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1. INTRODUCTION 
 
 The preferred embodiment of dual linear 
polarization technology on the WSR-88D weather 
radars is the mode whereby horizontal (H) and 
vertical (V) polarizations are transmitted and 
received simultaneously (Doviak et al. 2000).  This 
mode is sometimes referred to as “hybrid” (Wang 
et al. 2006); to shorten notation we label it SHV 
(Simultaneous Horizontal and Vertical).  The USA 
National Weather Service is slated to begin 
retrofitting its WSR-88Ds with this mode in about 
2010.  By far, the overriding reason for choosing 
the SHV mode is its total transparency to all the 
current automated algorithms used in the radar 
network.   
 Other advantages of the SHV mode are: 1) 
direct measurement of the cross correlation 
between the copolar signals, 2) 360o unambiguous 
span for differential phase measurement, 3) 
decoupling of the differential phase and Doppler 
velocity measurements, 4) smaller error of 
estimates, 5) no degradation of the performance of 
the ground clutter filters, and 6) avoidance of a 
high power microwave switch and its associated 
problems.  Nonetheless there are also 
disadvantages.  For example, Sachidananda and 
Zrnic (1985) show, if hydrometeors along a 
propagation path have a mean canting angle, bias 
errors in differential reflectivity (ZDR) estimates can 
be an order of magnitude larger if ZDR estimates 
are made using the SHV mode rather than 
alternately transmitting, but simultaneously 
receiving H, V waves (i.e., the AHV mode). 
Furthermore, as will be shown, the bias associated 
with the SHV mode depends on the cross-polar 
radiation to the first order whereas second order 
terms are important for the AHV mode. Finally, the 
SHV mode is not fully polarimetric because it 
precludes cross-polar measurements.  
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 The effects of radiation pattern coupling on the 
measurement accuracies of polarimetric variables 
were first examined by Chandrasekar and Keeler 
(1993), but they did not address these accuracies 
if the SHV mode is used. Because ZDR is a 
principal variable for estimating rain rate, and 
because it is more prone to significant bias than 
other polarimetric variables, we examine ZDR bias 
caused by coupling of copolar and cross-polar 
patterns. 
 Hubbert et al. (2009) have computed the bias 
caused by cross-polar to copolar pattern coupling 
assumed to be constant over the significant part of 
the copolar pattern. Under this assumption they 
related pattern coupling to the lower limit of linear 
depolarization ratio measurements. These results, 
backed by experiment, show ZDR bias (up to 0.27 
dB) observed in the SHV mode to be much larger 
compared to that observed in the AHV mode.  
 Wang and Chandrasekhar (2006) investigated 
biases in the polarimetric variables caused by the 
cross-polar pattern.  They have developed 
pertinent equations building on the formalism in 
Bringi and Chandrasekar (2001) and quantified 
biases for a wide range of general conditions.  
Moreover they present curves for the upper 
bounds of the errors as function of precipitation 
type. We examine causes of cross-polar radiation, 
consider realistic cross-polar patterns, account for 
differences in the angular dependence of cross-
polar and copolar radiation, and reduce the 
theoretical expressions of ZDR bias to simple 
compact form. We approximate the principal lobes 
of the radiation patterns with Gaussian shapes for 
two common types of cross-polar patterns.  
Applying these theoretical expressions we obtain 
the dependence of DRZ bias bounds on copolar 

and cross-polar pattern parameters and DRZ .      
  In section 2 we set and justify an upper bound 
to the ZDR bias based on the accuracy of rain rate 
measurements, and use that bound to derive limits 
on the cross-polar radiation pattern.  Section 3 
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quantifies the relation between the cross-polar 
pattern and bias for practical patterns and includes 
examples of measured patterns. Section 4 
compares the ZDR bias in the SHV and AHV 
modes. 
 
2. EFFECTS OF ZDR BIAS ON RAIN RATE 
MEASUREMENTS  
 
 Accurate polarimetric measurement has two 
principal purposes.  One is to allow correct 
classification of precipitation, and the other is to 
improve quantitative precipitation estimation. In 
fuzzy logic classification (Zrnic et al. 2001), 
performance depends on ZDR through the 
membership (weighting) functions Wi

 (Z, ZDR, etc.). 
The effects of the ZDR bias on classification can be 
easily mitigated by appropriately broadening the 
membership functions.  Therefore accurate rainfall 
measurement imposes a more stringent 
requirement on the bias of ZDR.    
 To compute light rain rates (i.e., < 6 mm h-1) 
the following relation has been proposed for the 
network of WSR-88Ds (Ryzhkov et al. 2005a),  
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where Zh is in units of mm6 m-3, ZH(dB) < 36 dBZ, 
Zdr = 100.1ZDR , and ZDR is in dB. We focus attention 
to this rain rate regime because it is affected more 
by ZDR bias. Assuming no error in Zh, the fractional 
bias, ΔR/R, in rain rate is, 
 

ΔR/R =   f(ZDR)/f(ZDRb)-1 ,    (2a) 
 
where  

  
0.1 1.3( ) 0.4 5.0 |10 1 |Zf Z = + −DR

DR , (2b) 
 
and ZDRb = ZDR + δZDR is the biased differential 
reflectivity. It follows from (2) that the fractional 
error is slightly larger if the dB bias in differential 
reflectivity is negative. Hence the fractional biases 
in R are plotted (Fig. 1) for three negative values 
of ZDR bias.  
  Implications of bias can be assessed by 
comparing the polarimetric estimates of R with that 
obtain using a commonly accepted R(Z) relation.  
For such a stand-alone relation (i.e., no 
adjustment with gage data) the rms errors are 
about 35 % (Brandes et al. 2002, Balakrishnan et 
al. 1989, Ryzhkov and Zrnic 1995). But, with 
judicious use of polarimetric data, R errors could 

be reduced to between 15 and 22 % (Zhang et al. 
2001; Ryzhkov et al. 2005b; Matrosov et al. 2002). 
Thus it is reasonable to strive to keep /R RΔ less 
than about 20 % implying that the absolute bias in 
differential reflectivity should be less than 0.15 dB.  
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Fig. 1 Fractional bias, /R RΔ , of rain rate R vs 
differential reflectivity ZDR, with bias δZDR as a 
parameter. 
 
 Two independent mechanisms produce ZDR 
bias: 1) a small but constant offset due to 
calibration error (this can be kept within ±0.1 dB; 
Zrnic et al. 2006), and 2) the presence of cross-
polar radiation.  Bias, δZDR, depends (as shown 
later) on ZDR, β (i.e., the phase difference 
between the transmitted H, V copolar radiation), γ 
the phase difference between the copolar and 
cross-polar radiation, and the total differential 
phase change DPΦ along the propagation path.   
  
3. RADIATION PATTERN COUPLING FOR THE 
SHV MODE 
 
3.1. An expression for the bias 
 
 Consider a circularly symmetric parabolic 
reflector antenna and uniform distribution of 
scatterers. Performance characteristics of such 
antennas for dual polarization radars are 
discussed by Bringi and Chandrasekar (2001, 
section 6.2).  These authors provide error budget 
and integral formulas for biases applicable to the 
AHV mode. With similar simplification, but 
extending the analysis to cross-polar patterns that 
are different than the copolar pattern, we formulate 
equations for the ZDR bias incurred with the SHV 
and AHV modes.  
 The effects on ZDR will be quantified under the 
following conditions.  The intrinsic ZDR is produced 
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by oblate scatterers having zero canting angles so 
that the off -diagonal terms of the backscattering 
matrix are zero. The amplitudes of the transmitted 
electric fields in the H and V channels are 
assumed to be matched, but there is a differential 
phase β between the two at the feed horn 
aperture.  Differential attenuation along the path of 
propagation can, for most observations at 10 cm 
wavelengths, be neglected, but DPΦ  cannot be 

ignored. To simplify notation, DPΦ  is incorporated 

into the backscattering matrix S observed at the 
radar (i.e., DPΦ  is merged with the scatterer’s 
backscatter differential phase). Furthermore, it is 
not necessary to include the resolution volume 
depth; thus the function F (Doviak and Zrnic, 2006; 
section 8.5.2.2), weighting the polarimetric 
properties of a scatterer, is only proportional to the 
intensity and phase of the radiation pattern at 
angles ,θ φ .   
 With these conditions we write the matrix 
equation for the SHV mode 
 

h t
i

v

hh vh hh hh hv

hv vv vv vh vv

0 1
0 j

V
V E

V

F F s F F
F F s F F e β

δ
δ

≡ = =
G G

F SF

  (3) 

 
for the received H and V channel incremental 
voltages generated by a scatterer. (In case of the 
AHV mode we would write h hiV Vδ δ= , and 

v viV Vδ δ=  where ‘i’ is either h or v, the first index 
identifying the H or V channel receiving the signal, 
and the second index identifying the transmitting 
channel, and the iE

G
vector’s polarization would 

alternate between H and V every PRT). The 
superscript “t” denotes the transpose matrix, iE

G
 is 

the transmitted electric field in the feed horn 
aperture. Fhv is proportional to the H radiated 
electric field if the V channel is excited, and vice 
versa for Fvh. Constants of proportionality, that 
would make this equation dimensionally correct, 
and the arguments of Fij and sij (i, j are either h or 
v), are not shown to shorten the notation; these 
omissions have no effect whatsoever on our 
results. The pattern functions Fij are not 
normalized but contain the peak power gain ijg so 
that  

 
 ij ( , )F θ φ  = ij ij ( , )g f θ φ .    (4) 

 
The spherical angles ( , )θ φ  are relative to the 
copolar beam axis.  
 It is further stipulated that Fhh = Fvv is a real 
function (i.e., has zero reference phase), but Fhv, 
Fvh are complex (i.e., Fhv and Fvh have 
phases hvγ and vhγ relative to the copolar phase). 
 Executing the matrix multiplication in (3) the 
following equation ensues 
 

h

v

h h h h h h h v v v v h v h h h

h h h v h h h v v v h h vh h h

( ) ( )
( ) ( )

j j

j j

V
V

s F F F e s F F F e
s F F F e s F F F e

β β

β β

δ

δ
=

+ + +

+ + +

.(5) 

 
Of interest are the powers from the ensemble of 
scatterers weighted by pattern functions.  
 Thus we will take the ensemble 

average
2

hVδ< > and integrate it over the pattern 
functions to obtain the power received in the H 
channel 
 

2
h

,

hh hh hh hv

2
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~ sin
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( ) |

h

j
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P V d d
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d

s F F F e
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β

β
Ω

δ θ θ φ

Ω

< > =

⎧ ⎫< + +⎪ ⎪
⎨ ⎬

+ >⎪ ⎪⎩ ⎭

∫∫

∫
,   (6) 

 
where < > indicates ensemble average over the 
distribution of the scatterers’ properties (Doviak 
and Zrnic 2006; Eq.8.45). To shorten notation, 
sin d dθ θ φ  is replaced withdΩ .  A very similar 
expression for Pv follows from the second row of 
(5).  
 The integral in (6) can be expressed as the 
sum of three terms of which the first (containing 
shh) is 
 

2
hh hh hh hv

2
hh hh hv2 2

hh hh 2
hv

| ( )|  

2 Re( )
| |

| |

j

j

s F F F e d

F F F e
s F d

F

β

Ω

β

Ω

Ω

Ω

< + > =

⎧ ⎫⎡ ⎤+⎪ ⎪< > ⎢ ⎥⎨ ⎬
+⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫

∫
, (7a) 
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where it is assumed that the ensemble averages 
of the backscattering second moments (e.g., 
<|shh|2>) are constant in regions where the pattern 
functions are significant.   
 The second term is the cross product involving 
shh and svv, and is given by 

 
*

h h v v

2 *2 *2
h h v h h h h v v h

3 * 2 *
h h v h h h h v v h

2 Re j

j

s s

F F F F F e d

F F e F F F

β

Ω β

Ω
−
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+ +

+

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎪ ⎪⎛ ⎞⎢ ⎥⎨ ⎬

⎜ ⎟⎢ ⎥⎪ ⎪⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

∫ (7b) 

 
and the third term, the magnitude squared of the 
second term in (6), is 
 

2
vv vh vh hh

2
vh

2 2
vv vh hh vh

2
hh
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j
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F
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F

β

Ω

β

Ω

Ω
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∫
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 Next are listed the corresponding three terms 
comprising the vertically polarized power: 

2
h h

2 2
h h h v h h h v

2
h v

| | | | 2 Re( )
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j

F

s F F F e d

F
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* 2 3
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)
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v
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F F F e F F e d

F F F
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+

+
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and 
2

vh2 2
vv hh 2

hh vh hh

| |
2 Re( )j
F

s F d
F F e Fβ

Ω

Ω
−

+
< >

+

⎡ ⎤
⎢ ⎥
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∫ . (8c) 

  
The bias DRδZ  expressed in dB is computed from 

                                       

DR h v DRδ 10log( / ) ZZ P P= − ,   (9) 
 
for specific values of the system parameters and 
polarimetric variables. In the sequel the differential 
reflectivity in linear units, that is  

 

   
2

hh
dr 2

vv

,
s

Z
s

< >
=
< >

    (10a) 

 
as well as the copolar correlation coefficient  

 

D P

*
hh vv

hv 2 2
hh vv

j s se
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Φρ ,  (10b) 

 
will be used. 
 The expressions for computing bias are 
applicable to arbitrary copolar and cross-polar 
patterns. Center fed parabolic reflectors are 
designed to have very low cross-polar radiation. 
Thus one can drop the third and fourth order terms 
in Fhv and Fvh, sum the remaining terms in (7) and 
(8), and divide the powers Ph and Pv with <|svv|2> 
to obtain 
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and  
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The decibel of biased differential reflectivity is the 
difference in the decibel logarithms of (11a) and 

(11b).  Note 4
hhF d

Ω

Ω∫ is much larger than any of 

the other terms in (11a and b). Dividing these two 
equations with this term and taking the difference 
of logarithmic functions produces the bias. 
Because the arguments of the logarithmic 
functions are close to 1, we use the first order 
Taylor expansion and express the bias as 
 

DR 1 2δ 10( ) logZ A A e= +     (12a) 
 
where the term A1 contains integrals of Fhv to first 
order and A2 contains the integrals of  Fhv to 
second order. Explicitly 
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DP

2

2 2 21
hv vh dr vh

22
hh dr hv hv

4
hh

1/ 2 *2
dr vh

*
hv vh
1/ 2 2 *
dr hv hv vh

2

Re

[ (

)

( )]

j

A

F F Z F

F Z F d

F d

e Z F

F F

Z F F F

Ω

Φ

ρ Ω

Ω

−

− −

=

− +

− +

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪×⎨ ⎬
⎪ ⎪⎧ ⎫+⎪ ⎪⎪ ⎪⎪ ⎪−⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪+⎩ ⎭⎩ ⎭

∫

∫

(12c) 

 
 
3.2 Types of cross-polar radiation patterns 
 
 In the literature one finds cross-polar pattern 
types to which the expressions developed herein 
are applicable.  One type has a prominent cross-
polar lobe coaxial with the copolar beam. This 
pattern is discussed in the next section. A second 
type has a quad of principal cross-polar lobes 
located diagonally to the H and E principal planes; 
this is typical of a center feed parabolic reflector 
(Fradin 1961). For parabolic reflectors with offset 

feeds, the number of principal cross-polar lobes is 
reduced to two (Durić et al. 2008). Finally there 
are cross-polar patterns that appear to be a 
combination of the first two types. Contours of the 
main lobes for these pattern types are sketched in 
Fig. 2.  

Cross-polar main
lobe cross section

1) SINGLE CROSS-POLAR MAIN LOBE

(2) MULTIPLE CROSS-POLAR MAIN LOBES

Copolar main lobe 
cross section

Copolar main lobeCross-polar 
maximum lobes 

 
Fig. 2 Cross sections through the copolar main 
lobe and cross-polar main lobes for two types of 
cross-polar patterns: (1) A single cross-polar lobe 
centered on the beam axis of the copolar main 
lobe, (2) Four equal cross-polar lobes superposed 
on the copolar main lobe skirts. 
 
  
 Prior to quantifying the bias, a brief discussion 
of radiation patterns follows starting with the one 
measured for the KOUN radar. This pattern is 
examined for obvious practical reasons, which are 
to quantify its effects on the KOUN polarimetric 
radar and to anticipate the performance of the 
forthcoming dual-polarization WSR-88D radars. 
Measurements of the H cross-polar radiation field 
indicate a cross-polar pattern with a peak about 30 
dB below the V copolar peak, centered on the 
copolar beam axis. We have also examined cross-
polar patterns measured by Andrew Canada 
(Paramax 1992) on another WSR-88D reflector 
illuminated with a feed that generates a single 
linear polarized field (i.e., horizontal). The 
measurement shows a cross-polar main lobe 
coaxial with the copolar lobe, and the ratio of the 
cross-polar peak to copolar peak is about the 
same as that measured for the KOUN. Although 
the WSR-88D antennas have cross-polar patterns 
that are likely a combination of the two types 
shown in Fig.2, cross-polar peaks coaxial with the 
copolar beam appear are the most significant 
contributor to ZDR bias; thus we will first focus on 
that pattern.  
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 The principal contributor to the coaxial cross-
polar peak is thought to be the cross-polar pattern 
of the feed horn illuminating the reflector (Doviak 
and Zrnic 1998). The cause of cross-polar peaks 
along the beam axis of the feed has not been 
established, but it is known that concentricity and 
circularity of the horn components on the order of 
a few thousandths of a wavelength are necessary 
to substantially reduce spurious emissions (Potter 
1963). For a well-designed and fabricated 
polarimetric feed horn, and an ideal parabolic 
reflector, the cross-polar radiation should vanish 
along the principal planes; thus there should be a 
null on-axis. In this case the only prominent peaks 
of cross-polar radiation should be that associated 
with the reflector (Appendix).  
 Cross-polar pattern measurements on large 
antennas are more difficult to make and interpret 
than copolar patterns because cross-polar 
radiation is weak and the copolar radiation incident 
on the terrain surrounding the radar site can be 
converted to cross-polar radiation upon scatter 
(Doviak and Zrnic 1998, section II.6.3). This is 
worse at low elevation angles where parts of the 
copolar beam could illuminate the foreground. 
Thus the lack of a well defined on-axis null could 
be an artifact of the site where patterns are 
measured. 
 Although there can be many causes of the 
coaxial cross-polar peak radiation, we shall focus 
our formulation on two specific ones, and for each 
of these we shall specify the amplitude and phase 
of Fhv and Fvh. Cross-polar radiation (i.e., H 
radiation fields if the V antenna port is excited and 
vice versa) can be generated by: 1) a rotation of 
the horn about its axis (Doviak and Zrnic 1998), 
and 2) a lack of geometric orthogonality of the H 
and V ports.  There might be other causes, and for 
comparisons we also examine the worst possible 
case. Next we develop expressions for ZDR bias in 
case of coincident copolar and cross-polar pattern 
peaks.     
 
3.3 ZDR bias due to coaxial copolar and cross-
polar pattern lobes 
 
 The first order Fhv, Fvh terms in A1 (12b) are 
much larger than the second order terms in A2 
(12c); hence A2 can be ignored so that the bias 
(12a) can be written as 
 

DR

h v
h v 1/2

h v dr DP h v

v h

v h h v
DP v h1/2

dr

δ

cos( )

cos( )
20log( ) cos( )

cos( )

Z

W
Z

e

W
Z

β γ

ρ β γ

β γ
ρ β γ

=

⎧ ⎫+ −⎡ ⎤
⎪ ⎪⎢ ⎥Φ + −⎣ ⎦⎪ ⎪
⎪ ⎪
⎨ ⎬− −⎡ ⎤
⎪ ⎪⎢ ⎥−⎪ ⎪⎢ ⎥Φ + +
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

 (13) 

where hvγ and vhγ are the phases of the cross-polar 
radiation relative to the copolar phase, 
  

 3 4
h v h h h v h h| |  /  W F F d F d= Ω Ω∫ ∫ ,  (14a) 

and     
 

3 4
vh h h v h h h| |  /  W F F d F d= Ω Ω∫ ∫ ,  (14b) 

are the antenna’s bias weighting factors that 
measure the effectiveness of the integrated 
product of copolar and cross-polar fields in 
generating DRZ bias. These weighting factors can 
be conservatively specified so that the bias is 
always smaller than a prescribed value.  This 
conservative specification can be relaxed, as 
demonstrated next, if the various phases are 
appropriately adjusted.  
 Let’s first consider the case Fhv = Fvh. Thus, 
defining Whv= Wvh

 = W and hv vhγ γ γ= =  and 
substituting these into (13) produces 
 

DR

1/2
dr DP

hv 1/2
dr DP

δ

2sin( )sin( )

cos( )20log( )

cos( )

Z

Ze W

Z

β γ

β γ
ρ

β γ

−

≈

− +

Φ + +

− Φ + −

⎧ ⎫
⎪ ⎪⎡ ⎤⎨ ⎬

⎢ ⎥⎪ ⎪
⎣ ⎦⎩ ⎭

 (dB). (15) 

 
This equation indicates that the maximum bounds 
on DRδZ are 
 

 { }1/2 1/2
DR hv dr drδ 20log( ) 2Z e W Z Zρ −≈ ± + +⎡ ⎤⎣ ⎦ .(16a) 

 
These bounds occur if o90β = ± , o90γ = ∓ , and 

DP 0Φ = (i.e., bias is always positive) or γ = o90±  

and o
DP 180Φ = (i.e., bias is always negative). 

Thus depending on the particular values of the 
phases (β ,γ , and DPΦ ) the bias can take any 
value between the boundaries given by (16a). 
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Because for rain 1/2 1/2
dr drZ Z−⎡ ⎤+⎣ ⎦  ≈2, and h vρ ≈1, 

the largest positive or negative bias is  
 

DRδ 80 log( ) = 35Z W e W≈ ± ± (dB).  (16b) 
 
These large biases can be incurred if the 
transmitted wave is circularly polarized, and the 
cross-polar and copolar fields are in phase 
quadrature. 
 From (15) it can be deduced that the 
narrowest span of bias occurs if β = 0o or 180o, 
and γ = 180o or 0o. Then the bias is contained 
within the maximum bounds (i.e., for DPΦ = 0,π ) 
 
 1/2 1/2

DR h v dr drδ 20 log( ) ( )Z W e Z Zρ −≈ ± −  (16c) 
 
To achieve this narrow span of bias, the 
transmitted field should be slanted linear at either 
± 45o while the cross-polar field within the main 
lobe should be in or out of phase with respect to 
the phase of the copolar field. Control of the 
transmitted phase β is practical, but the phase 
difference between cross-polar and copolar main 
fields is typically the intrinsic property of the 
antenna, and perhaps of its site.  
 Suppose that the phase difference β is set to 
0o or 180o (by design), but the cross-polar field is 
in phase quadrature with the copolar field (i.e., γ 
=± 90o). Under these conditions, DRZδ  is now 
contained within the intermediate bounds 
 

DR
1/2 1/2

hv dr dr

δ

20 log( ) ( ) 17.4

Z

W e Z Z Wρ −

≈

± + ≈ ±
.   (16d) 

 
These three bias boundaries (i.e., 16b, 16c, and 
16d), with DRδZ normalized by W), are plotted 
versus ZDR, in Fig.3. 
 In summary, Fig. 3 indicates that the upper 
boundary of bias (top curve) is incurred if β= ±  
90o (i.e., circularly polarized transmitted field) and 
γ= 90o. Change in any one of these would 
therefore reduce the bias boundaries. With β 
adjusted to minimize the bias (e.g., β = 0o) the 
worst case of positive bias is the middle curve 
(16d). This middle boundary and the highest one 
are essentially independent of ZDR. For the case β 
= 0o and γ = 180o the maximum positive bias is the 
lowest curve. In the region of ZDR typical for rain, 
the boundaries are practically linear functions of 
ZDR.  

 

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

N
or

m
al

iz
ed

 b
ia

s 
 δZ

D
R
 / 

W
  (

dB
) 

Differential reflectivity ZDR (dB)

β = 0 deg, γ = -90 deg

β = -90 deg, γ = 90 deg

β = 0 deg, γ = 180 deg

 
 
Fig. 3 Envelopes of the maximum positive ZDR bias 
normalized by W (linear scale), for ρhv=1, and the 
indicated values of the phases. Envelopes of the 
maximum negative bias are mirror images of these 
curves with respect to the abscissa. 
 
 
 We shall use Fig. 3 to determine the bias for 
some possible values of the antenna gains. 
Assume axially symmetric Gaussian radiation 

patterns so that 
2 2 2

ij ij ( ) exp[ / (4 )]f θ θ σ= −  

describes the one-way power pattern (Doviak and 
Zrnic 2006; section 5.3).  Then 
 

  
2 1/ 2

1x hv
2 2 1/ 2

1 1x hh

4
3hv

gW
g

θ
θ θ

= ⋅
+

   (17a) 

and 

  
1/22
vh1x

vh 2 2 1/2
1 1x hh

4
3

gW
g

θ
θ θ

= ⋅
+

,   17b) 

 
where the one-way 3 dB beamwidths of the 
copolar and cross-polar power patterns are θ1 and 
θ1x. For equal beamwidths and if the peak of the 
cross polar pattern is 40 dB below the copolar 
peak, W = 0.01.  From Fig. 3 we find that the 
maximum positive bias is about 0.35 dB (i.e., for 

DPΦ = 0). This bias would drop to about 0.18 dB if 
± 45o slant linearly polarized waves are 
transmitted; this would produce a maximum rain 
rate error of less than 25% (Fig. 1). Further 
reduction is possible only if the copolar and cross-
polar patterns are in phase (or 180o out of phase). 
Nevertheless, as the electromagnetic wave 
propagates into the rain filled medium the bias and 
fractional rain rate errors will decrease.   
  
3.3.1 ZDR BIAS DUE TO A ROTATED HORN 
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 It will be assumed that rotation of the horn in 
the polarization plane is the only mechanism 
causing cross-coupling. That is, the cross-polar 
radiation with a properly oriented horn is negligible 
(i.e., the intrinsic Fhv = Fvh = 0). Computing the bias 
in this case can be done by introducing the 
rotation matrix in equation (3). Multiplying the 
rotation matrix with the F matrix we obtain the 
effective matrix (e)F  
 

  hh hh(e)

hh hh

cos sin
sin cos

F F
F F

α α
α α

−
=F   ,  (18) 

 
where α is the rotation angle with a positive sign 
counter-clockwise. In this case  

(e)
hvF = hh sinF α− , (e)

vhF = hh sinF α , etc. Then 
introducing the terms from (18) into (3) and 
carrying forward the computations, the following 
approximate formula for the bias is obtained: 
 

DR

1/2 1/2
hv dr dr DP

δ
2cos( )

20 log( )  
( )cos( )

Z

W e
Z Z

β

ρ β−

≈

− +⎡ ⎤
⎢ ⎥+ Φ +⎣ ⎦

(19) 

 
where now the bias weighting factor W = tan(α). 
For small angular rotations, this result agrees with 
that obtained by Doviak et al. (2000).  
 Feed horn rotation can be set to tolerances of 
the order of 0.1o (Doviak and Zrnic 1998, section 
II.6.7) at which level otan(0.1 ) = 0.0017, and the 
maximum bias (top curve in Fig. 3) is about 0.06 
dB.  Hence for practically designed antennas, horn 
rotation should not be a factor.  
 
3.3.2 BIAS DUE TO NONORTHOGONALITY OF 
THE H AND V PORTS   
 
 Let’s assume that the H, V ports are separated 
by an angle / 2χ π< and the horn is rotated 
about its axis to null one of the cross-polar fields. 
For example, if the cross-polar V field produced by 
excitation of the H port had an on-axis null (i.e., Fvh 
= 0), the copolar H field would be Fhh. But if the V 
port is then excited, the cross-polar H would 
be hh sinF α− , where ( / 2)α π χ= − (α positive 
counter-clockwise), and the copolar V would 
be hh cosF α . Thus the matrix (e)F becomes 
 

hh hh(e)

hh

sin
0 cos
F F

F
α
α

−
=F   ,    (20) 

 
and by substituting the terms from (20) into (3) and 
simplifying, the following bias equation is obtained, 
 

DR

1/2
1 hv dr DP

δ

20 log( ) cos( ) cos( )

Z

W e Zβ ρ β

≈

⎡ ⎤− + Φ +⎣ ⎦
 (21) 

 
In (21) W1= sinα  and, as with (19), the bias 
peaks at β= -90o and ΦDP = 90o. At the same α 
tolerance as that for the rotated horn, bias is 
insignificant.  
  
3.4 ZDR bias due to a four-lobed cross-polar 
radiation pattern 
 
 Cross-polar radiation patterns with nulls along 
the principal planes and a distinct equal amplitude 
principal peak near the copolar peak in each of the 
quadrants (Fig. 3b) is the subject of this section. 
This type pattern is inherent to a center-fed 
parabolic reflector illuminated with linearly 
polarized radiation (Fradin 1961, section VII.2). 
For an example the reader is referred to 
Chandrasekar and Keeler (1993, Fig. 11).  Offset 
parabolic reflectors (e.g., the SPIRA polarimetric 
imaging radiometer, Durić et al. 2008) produce 
cross-polar patterns with two principal peaks near 
the copolar peak. These cross-polarized peaks, 
inherent to the parabolic reflector, can be 
substantially reduced if a circular horn is used to 
illuminate the reflector (Fradin 1961, VII.3). The 
general procedure used in section 3a to compute 
ZDR biases also applies to this case.  Nonetheless, 
to obtain analytical solutions, further simplification 
and assumptions are required.  
 The electric field pattern h v ( , )f θ φ is assumed 
to be axially symmetric about its peak, but the 
electric field at each peak alternates in sign as one 
passes from one peak to the next around the 
copolar beam axis; thus the copolar and cross-
polar fields are in phase or anti-phase, and |Fhv| = 
|Fvh| (Appendix). Therefore the terms hh hv

k nF F  in (7) 
integrate to zero for any k if the exponent n is odd 
and if there is an even number of peaks; that is, 
the first order and third order terms in Fhv vanish. 
Hence A1=0 so that A2 from (12c) produces the 
bias  
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2 2
hh hv

DR 4
hh

1
dr dr

1/2 1/2
hv dr dr DP

| |
δ 10log( )

4 ( )cos( )

F F d
Z e

F d

Z Z

Z Zρ

−

−

Ω
= − ×

Ω

⎡ ⎤− +
⎢ ⎥

− Φ⎢ ⎥⎣ ⎦

∫
∫

 (22) 

     
 Let’s assume a Gaussian shape for the 
copolar lobe and the following offset Gaussian 
shape 
 

 

2 2
h v h v h v

2 2
p p

h v 2
h v

| ( , ) | | ( , ) |

( ) ( )
exp

4

F g f

g

θ φ θ φ

θ θ φ φ
σ

= =

⎡ ⎤− + −
−⎢ ⎥
⎢ ⎥⎣ ⎦

,   

for each of the cross-polar lobes.  Here p pand θ φ  
are angular locations of the cross-polar radiation 
peaks.  Then define  
 

  
2
p
2 2
1 1x

2 2
hh hv

4 4
hh

4 ln(2)2
( )hv 1x

2 2
hh 1x 1

| |

24
( )

F F d
W

F d

g e
g

θ

θ θ

Ω

Ω

θ
θ θ

−
+

= =

+

∫
∫ ,  (23) 

 
as the antenna’s bias weighting factor for a 4-
lobed cross-polar radiation pattern. The 3 dB width 
of the one-way copolar power pattern is θ1, 
whereas the 3 dB one-way width of each cross-
polar lobe is θ1x. Fradin’s equations (Appendix) are 
used to compute the location of the cross-polar 
peaks for a center-fed parabolic reflector. For 
example, the WSR-88D reflector illuminated with 
radiation at a wavelength of 5 cm, shows pθ  
measured (i.e., about 0.5o; Fig. 5) agrees with 

pθ calculated (i.e., 0.47o) from (A.3). 
 For rain Zdr> 1, and from (22) it is deduced the 
largest bias is negative if DPΦ  = 0o. Under this 

condition (i.e., DPΦ  = 0o) and for ρhv = 1, DRδZ  
normalized with W4 is plotted in Fig. 4. Note that 
the maximum negative bias grows almost linearly 
with differential reflectivity (i.e., DRδZ / W4 ≈ -6.15 
ZDR) in the range of 0 to 3 dB. Let’s now examine 
a specific polarimetric weather radar example.  
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Fig. 4   Maximum normalized bias (i.e., a negative 
bias) versus ZDR for an antenna having a cross-
polar radiation pattern dominated by four cross-
polar lobes which are equally spaced on a circle θp 
from the copolar axis. 
 
 
 Cross-polar pattern measurements (Fig. 5) 
indicate 1x 1θ θ≈  (i.e., 0.42o for the University of 
Oklahoma’s polarimetric radar called OU PRIME, 
and 0.93o for the 10-cm wavelength KOUN), 
and p 1θ θ≈ as also suggested by theory (A.3). 
Assume the ratio of gains (ghv/ghh) = 0.001 (-30 dB 
which is an upper value; Fig.5 suggests -35 dB). 
Then W4 in (23) equals ghv/ghh and the maximum 
negative bias (i.e., at ΦDP = 0o) obtained from Fig. 
4 is about -0.0062 ZDR (dB), a negligible amount. 
 

 
 
Fig. 5 Cross-polar radiation pattern functions 

2 4
hv ( ) / (0)hhF Fθ  (thick), and 

2 4
vh ( ) / (0)hhF Fθ  

(thin line) along the 45o diagonal of the OU PRIME 
antenna illuminated with radiation at a wavelength 
of 5.333 cm. 
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 The primary reason for the significantly better 
performance of this type of cross-polar radiation 
pattern is that the four symmetrically located 
pattern peaks alternate sign so that there is 
cancellation of some cross-polar contribution. 
Another reason is the bias weighting factor is 
proportional to the integral of the square of the 
normalized cross-polar radiation, whereas it is 
proportional to the normalized radiation if the 
cross-polar pattern is coaxial with the copolar 
pattern. Furthermore, the displacement of these 
peaks from the copolar beam axis causes the 
cross product of copolar pattern with the cross-
polar pattern to be smaller than in case where the 
cross-polar main lobe is coaxial with the copolar 
beam. 
 
3.4.1 AN EXAMPLE 
 
 In Fig. 5 are two cross-polar patterns 
measured for the OU PRIME radar. This antenna 
reflector is a replica of the WSR-88D reflector, but 
has four feed-support struts as opposed to three, 
and is illuminated with 5 cm wavelength radiation. 
Thus the beam width is 0.44o, i.e., about half the 
beamwidth of the WSR-88D radar.    
 This type of cross polar radiation pattern can 
be represented as sum of a centered pattern (Fig. 
2a) with the quad pattern (Fig. 2b).  The exact 
computation of the bias is straight-forward, 
although tedious. Significant simplification is 
possible by noting that the dominant factor is the 
first order (in powers of Fhv) term 3

h h hv| |F F dΩ∫  

for a coaxial cross-polar peak, and the second 

order term, 2 2
h h vh| |F F dΩ∫  for off-set cross-

polar peaks. 
 The two-way copolar power pattern and the 
two normalized cross products (i.e., 3

h h hv| |F F  

and 2 2
h h vh| |F F ) in the three principal planes are in 

Figs. 6a, 6b, 6c. It is clear from Fig. 6 that the 
cross-polar pattern peak collocated with copolar 
beam axis contributes most to the bias. Because 
the normalized term 3 4

h h vh h h| | / (0)F F F has almost 

the same angular width as 4
hhF (Fig. 6a), the 

antenna’s bias weighting factor, Wvh (17b) can be 
approximated with vh hh/g g  (0.01 in this case).  
Furthermore if |Fhv| = |Fvh|, Whv = Wvh = W = 0.01.  
With this value the maximum positive bias (i.e., 
if hvγ = 90o, andβ = – 90o) can be read from the 
top curve in Fig. 3.  It is about 0.35 dB. This is 

significant but unlikely to happen as it requires a 
juxtaposition of γ = 90o, β = -90, and o

DP 0Φ = . 

 
Fig. 6   a) The two-way pattern 4

hh ( )f θ  (i.e., the 
solid thin curve), the normalized product 

3 4
h h vh h h| | / (0)F F F (i.e., the solid thick curve), and 

the normalized product 2 2 4
h h vh h h| | / (0)F F F  (i.e., 

the dotted curve) in the E plane. b) Same as in a) 
except measurements are made in the H plane. c) 
Same as in a) but in the 45o plane. 
 
 
 The maximum negative bias contributed by 
the four cross-polar peaks is computed using 
equations (22) and (23) and using, from Fig.5, the 
ratio (ghv/ghh) ≈ 3.16 10-4

 (i.e., about -35 dB), and 
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θp = θ1x = θ1. Thus the maximum negative bias is 
about -0.002 ZDR, which is insignificant (positive 
biases are smaller yet).     
  
4. Alternate Transmit and Simultaneous 
Receive (AHV) mode 
 
 Next consider the AHV mode and apply the 
same formalism starting with (3). For computing Ph 
set the lower element in the right most matrix to 
zero, and for Pv set the upper element to zero. 
Then, after performing the multiplications, it can be 
shown all first and many second order terms in 

h vF and v hF vanish; thus the powers can be 
expressed as  
 

h
2

v v

4
dr h h h v dr

2 2
DP vh h h vh

~
| |

+2

cos( 2 ) | |

P
s

Z F d Z

F F d

Ω ρ

Φ γ Ω

< >

×

+

∫
∫

,  (25a) 

 

v
2

v v

4
h h h v dr

2 2
DP hv h h h v

~
| |

2

cos( 2 ) | |

P
s

F d Z

F F d

Ω ρ

Φ γ Ω

< >

+ ×

−

∫
∫

 .    (25b) 

 
Thus bias, (A)

DRδZ , for the AHV mode is  
 

(A)
DR hv

(A) 1/2
vh dr vh

(A) 1/2
hv dr DP hv

δ 20log( )

cos( 2 )
 

cos( 2 )
DP

Z e

W Z

W Z

ρ

γ

γ

−

≈ ×

⎧ ⎫Φ +⎪ ⎪
⎨ ⎬
− Φ −⎪ ⎪⎩ ⎭

(dB) , (26) 

where 
 

2 2
hh vh(A)

vh 4
hh

| |F F d
W

F d

Ω
=

Ω
∫
∫

,   (27a) 

  
2 2

hh hv(A)
hv 4

hh

| |F F d
W

F d

Ω
=

Ω
∫
∫

.   (27b) 

 
If slant linear polarization is transmitted for the 
SHV mode and Fhv =Fvh, (15) is identical in form to 
(26). Comparing (27a, b) with (14a, b) it is evident 

that, for cross-polar radiation patterns having a 
prominent peak on-axis with the copolar peak, the 
bias factors W for the AHV mode are significantly 
smaller than for the SHV mode, and thus DRZ bias 
for the AHV mode is substantially reduced.  
 The radiation patterns seen in Fig. 5 suggest 
the on-axis cross-polar radiation is well below the 
copolar peak (i.e., -40 dB lower) whereas the 
cross-polar peak measured on a WSR-88D 
antenna is about -32 dB (Doviak and Zrnic, 1998, 
Figs. II.9). Note that both these measurements 
were made at the same manufacturer’s site. It is 
likely that the smaller copolar beamwidth of the 5 
cm OU PRIME mitigates reflection from the terrain 
that could have contributed to the on-axis cross-
polar radiation peak. It should also be noted for an 
antenna of similar design, Bringi and 
Chandrasekar (2001, Fig. 6.15) report principal 
plane cross-polar radiation, measured at another 
manufacturer’s test range, is everywhere below     
-45dB. 
 Thus, let’s assume that we have a center-fed 
antenna in which the on-axis radiation lobe is 
negligible. Under this condition let’s compare the 
ZDR biases using the SHV and AHV modes. Thus, 
assuming four equal cross-polar lobes offset from 
the beam axis, we use (22) and (26) for this 
comparison. In this case the antenna’s bias factor 
W4 is the same for both modes. For rain it is safe 
to set hv 1ρ ≈ , and note Zdr ≥ 1. Thus we can write 

Zdr = 1+Δ , and assume that Δ <1. Under these 
conditions it can be shown that (22) reduces to 
 

(S)
DR

4

dr DP

δ

20( 1)log( )[1 2cos ]

Z
W

Z e

=

− − + Φ

 (28a) 

 
which is the normalized bias for the SHV mode, 
whereas for the AHV mode, (26) becomes  
 

(A)
DR

dr DP
4

δ 20( 1)log( )cosZ Z e
W

= − − Φ .  (28b) 

 
Comparing these two, the SHV ZDR bias is about 3 
times larger than that for the AHV mode. 
Nevertheless, assuming that W4 ≤ 3.16 10-4

 (i.e., 
Fhv peak at least -35 dB below the copolar peak; 
Fig. 5), SHV bias is approximately 0.002 ZDR, 
which is still insignificant. 
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5. SUMMARY AND CONCLUSIONS 
 
 Herein we investigate the affects differential 
reflectivity bias DRδZ  has on rainfall 

measurements (section 2). DRδZ  depends on 
several parameters including cross-polar radiation 
as well as differential reflectivity ZDR itself. For 
accurate rainfall measurement DRδZ  should be 
smaller than about 10% of ZDR (in dB, Fig. 1).   
 With this in mind we set out to quantify the 
bias caused by cross-polar radiation. We examine 
two types of cross-polar patterns commonly 
observed.  One has a cross-polar main lobe 
centered on the copolar main lobe, the other has 
four lobes of equal magnitude and displaced 
symmetrically about the beam axis. Use of 
customary approximations (i.e., radiation lobes 
having Gaussian shape), and uniformly distributed 
scatterers with vertical axes of symmetry, leads to 
simple analytic equations for the antenna’s 
differential reflectivity’s bias weighting factors Whv 
and Wvh (i.e., the spatial integral of the normalized 
products of copolar and cross-polar radiation 
patterns).    
 Antennas having multiple cross-polar lobes 
associated with the reflector, but cross-polar nulls 
along the principal planes, cause significantly less 
bias than those having a single cross-polar lobe 
centered on the copolar beam axis.  This latter 
situation appears to be an artifact that causes 
unacceptable bias if the transmitted wave is 
circularly polarized and the copolar and cross-
polar voltage patterns are 90o out of phase (Fig. 3, 
top curve); this bias can be reduced by about a 
factor of two (on a dB scale) if the transmitted 
wave is slant linear at ± 45o (Fig. 3, middle curve). 
Then, if these coaxial lobes have the same widths, 
the level of cross polar peak radiation must be at 
least 45 dB below the copolar peak to keep the 
ZDR bias under 0.1 dB.  This stringent condition 
can be relaxed to 32 dB if the copolar and cross-
polar voltage patterns are in or out of phase with 
each other, and ZDR ≤ 2 dB (Fig. 3, bottom curve). 
But recent data for research weather radars (e.g. 
Fig.5 herein, and Fig.6.15 of Bringi and 
Chandrasekar, 2001), as well as that for the 
polarimetric prototype WSR-88D antenna, (Baron, 
2009) indicate on-axis cross-polar gain can be 40 
or more dB below the copolar gain.   
 It is suggested that the on-axis cross-polar 
radiation observed for large antennas is likely due 
to reflection from surrounding terrain, and not an 
inherent characteristic of the antenna. If the cross-
polar radiation has an on-axis null, the only 

significant cross-polar radiation peaks are the four 
equal-gain lobes due to the reflector (section 3d); 
the gain of these lobes needs to be below -21 dB 
to insure that ZDR bias is less than 0.1 dB (at ZDR ≤ 
2 dB). Measurements (Fig. 5) suggest these gains 
are well below -30 dB. 
   In agreement with previous investigations, it 
turns out that ZDR bias is not an issue for 
polarimetric radars utilizing the alternate (AHV) 
mode. For the simultaneous (SHV) mode, bias in 
ZDR is larger, but it can be controlled with 
appropriate antenna design (i.e., minimizing the 
on-axis cross-polar radiation) so that its effect on 
rain rate errors is negligible (section 4). 
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7.  APPENDIX  
 
Cross-polar radiation induced by the parabolic 
reflector 
 
 Fradin (1961, Section 7.2) shows that the 
copolar and cross-polar fields in the aperture of a 
center-fed parabolic reflector illuminated with the 
field of a vertical (i.e., y directed) dipole are given 
by 

2 2

2 2 2

4 cos2
(4 )y
fE A
f
ρ ϕ

ρ
+

= −
+

 ,   (A1) 

and 
2

2 2 2

sin 2
(4 )xE A
f
ρ ϕ

ρ
= −

+
 ,     (A2) 

 
where the horizontal x direction and y are in the 
aperture of the parabolic reflector, f is its focal 
length (for the WSR-88D, f =0.375 D; D is the 
antenna diameter), A is a complex constant 
(dependent on f, D, the dipole moment, and 

wavelength), 2 2x yρ = +  is the radial distance 
from the z axis to any point in the aperture plane, 
and ϕ  is the angle measured from the x axis.  
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 Using these equations, it is easily seen that 
the cross-polar field has nulls along the principal 
axes (i.e., x and y), and each quarter sector of the 
aperture is a source of cross-polar radiation 
having alternating phases. Thus the far field 
pattern should have, in absence of spar and feed 
blockage and reflector surface perturbations, nulls 
along the principal planes. Furthermore, for the 
WSR-88D antenna, (A2) shows the peak of the 
aperture’s cross-polar field is on the periphery of 
the aperture and along diagonals at± 45o.  We 
shall treat each sector as a source of radiation 
emanating from a phase center located at the 
center of gravity of the cross-polar aperture 
function (i.e., A2) in each sector. Because the 
aperture distribution in each sector is symmetrical 
about the ϕ = 45o diagonals, the four phase 
centers lie along these diagonals. Using (A2) we 
compute the phase centers to be at the radial 
distance cρ = 0.71 D/2.  
 The cross-polar radiation has a peak at an 
angle pθ , measured from the copolar beam axis 
(i.e., z axis), where radiation from each of the four 
sectors constructively add. The sectors either side 
of the diagonals always add in phase, but the 
sectors along the diagonal add in phase at  

1
p sin

2 c

λθ
ρ

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 .     (A3) 

 
For the KOUN parameters,λ = 0.11 m and D = 
8.53 m, and thus pθ computes to be 1.04o. We 
conclude there are four principal lobes of cross-
polar radiation, one each along the azimuthal 
directions ϕ = ± 45o, and ϕ = ± 135o, and at an 
angular displacement given by (A3). Such large 
cross-polar radiation lobes are suggested in the 
pattern measurements presented by Bringi and 
Chandrasekar (2001, Fig. 6.15), as well as in the 
pattern data presented in Fig.5.   
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