 2n unknowns. As shown



in section 2a, ideal conditions can be assumed.
Moreover, dBZ, is assumed to be free from obser-
vation errors. SRT can be used to give estimates
PIA, but the accuracy of PIA is not guaranteed.

3. RETRIEVAL METHODS
3.1. Forward method (FM)

In forward method (FM), DSD parameters
are sequentially determined from near range (range
1) to far range (range n) without the use of SRT. At
range 1, dBA[-] is assumed to be zero (as no at-
tenuation occurs over the top of precipitation) and
dBZ,, is observed, so according to Eq. (18) dBZ¢[-2]
is calculated at the two frequencies. Here, we have
a smaller problem or a lemma to retrieve (No, Do)
from dBZ[-2] at the two frequencies. This lemma is
just a set of 2 non-linear equations with 2 unknowns,
and is indicated by Lemma[-2]. Generally, a lemma
to retrieve (No, Do) from dBZ¢[¢] of the two frequen-
cies is indicated by Lemmala]. When the
Lemma][-2] is solved at range 1, all the variables at
range 1 become known; dBA[+] can be calculated as
dBA[-]+2kL. As dBA[-] at range 2 is known to be
equal to dBA[+] at range 1, the same process can be
applied to range 2 after range 1. By repeating this
process up to range n, (No, Do) and other variables of
n ranges can be retrieved.

3.2. Backward method (BM)

In backward method (BM), DSD parame-
ters are sequentially determined from far range
(range n) to near range (range 1) with the use of SRT.
At range n, dBA[+] is no other than PIA, which can
be estimated by SRT, and that dBZ,, is observed,
then dBZ. can be easily calculated according to Eq.
(16). Here, we have a lemma to retrieve (No, Do)
from dBZ. at the two frequencies. As dBZ. is same
as dBZ.[0], the lemma can be indicated by Lemma[0].
When the Lemma]|0] is solved at range n, all the
variables at range n become known; dBA[-] can be
calculated as dBA[+]-2kL. As dBA[+] at range (n-1)
is known to be equal to dBA[-] at range n, the same
process can be applied to range (n-1) after range n.
By repeating this process up to range 1, (No, Do) and
other related variables of n ranges can be obtained.

BM is essentially same with the retrieval method in
ME92.

3.3. Iterative backward method (IBM)

In iterative backward method (IBM), the
same procedure with BM is applied without SRT. At
first, PIA is assumed arbitrarily, then (No, Do) are
sequentially retrieved from range n to range 1 as BM.
Once (N, Do) of n ranges are retrieved, PIA is cal-
culated from the retrieved (No, Do), and the calcu-
lated PIA is compared with the assumed PIA. This
comparison is equivalent to check that dBA[-] at
range 1 is zero or not. If the calculated PIA and the
assumed PIA are not same (dBA[-] at range 1 is not
zero), assumed PIA turns out wrong. By using dif-
ferently assumed PIA, the same procedure is iter-
ated till the calculated PIA and the assumed PIA
becomes same. In MAO4, PIA is assumed to be
zero at the first iteration, then at the second iteration
and later, PIA is assumed to be same with the cal-
culated PIA at the previous iteration.

3.4. Comparison of methods

As no attenuation occurs over the top of
precipitation, dBA[-] at range 1 should be zero.
Hereafter, it is called upper boundary condition.
The upper boundary condition is satisfied in FM and
IBM, but it is not checked in BM. On the other hand,
dBA[+] at range n should be equal to the true PIA.
It is called lower boundary condition. The lower
boundary condition is checked neither in FM nor in
IBM. From the view point of the boundary condi-
tions on attenuation, FM and IBM are equivalent,
while BM is something different from the other two
methods. According to the categorization of re-
trieval methods for single-frequency radar (Iguchi et
al, 1994), FM and IBM are kinds of initial value
method, while BM is a kind of final value method.

4. SOLUTIONS OF LEMMAS

Any of the three retrieval methods for DPR
consists of Lemmala] (a=-2 or a=0). Except for
solving lemmas, no difficulties are involved in the
methods. Therefore, in this section, solutions of the
lemmas are investigated. As defined, Lemmal[¢] is
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Fig. 3 A function of Fs(Do) in case of T=300 and
1=3.

the problem to retrieve (No, Do) from dBZ¢[a] at the
two frequencies. dBZg[a] can be rewritten as Eg.
(20) from Egs. (10), (11), and (19).
dBZe[a]=10l0g10(No)+Fi(Do)+aX No X Gi(Do) XL,  (20)

where subscript i indicates the frequency; 1 is for
Ku-band and 2 is for Ka-band. Hereafter, the sub-
script i can be attached to variables and functions
dependent on the frequency.

For a=0, the third term of the right hand
side in Eqg. (20) is zero, and Eq. (20) can be simpli-
fied as follows.

dBZ.[0]:=10l0g10(No)+F1(Do), (21-1)

dBZ.[0];=10l0g10(No)+F2(Do).  (21-2)
By taking the difference of the two equations in Eq.
(21), the first term of the right hand side is cancelled
as Eq. (22).

dBZe[0]s=F5(Do), (22)
where subscript 6 indicates the difference of Ka band
and Ku band, or Xs=X>-X; is hold for any variable X.
Eqg. (22) has only one unknown parameter Do. Fig-
ure 3 draws the function of Fs(Do) with 4=3.0 and
T=300[K]. F;(Do) takes a local maximum when Do
is 0.97mm. As far as investigated in our study and
also in previous studies, Fs(Do) takes only one local
maximum in case of rain drops. Do which gives the
local maximum of Fs(Do) is indicated by Dgs. If
dBZ[0]; is negative, Dg is uniquely determined from
Eqg. (22). However, if dBZg[0]; is positive, two dif-
ferent Do can satisfy Eq. (22) except for the case of
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Fig. 4  Contours of dBZ.[-2], in case of T=300
and 4=3. Gray region indicates no solu-
tions are given. Dotted line indicates
that 0 dBZg[-2]2/ 0 Do=0.

dBZ.[0]5=F5s(Dos). One of the two Dg is larger than
Dos and another is smaller than Dgs, the former of
which yields higher rain rates than the latter. In
order not to miss heavy rainfall rather weak rainfall, it
is a reasonable way to assume that Dy is larger than
or equal to Dgs. With this assumption (called
Dos-assumption), Do is always uniquely determined.
When Dg is determined, by substituting Do into Eg.
(21-1) or (21-2), No can be calculated. As shown
above, Lemma[0] has only one solution under
Dos-assumption.  Still, when dBZ.[0]s is given to be
larger than Fs(Dos) because of some errors (such as
biases in PIA), no Dy can satisfy Eq. (22). In such
cases, Lemma]|0] has no solutions.

Next, Lemmal[-2] is considered. dBZ.[-2]
can be written as follows.
dBZ[-2]1=10l0g10(No)+F1(Do) —2 X Ng X G1(Dg) X L, (23-1)
dBZe[-2],=10l0g10(No)+F2(Do) —2 X No X Go(Do) X L. (23-2)
And, the difference in dBZ¢[-2] between the two fre-
quencies is given as Eq. (24).

dBZe[-2]5=F3(Do) —2 X Ng X G5(Dg) X L. (24)

Here, the solution of (No, Do) in Lemma][-2] can be
visually investigated by Fig. 4, where the horizontal
axis is Do and the vertical axis is dBZ¢[-2]0. When
dBZ.[-2]0 and Do are known, No can be calculated
from Eq. (24), and dBZ¢[-2]i (i=1 or 2) can be calcu-
lated by substituting No and Do into Eq. (23). In Fig.



4, the contours of dBZ[-2], are drawn with x=3 and
T=300K. Gray shade indicates the region where a
negative Ny is calculated. On the border line of the
gray shade region, No=0. We can confirm that the
border line is same with the line drawn in Fig. 3.

The solutions of Lemmal-2] correspond to
the crossing points of the line for a given dBZ[-2]s
(parallel to the horizontal axis) and the contour line
for a given dBZ[-2],. It is implied by a visual inves-
tigation that Lemmal[-2] has two solutions and that
one solution is located left to the dotted line, which
corresponds to 0 dBZ¢[-2]/ 0 Do=0, and another
solution is located right to the dotted line. For ex-
ample, when dBZg[-2];=40dB and dBZ.[-2],=35dB
(dBZ¢[-2]s=-5dB), two solutions are found around
Do=1.4mm and Do=2.1mm. In this case, the both
solutions have Dg larger than Dgs, therefore two so-
lutions coexist even with Dgs-assumption. Generally,
it can be concluded that the number of solutions of
Lemmal[-2] is two without Dgs-assumption and one or
two with Dos-assumption. Exceptionally, Lemma[-2]
can have no solutions when biased dBZ.[-2]; are
given.

5. SOLUTIONS OF PRIMITIVE PROBLEMS:
CASE STUDIES

When FM is applied without
Dos-assumption, a primitive problem has multiple
solutions including the right solution. Even with
Dos-assumption, multiple solutions exist for some
cases. When BM is applied with Dos-assumption,
only one solution is derived, but it is not necessarily
the right solution as the PIA estimate may be biased.
In this section, BM is applied with PIA estimates of
different biases in order to evaluate how biases in
PIA affect the estimate of surface rain rate (rain rate
at range n; indicated by Rs). From this analysis, we
can also see the limitations of IBM and FM.

For the above purposes, simple rainfall
cases are tested. In all the cases, DSD parameters
(No, Do, 4) and T are set to be constant over n ranges
for simplicity though it is not physically realistic par-
ticularly for T. =3 and T=300K and they are known
parameters. (No, Do) are unknown and the retrieval
methods do not assume that the parameters are
constant over n ranges. PIA estimates have biases
of between -5 dB and 5 dB independently of the

frequencies. Dos-assumption is employed. When
PIA is biased, dBZ¢[0]C may become larger than
Fs(Dos). In such case, any Do can not satisfy Eq.
(22) and the retrieval has to be terminated. When
DSD parameters are retrieved up to range 1, dBA[-];
at range 1 (hereafter, simply denoted by dBA[-])) is
calculated. As is explained, the upper boundary
condition that both dBA[-]; and dBA[-], are zero is
generally not satisfied in BM.

In Fig. 5, the horizontal axis is for the bias
of PIA at Ku-band (indicated by APIA;) and the ver-
tical axis is for the bias of PIA at Ka-band (indicated
by APIA;). The lower boundary condition is satis-
fied at the origin (indicated by O; APIA;=0 and
APIA,=0). Solid line indicates that dBA[-];=0 and
dotted line indicates that dBA[-],=0. The upper
boundary condition is satisfied at the crossing points
of the two lines.

5.1. Necessity of SRT

In case 1, Ng=10000, Do=1.5mm, and
n=10. Rain rate is as weak as about 2.1 mm h™.
Fig. 5a is shown for this case, where it should be
noted that no lines are drawn as the retrieval is ter-
minated in the left upper part. The upper boundary
condition is satisfied only at O, where the lower
boundary condition is satisfied. In this case, the
upper boundary condition and the lower boundary
condition are equivalent, and it is implied that IBM
can give the right solution for this case.

In case 2, Np=10000, D¢=2.0mm, and
n=10. Rain rate is about 19.1 mm h™ and is much
heavier than case 1. In Fig. 5b, the dotted line is
almost overlapped with the solid line while the dotted
contour line is also drawn in the right part of this
figure. It means that the upper boundary condition
is almost or exactly satisfied not only at O. In other
words, in some cases that PIA is assumed wrongly
(the lower boundary condition is not satisfied), the
upper boundary condition is almost or exactly satis-
fied. For such cases, it can not be expected that
IBM gives the right solution.

To investigate the reason of the difference
between case 1 and case 2, supplemental cases
with smaller n are tested. Case 1-1 is same with
case 1, but n=1. As the two lines are overlapped
only at the origin (Fig. 5c¢), it is suggested that IBM
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can give the right solution. When FM is applied for
this case, Lemmal-2] has two solutions; (No,
Do)=(10000, 1.5) and (82082120, 0.626). As the
latter (wrong) solution has Do smaller than Dgs, it is
not satisfied with Dgs-assumption. Therefore, FM
as well as IBM has only one solution for case 1-1.
For cases with any n (DSD parameters are same as
case 1) including case 1 itself, FM should have only
one solution. Moreover, considering the equiva-
lence between FM and IBM, it is suggested that IBM
has only one solution for such cases.

Case 2-1 is same with case 2, but n=1.
As shown in Fig. 5d, the upper boundary condition is
satisfied at two points: O and another point (indicated
by A). It means that IBM has two solutions (indi-
cated by the solution O and the solution A). When
FM is applied for this case, Lemma[-2] has two solu-
tions; (No, Do)=(10000, 2.0) and (125862, 1.596).
The former corresponds to the solution O and the

0
APIA

Figures to check if the upper boundary condition is satisfied or not.
upper boundary condition at Ku-band (Ka-band) is satisfied.
case 1-1, d) is for case 2-1, e) is for case 2-2, and f) is for case 2-5.
In d) to f), an open circle indicates the point A.

0
] APIA,

On the solid (dotted) line, the
a) is for case 1, b) is for case 2, ¢) is for
In b), part of dotted line is

latter corresponds to the solution A. As Dg of the
solution A is larger than Dgs, the solution A is not
rejected by Dos-assumption. As a result, FM as well
as IBM has 2 solutions for case 2-1.

Case 2-2 is same with case 2, but n=2.
In Fig. 5e, the upper boundary condition is satisfied
at two points O and A. The point A in Fig. 5e is
exactly same as the point Aiin Fig. 5d. When FM is
applied for this case, Lemma[-2] at range 1 is same
as of the case 2-1. If the right solution is selected at
range 1, Lemmal-2] at range 2 is also same as of the
The right solution is obtained when the
If the selection

case 2-1.
selection is right at the two ranges.
is right at range 1 but wrong at range 2, the calcu-
lated PIA is biased to the point A. If the selection is
wrong at range 1, as dBA[+] at range 1 (=dBA[-] at
range 2) is wrongly estimated, Lemma][-2] at range 2
becomes something different from that at range 1.
In this case, as dBZ¢[-2]i are biased, this Lemma][-2]



at range 2 has no solutions.

It can be said that FM has only two solu-
tions O and A for any n larger than 1 (DSD parame-
ters are same as case 2). Generally, the solution A
can be defined that the right solution is selected at
ranges 1 through (n-1) but the wrong solution is se-
lected at range n (as conceptually shown in Fig. 6).
If the wrong solution is selected at any range up to
(n-1), Lemmal-2] at the next range has no solutions.
Accordingly, this primitive problem can not have
other solutions than O and A in case 2 (n=10).
Considering the equivalence of FM and IBM, IBM
should have only two solutions in case 2. Although
it is difficult to see in Fig. 5b if the two contour lines
overlap with each other exactly or not, it is how clear
that the two contour lines cross only at the two points
OandA. still, along the straight line linking O and A,
the upper boundary condition is almost satisfied. If
any PIA on the straight line OA is assumed in IBM, as
the upper boundary condition is almost satisfied, the
biased PIA can be judged to be right unless nu-
merical calculation is done with very high precision.

Here, we acknowledge that IBM has two
kinds of solutions; they can be called “exact solu-
tions” and “approximate solutions”. The exact solu-
tions satisfy the upper boundary condition exactly
and the approximate solutions satisfy the upper
boundary condition with small error which is difficult
to be detected in practical numerical calculation.
The approximate solutions become apparent as n
increases. Fig. 5f is for the case same with case 2
but n=5. The two contour lines are close to each
other compared with case 2-1 (n=1) and case 2-2
(n=2), still can be distinguished differently from case
2 (n=10). When multiple solutions exist, IBM can
not select the right solution objectively. In such
cases, PIA estimates by SRT are required to distin-
guish the right solution from other exact and ap-
proximate solutions.

5.2. Required accuracy of PIA

The relative error in surface rain rate de-
rived by BM with biased PIA estimates for case 2 is
shown in Fig. 7. The relative error is calculated as
[Rs-Rs(0)]/Rs(0), where Rs(O) is surface rain rate of
the right solution. When PIA; is biased, larger error
in Rs is generated than when PIA; is biased to the
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Fig. 6

A schematic figure of multiple solutions for
primitive problem. Horizontal direction
corresponds to the bias in attenuation.
Closed circles indicate the right solution
and open circles indicate the wrong solu-
tion at each range. The profile of solution
A'is shown by thick solid lines. At range
2, there may exist other two solutions as
shown by gray circles, but not in case 2.
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where candidates of solutions are as-
sumed to exist.



same extent.

In IBM, by checking the upper boundary
condition, (APIA1, APIA,) is constrained. It can be
assumed in case 2 that candidates of solutions exist
on the straight line linking the points O and A.
Therefore, to select unique solution, PIA estimates at
both frequencies are not necessary. If a PIA esti-
mate at either frequency is given by SRT, by com-
bining this estimate with IBM, unique solution can be
obtained. This is a modified IBM. Instead of a PIA
estimate at single frequency, the difference of PIA
estimates at dual frequencies (PIAs=PIA,-PIA;) can
be used. As was explained in section 1, PIA esti-
mates are subject to biases caused by the change of
land surface conditions. It is expected that PIA; has
smaller biases than PIA; and PIA; as biases in PIA;
and PIA; are partly cancelled, though it has not been
supported yet by observations. This modified IBM
is similar to a method proposed in Adhikari et al.
(2007), which used DA instead of PIA;.

Approximate solutions with relative error
in Rs of 10% (50%) are called solution B (C). For
case 2, (APIA;, APIA,) is (0.045dB, 0.418dB) for
solution B and (0.138dB, 1.697dB) for solution C.
Required accuracy in PIA at Ku-band is much higher
than that at Ka-band. It seems very difficult to sat-
isfy the required accuracy at Ku-band from the ex-
perience of TRMM/PR. Although the authors have
no information on possible accuracy of PIA estimates
at Ka-band by SRT, it is assumed to be same as that
at Ku-band in the rest of this paper. It may be pos-
sible to satisfy the required accuracy at Ka-band if
the relative error in Rs of 50% is allowed.

6. SOLUTIONS OF PRIMITIVE PROBLEMS:
GENERAL RESULTS

In previous section, solutions of primitive
problems are investigated for some cases. In this
section, more general cases are investigated to de-
rive robust results.

6.1.The dependence on Dg

Same as the previous section, DSD pa-
rameters (No, Do, ¢) and T are set to be constant
over n ranges. Ny=10000, £=3, T=300K, and Dg is
different by cases (between 0.5mm and 3.5mm).

Learned from the results of the previous section, the
solution A is focused. Particularly, (No, Do) at range
n, Rs, and APIA; of the solution A are examined (Fig.
8). Actually, these variables are independent of n,
so they can be obtained just by solving the
Lemma[-2]. Hereafter, if not explicitly notified, (No,
Do) indicates values at range n. An estimate of the
solution X is indicated by putting (X) to the variable.
For example, Do(A) indicates the Do at range n of the
solution A.

1) Categorization

Here, the primitive problem can be cate-
gorized into several types by Do(O). When Do(O) is
smaller than Dgs(=0.97mm), the right solution can not
be selected as we assume that Do should be larger
or equal to Dos. In this case, the primitive problem
is categorized as type-0 and is excluded from this
study.

When Do(O) becomes larger than D, it
holds that Do(A)<Do(O), Rs(A)>Rs(0), APIAL(A)>0,
and APIA;(A)>0. As long as the inequalities hold,
the primitive problem is categorized as type-1. The
upper limit of Do(O) in type-1 is indicated by Do.
When Do(O)=Doy, the solution A becomes identical
with the solution O. Here, Dox=2.17mm and the
corresponding Rs(O) is 35.4 mm h™. Type-1 is fur-
ther divided into type-la and type-1b by comparing
Do(A) and Dgs. When Dg(A) is smaller than Dos, by
Dos-assumption, the right solution O is uniquely se-
lected. In this case, the primitive problem is cate-
gorized as type-la. On the other hand, when Do(A)
is larger than Dgs, the solution A can not be rejected
by Dgs-assumption, and the primitive problem is
categorized as type-1b. Do(O) of type-la is smaller
than that of type-1b, and the threshold of Do(O) be-
tween the two types is indicated as Dow. Here, Dow
is 1.77mm and the corresponding Rs(O) is 7.57 mm
h™. The case 1 is involved in type-la and the case
2 is involved in type-1b.

When Do(O) becomes larger than Doy, it
holds that Do(A)>Do(O), Rs(A)<Rs(0O), APIAL(A)<O,
and APIA;(A)<0. The upper limit of Dg(O) to satisfy
the inequalities is indicated by Dgy. When Do(O)
approaches to Doy, Do(A) diverges to positive infinity.
Doy is estimated to be around 2.67mm and the cor-
responding Rs(O) is about 167 mm h™. When Do(O)
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Ku-band, and d) PIA at Ka-band of the right and wrong solutions are shown.

is between Dox and Dgy, the primitive problem is
categorized as type-2.

More two types are defined for Do(O) lar-
ger than Doy. When Do(O) exceeds to Doy, Do(A)
starts to decrease and it holds that Dg(A)>Do(O),
Rs(A)>Rs(0), APIA;(A)>0, and APIA,(A)<O. In
these cases, the primitive problem is categorized as

type-3. The upper limit of Do(O) in type-3 is indi-
cated by Do,. Here, Do; is 2.99mm and the corre-
sponding Rs(O) is 385 mm h™. When Dy(O) is
equal to Dgz, the solution A becomes identical with
the solution O. When Dg(O) is larger than Dq,, the
primitive problem is categorized as type-4. In
type-4, Do(A) is smaller than Do(O) and PIA1(A) is



smaller than PIA;(O), but the order of Rs(A) and
Rs(O) and that of PIA2(A) and PIA,(O) are not fixed.
It might not be very important to consider type 3 and
type 4 because rain echoes at near surface are
masked under extremely heavy rainfall.

2) The role of SRT

The role of SRT is examined for each type.
Approximate solutions B and C are defined as in
section 5, but if the relative error in Rs(A) is negative,
approximate solutions with relative error in Rs of
-10% (-50%) are called solution B (C). If the rela-
tive error in Rg(A) is within 10%, the solutions B and
C are not defined. If the relative error in Rs(A) is
within 50%, the solution C is not defined. In Fig. 8c
and 8d, APIA; and APIA; of the solutions B and C
are shown as well as those of the solution A.

While SRT is not necessary for type-1a as
the solution A is rejected by Dgs-assumption, SRT is
necessary for the other types. In type-1lb, both
APIA1(A) and APIAy(A) are positive and that
APIA,(A) is nearly ten times as large as APIA;(A).
Therefore, it is much effective to estimate PIA by
SRT at Ka-band rather than at Ku-band for the modi-
fied IBM. APIA1(A) and APIA,(A) become zero
when Do(O) approaches to Dgs or Dox. It becomes
more difficult but less necessary to distinguish O and
A, as the difference in Rs between O and A becomes
small. Intype 1b, as APIA1(B) is smaller than 0.1dB
and APIA;(B) is smaller than 0.5dB, it seems to be
difficult to distinguish O from B unless SRT would be
significantly improved compared with the TRMM era.
On the other hand, it can be expected to distinguish
O from C as APIA(C) is larger than 1dB, while
APIA;1(C) is smaller than 0.2dB.

Required accuracy in PlA; is slightly
higher than PIA,. Still, if biases in PIA; are effec-
tively cancelled by taking the difference, using PlA;
leads to better estimates in Rs than using PIA2.

In type 2, both APIA;1(A) and APIA;(A) are
negative and that [APIA;| is nearly ten times as large
as |APIA;|. Same as type 1, it is much effective to
estimate PIA at Ka-band than at Ku-band. When
Do(O) increases, APIA1(A) and APIA(A) increase
rapidly, therefore it is not difficult to distinguish O
from A. There is some possibility to distinguish O
from B by means of SRT at Ka-band as APIAx(B) is
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Fig.9  Categorization of the primitive problem is
shown by different background colors
(gray for type-0, light pink for type-1la,
dark pink for type-1b, blue for type-2,
green for type-3, and purple for type-4).
a) Rs(O) and b) APIA,(C) are shown as
contours. s set to be 3.

larger than 0.5dB, while APIA;(B) is around 0.1dB.
Moreover, as APIA;(C) is near to 1dB and APIA,(C)
is larger than 4dB, it can be expected to distinguish
O from C by SRT at Ku-band as well as by SRT at
Ka-band.



In type 3 and in part of type 4, APIA1(A)
and APIA;(A) have different signs and |APIA1(A)| is
generally larger than |APIA2(A)|. It is more effective
to use PIA at Ku-band rather than at Ka-band. If
PIA at both frequencies are available, using PIA;
may gives better accuracy.

6.2.The dependence on Ng

The same simulation with the previous
subsection 6a is done but for different Ny ranging
from 1,000 (dBNo=30dB) to 1,000,000 (dBNo=60dB)
with the step of 1dB, where dBNp indicates
10log1oNo.

In Fig. 9a, different types are shown by
different background colors on the plane of (Do,
dBNp) with the contour of R¢(O). Note that Dos is
independent of Ng as it is determined by Eq. (22).
Dow, Dox, Doy, and Dg; are dependent on No, and they
tend to become small as Ny becomes large. When
No is larger than 54dB, type-la does not exist.
Furthermore, when Ny is larger than 57dB, type-1b is
not found. Except for these high No cases, Rs(O) at
the border of different types are not very sensitive to
No. The upper limit of Rg(O) in type-la is 5 to 10
mm h™, that in type-1b is around 20 to 50 mm h™,
that in type-2 is around 150 to 200 mm h™, and that
in type-3 is nearly 500 mm h™. Roughly speaking,
SRT is not necessary when Rs(O) is lower than 5 mm
h™, on the other hand, SRT is required when Rs(O) is
higher than 10 mm h™.

The contour of APIA,(C) is shown in Fig.
9b. When Do(O) is close to Doy or Do, as the solu-
tion C does not exist, APIA,(A) is shown instead of
APIA2(C). In type 1b, [APIA2(C)| is generally larger
than 1dB where Ng is smaller than 50dB. In type 2,
except for the case that Do(O) is close to Doy,
|[APIA2(C)| is larger than 1dB and exceeds to 4dB
when Ng is smaller.

6.3.The dependence on u

Up to here, the third DSD parameter u is
fixed to be 3, but the results may be significantly
changed by different 4. In this subsection, y is fixed
to be 1, and the same simulation with subsection 6b
is done (Fig. 10). Dgs for x=1 is 0.72mm and
smaller than that for 4=3. Other thresholds of Dy(O)
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Fig. 10 Same as Fig. 9, but for 4=1. In a), the
threshold below which MA04’s method
can give the right solution is shown ac-
cording to RCO5.

are also smaller for x=1 than those for x=3. How-
ever, the upper limit of Rs(O) in each type is nearly
same with the case of x=3. Moreover, the contour
of APIAy(C) for =1 shown in Fig. 10b is basically
similar to that for =3 in Fig. 9b. It means that re-
quired accuracy of SRT at Ka-band is not very sen-
sitive to p.

Rose and Chandrasekar (2005) tested



MAO4’s method (a kind of IBM) for many cases with
1=1, and empirically determined the conditions that
MAO4’s method could give the right solution. If Dgis
smaller than Do* given in the Eq. (25) [as Eq. (41) of
their paper], the right solution is selected by MA04’s
method.

2
DO*Z(a'F%J ) (25)

where N, is normalized intercept parameter of
gamma distribution, and can be related with Do, No,
and u by Eq. (26).

L 367" T(u+4)

N, = N,D,
706 (3.67+u)

w

. (26)

Two variables of Eqg. (25) a and b were empirically
determined and were dependent on n. The lines
corresponding to Eq. (25) are drawn in Fig. 10a for
the cases of n=6, 9, and 12. As values of a and b
were derived under the conditions that Ny is not
larger than 8000 and Dy is not larger than 2.5mm, the
lines in Fig. 10a are drawn within in this limit. It is
seen that the three lines are drawn in the region of
type 1b. As MAO4’s method tends to select the
solution with the smallest PIA among multiple can-
didates of solutions, it generally selects the solution
O rather than the solution A for type-1b. As it be-
comes difficult to distinguish O from approximate
solutions when n increases, it is convincing that the
lines shift to weaker Rs(O) when n increases.

Adhikari et al. (2007) also tested MA0O4's
method and showed (No, Do)=(8000, 1.1) as a suc-
cessful case and (No, Do)=(8000, 1.5) as a failure
case. In their study, it was set that 4=0 and n=17.
We confirmed that the former case belongs to
type-la and the latter case belongs to type-1b by
drawing the same figure with Fig. 10a but for =0
(not shown). The previous studies found the limita-
tion of MAO4’s method in the region of type 1b.

6.4.The dependence on the discrete from of dBZn,

As explained in Section 2c¢, dBZ, at a
discrete range is defined in Eq. (16) up to here in this
paper. However in this subsection, the attenuation
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Fig. 11  Figures to visually examine the solutions
of Lemmala]. a) aXNgo when dBZ.[«]O
and Do are given. Shaded area indi-
cates aXNp>0 and plain area indicates a
X Np<0. Contours are drawn for dB|a X
No|. b) Contours of dBZ¢[a],. Dotted
line indicates that 0 dBZg[a]./ d Do=0.
a=1 for shaded area and a=-1 for plain
area.

is set as dBA as shown in Eq. (27), to check if dif-
ferent definitions of dBZ, affect the conclusions of
this paper.

dBZn=dBZ.—dBA. (27)



With this definition, the second equality of Eq. (18)
does not hold. Instead of that, the following two
equations hold.
dBZyn+dBA[-]=dBZ.—1XkXL=dBZ.[-1], (28-1)
dBZn+dBA[+]=dBZ.+1 Xk XL=dBZg1]. (28-2)
In FM, dBZ¢[-1] is given instead of dBZ¢[-2], then a
Lemma[-1] has to be solved at each range. In BM
(and IBM), dBZ¢[1] is given instead of dBZ[0], then a
Lemma][1] has to be solved at each range.

The characteristics of Lemmal[-1] and
Lemma[1] are explained in a general way as below.
Following Eqg. (29) can be derived from Egs. (10),
(11), and (19) for any O.

dBZ[]s=Fs(Do)+a X No X Gs(Do) X L (29)
When dBZ¢[e]d and Do are given, aXNg can be
calculated. In Fig. 11a, where the horizontal axis is
Do and the vertical axis is dBZ¢[c]s, gray shaded area
indicates that «XNo>0 and plain area indicates that
aXNp<0. Contours are drawn for dB|aXNg|. As
No should be positive, solutions of Lemmala] can
exist only in gray shaded area when >0 and only in
plain area when @<0. It can be seen that the
boundary of shaded area and plain area (a<N0=0)
is identical with the line in Fig. 3. If a=-2 is applied
for plain area, dBZ.[-2]; can be calculated as shown
in Fig. 4. Same as this, a=-1 is applied for plain
area and dBZ[-1], is calculated. On the other hand,
o=1 is applied for shaded area and dBZ¢[1], is cal-
culated. In Fig. 11b, dBZ.[-1], and dBZ[1], are
shown together.
dBZ¢[a]2/ 0 Do=0 (e=-1 for plain area and o=1 for
gray shaded area). From a visual investigation, the
followings are strongly suggested. Lemmal-1] has
two solutions, and at least one of them has Do larger

The dotted line indicates 0

than Dgs. It is not always possible to get unique
solution even with Dgs-assumption. Lemma[l] has
unique solution when dBZ.[1]0 is negative and it has
three solutions in some cases when dBZ[1]O is
positive. In the latter case, two of the three solu-
tions have Do smaller than Dos. Therefore, it is al-
ways possible to get unique solution of Lemmal[l]
with Dgs-assumption. In addition to the above, it
should be kept in mind that the lemmas have no
solutions in some cases that biased dBZ¢[a]i are
given.

Figure 12 is same as Fig. 9 but with the
definition of Eq. (27). Do(O) at the boundary of
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Fig. 12 Same as Fig. 9, but the Eq. (27) is used to
define the attenuation at a discrete range
in stead of Eq. (16).

different types is slightly larger in Fig. 12a than in Fig.
9a. Corresponding Rs(O) is also slightly larger in
Fig. 12a than in Fig. 9a. APIA,(C) as shown in Fig.
12b is nearly same with that in Fig. 9b. It can be
concluded that the main results of this study are not
significantly changed by different definitions of dBZy,.

7. SUMMARY AND CONCLUSIONS



A primitive problem for the GPM/DPR,
which derives DSD parameters from observed Zy, is
investigated in this study. This can be treated as a
mathematical problem to estimate 2n unknowns from
2n equations. Retrieval methods of this problem
such as FM, BM, and IBM, can be decomposed into
lemmas to estimate 2 unknowns from 2 equations.
Lemmas involved in FM generally have two solutions,
so FM vyields multiple solutions for the primitive
problem. On the other hand, lemmas in BM have
unique solution under Dgs-assumption, therefore BM
can vyield the right solution if the PIA is accurately
estimated by SRT.

IBM is equivalent to FM as the upper
boundary condition is checked but the lower bound-
ary condition is not checked in both methods.
There are two types of solutions in IBM: exact solu-
tions and approximate solutions. Exact solutions
satisfy the upper boundary condition exactly and
they are equivalent to solutions derived in FM.
Approximate solutions almost satisfy the upper
boundary condition. When n increases, as the
numerical error is accumulated, approximate solu-
tions become apparent.

The primitive algorithm is categorized into
several types. In type-1a, as the right solution can
be selected by Dgs-assumption, IBM can yield the
right solution. In type-1b, as the solution A can not
be objectively rejected, IBM can not be expected to
always yield the right solution. However, in MAO4’s
method (a kind of IBM), which tends to select the
solution with the smallest PIA, the right solution is
selected when rain rate is relatively weak. The
upper limit of Rs(O) in type-1b is generally less than
50 mm h™ (though it is dependent on Ng and ), but
the upper limit of Rs(O) when the right solution can
be derived in MAO4’s method is much smaller be-
cause of approximate solutions.

SRT is necessary to solve the primitive
problem except for some weak rainfall cases. By
combining with IBM, PIA estimate by SRT at either
frequency gives unique solution. In type 1b and
type 2, required accuracy of PIA estimate by SRT is
much higher at Ku-band than at Ka-band. So, it is
much effective to estimate PIA at Ka-band if the ac-
curacy of SRT is same at both frequencies. To
estimate Rs with a relative error of 50% or better, the

required accuracy of PIA estimates at Ka-band is
around 1dB in type 1b and around 4dB in type 2.
The above results are not strongly dependent on No,
4, and the definition of dBZ, in discrete form.

Though some part of this paper is not
mathematically rigorous (such that the number of
solutions is judged by a visual investigation), the
results are believed to be right for most cases. Itis
necessary to note that this study assumes many
ideal conditions (such that no observation errors in
Zn). To compensate such errors, higher accuracy
should be required for SRT. On the other hand, this
study does not assume that the relationship between
ranges. As Rose and Chandrasekar (2006) as-
sumes that DSD parameters are expressed by linear
function of altitude, additional constraint may relax
the requirement for SRT.
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