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1. INTRODUCTION 

Radar-based extrapolation techniques have 
shown certain skill in rainfall nowcasting. However, 
precipitation growth and decay not explained by 
motion are the main source of forecasting error 
together, in a minor extent, with the estimation of the 
motion field (Germann et al. 2006). Simiarly as done 
for radar QPE (Lee et al. 2007; Germann et al. 2009), 
an ensemble-based probabilistic approach could be 
useful to describe the uncertainty in very short term 
QPF. In this sense, first attempts have been carried 
out by Bowler et al. (2006) and Berenguer et al. 
(2006). All these methodologies require a detailed 
analysis of the structure of the errors affecting the 
forecasts of precipitation, similarly as done by Ciach 
et al. (2007) and Berenguer and Zawadzki (2008) for 
radar rainfall estimates. 

The main goal of this work is to provide a 
complete description of the structure of the errors 
affecting the nowcasts produced by MAPLE (the 
McGill Algorithm for Precipitation nowcasting by 
Lagrangian Extrapolation; Laroche and Zawadzki 
1995; Germann and Zawadzki 2002) over Central and 
East United States. The analysis includes the 
statistical distribution of the errors,, and the correlation 
in space and time, also the dependence on factors as 
the location, time of the day or the season are taken 
into account. 

 

 
Figure 1.Domain and nine subdomains where the 

anakysis has been carried out. 

2. DATA USED IN THIS STUDY 

MAPLE has been run using reflectivity mosaics 
corresponding to the 2.5 km CAPPI maps from the 3D 
composites generated by the National Severe Storms 
Laboratory (NSSL) over United States. The analysis 
has been carried out during two periods in 2008 (16 
April to 06 June, and 1 to 31 July 2008) and over the 
domain 32-41N and 80-100W, which has been 
subdivided in 9 subdomains as shown in Figure 1 

(from North to South and from West to East, NW, N, 
NE, W, C, E, SW, S, SE). MAPLE forecasts for every 
hour of the day have been compared offlline against 
actually observed radar reflectivity mosaics to obtain 
the error in the forecast. 

Both observed and forecasted fields are converted 
from reflectivity mosaics (Z) to rain rate fields (R) 
through a standard relationship, Z=300R1.5. 

3. CHARACTERIZATION OF THE ERROR 
STRUCTURE 

3.1 Definition of the residual fields 

We have quantified the error in MAPLE forecasts 
using series of residual fields. Given a forecasted 
rainfall field and the actual observation at the 
verification time we define the residual field at a given 
point as the difference between the forecast and the 
observation, provided that there is rainfall in that point 
either in the observation or in the forecast. Thus, the 
residual includes hits, misses and false alarms (see 
an example in Figure 2). 

3.2 Statistical distribution  

The residuals’ statistical distribution is generally 
symmetrical and unbiased for spring and summer 
(shown in Figure 3, graphics for regions are 
collocated with the grid above). The shape of the 
distribution is repeated for every region and lead time. 
In spring the distribution in Western regions (NW, W, 
SW) are slightly biased indicating general 
underestimation, this is due to the precipitation 
systems initiated near the Rocky Mountains which are 
less predictable in spring than in summer. 

3.3 Diurnal evolution of the bias 

Growth and decay associated to the diurnal cycle 
of precipitation (see e.g. Carbone et al. 2002) cannot 
be reproduced by MAPLE. Figure 4 (on the left) 
shows the residuals’ diurnal cycle in relation to the 
cycle in observation and forecast for the spring period. 
Focusing on the C and S subdomains is evident that 
actual peaks of precipitation area (observation) have 
been reproduced and moved forward a lag of 4 hours 
–which is the lead time of this example- in the forecast 
(showing the inability of MAPLE to account for diurnal 
evolution). 

On the right of Figure 4 there is the mean rainfall 
as a function of the time of the day for observations 
and MAPLE forecasts. This mean is conditioned to 
the presence of precipitation either in observation or 
in the forecast. In NW and W subdomains is obvious 
the underestimation mentioned above. The semi-
diurnal cycle of the observed mean rainfall in the SE 
region is only apparent as well as the moved cycle in 
the forecasted mean. The low occurrence of 
precipitation in the SE region during the spring period 
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analysed allow that a single day with large scale 
system dominates the average as a function of the 
time of the day, producing the effect of a semi-diurnal 
cycle. 

Figure 5 shows the same as Figure 4 for the 
summer period. In summer the diurnal cycle is 
stronger than in spring and the forecasted cycle more 
evident (for both coverage and mean rainfall), 
especially in the S and SE subdomains. 

Figure 6 shows the mean error as a function of the 
time of the day which is exactly the difference 
between the mean rainfall of the forecast and the one 
of the observation showed above (only for the lead 
time of 4h, Figure 4 and 5 on the right). In spring (on 
the left) underestimation in Western regions (NW, W, 
SW) is high around 01h UTC (as shown in Figure 4 
right). In NE, E, and S regions the mean error do not 
seem to depend on the time of the day and in the SE 
subdomain an artificial semi-diurnal cycle is inherited 
from the mentioned apparent semi-diurnal cycle of 
mean rainfall. 

In summer (Figure 6 on the right) the diurnal cycle 
of the mean error is clearer than in spring (especially 

in the S and SE regions) because of the regularity of 
the diurnal cycle of precipitation in this season. In the 
SW subdomain a semi-diurnal cycle of mean 
precipitation is reproduced in the residuals. 

3.4  Standard deviation 

The standard deviation of the residuals, which is 
roughly the root mean square error (RMSE) of the 
forecasts, is shown in Figure 7 as a function of the 
time of the day. Standard deviation has its own diurnal 
patterns which are evident in the West in spring 
(apparent semi-diurnal evolution in SE) and generally 
clear in summer. 

There are differences in the standard deviation 
among regions. In spring Western regions (NW, W, 
SW) show a high standard deviation because of the 
initiation of precipitation near the Rocky Mountains is 
less stable and so less predictable. On the other 
hand, in summer the highest variance occurs in the N 
and C subdomains. An explanation is that in summer 
the eastward propagation of precipitation ceases 
about 95W instead of 88W in spring (Surcel et al. 
2009). 

 

Figure 2. Example of residual field with the corresponding observed and forecasted field. 

     
Figure 3.Statistical distribution of the residuals for each subdomain (collocated as in Figure 1) and lead time in spring (left) 

and summer (right). 



     

   Figure 4. On the left, evolution of the mean coverage of the fields (observation, forecast and residual) as a function of 
the time of the day for a lead time of 4 hours in the spring period. On the right evolution of the mean rainfall conditional to 
the existence of the residual, that is, to the presence of either observed or forecasted precipitation, for the same period. 

     

Figure 5. On the left, evolution of the mean coverage of the fields (observation, forecast and residual) as a function of the 
time of the day for a lead time of 4 hours in the summer period. On the right evolution of the mean rainfall conditional to 
the existence of the residual, that is, to the presence of either observed or forecasted precipitation, for the same period 

     

 Figure 6. Evolution of the bias as a function of time of day for each region (collocated as in Figure 1) and for each lead 
time referred to the spring period on the left and to the summer period on the right. 



     

 

Figure 7. Evolution of the standard deviation as a function of time of day for each region (collocated as in Figure 1) and for 
each lead time referred to the spring period on the left and to the summer period on the right. 

 

 

3.5 Scale analysis 

The Haar wavelet spectrum of a residual field 
relates each scale of precipitation to its contribution to 
the variance of the field. 

Figure 8 shows the normalized wavelet spectra for 
each region and lead times of 1, 2 and 4 hours for 
both analyzed periods (spring and summer). We can 
see that in the S, SE, E, subdomains the smallest 
scale (10 km) is significantly more dominant than the 
rest for both seasons, while the scales of 10 and 20 
km have a similar relevance over the NW (spring) and 
the N (summer) regions. This is due to type of 
precipitation usual in the different regions. In the 
South small scales are dominant because convective 
rains are frequent in these regions. On the other 
hand, stratiform rain is more frequent in the North, 
which entails an enhancement of larger scales. For 
longer lead times, the error fields show more large 
scale patterns. This is in a good part due to the 
increase in the number of misses and false alarms as 
the lead time increases, which results in errors 
showing patterns that resemble those of the 
precipitation fields themselves. 

3.6 Temporal autocorrelation in Eulerian 
coordinates 

Figure 9 shows that there is no temporal 
correlation in the residuals fields for the lead times of 
1 and 2 hours and low correlation for higher lead 
times. That is for a fix coordinate system. To fully 
describe the temporal variation of the error field, it 
would also be necessary to describe the auto-
correlation of the error fields in a coordinate system 
moving together with the precipitation 

 
Figure 8. Normalized wavelet spectrum of the 

residual fields for each region (9 lines), season (spring 
at the bottom and summer in the top) and three lead 
times (3 columns). 



 
Figure 9. Autocorrelation function for each lead 

time. 

4. CONCLUSION 

A complete statistical analysis of the error in 
MAPLE forecasts has been carried out comparing 
periods from spring and summer 2008. The diurnal 
cycle of precipitation that cannot be forecasted by 
MAPLE is clearly reproduced in the residuals in 
summer and in the SW domain a semi-diurnal 
component is noticed. In spring the signal is only clear 
in the NW, N and SW regions. In the SE there is a 
false semi-diurnal cycle.  The 10 km scale is the most 
relevant in the error fields in the Northern regions 
while in the southern regions both 10 and 20 km scale 
have similar weight. Residual fields have a very low 
temporal correlation in Eulerian coordinates. A next 
step to fully describe the temporal evolution of the 
errors is to investigate it  in moving coordinates. 

An ultimate goal of this analysis is the statistical 
simulation of series of residual fields, and so the 
generation of ensembles of rainfall forecasts. 
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