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1. Introduction 
 

Errors in forecasts, frequently referred to as 
background errors, result from the initial condition errors 
and errors growing from numerical algorithms as 
sources of forecast uncertainty. Estimating the forecast 
error is not straightforward since the true atmospheric 
state is never exactly known. Ensemble forecasting is a 
feasible way to characterize the forecasting errors and 
represent the probability of atmospheric states. 

In this latter context, radar observation error 
specifications have mostly neglected spatially correlated 
observation errors. As a counter-example, it is 
demonstrated here, using one realistic case, in the 
framework of the McGill data assimilation system 
(Chung et al. 2009), that this approximation needs to be 
revisited. The main objective is to demonstrate the 
impact of correlated perturbations (that simulate the 
observation errors) on the ensemble statistics, and also 
explore in more details the flow-dependent forecasting 
errors at convective scale. 
 
2. Description of the assimilation system and 

MC2 model 
 
2.1 Assimilation system 
 

The McGill data assimilation system for very 
short-term forecasting at convective scales (Laroche 
and Zawadzki 1994, Caya 2001) is used in this study. It 
is based on the variational formalism with a cost function 
including a background term, observations and 
cloud-resolving model equations as weak constraints.  

The system assimilates both radar reflectivity and 
Doppler velocity observations. Chung et. al (2009) 
presented the recent upgrades to the McGill assimilation 
system: 1) a preconditioning procedure is done in the 
assimilation system to avoid inverting the background 
error covariance, ; 2) assuming that the error 
covariance of the control variables is isotropic and 
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homogeneous, the background error covariance matrix 
is modeled by a recursive filter, following Purser et al. 
(2003); 3) a prior high resolution (1km) model forecast is 
used as background field. With one assimilation cycle, 
the analysis fields from the assimilation system 
successfully trigger the convective storms in the radar 
observed regions.  

 
2.2 Cloud-resolving model  

 
The Canadian Mesoscale Compressible Community 

(MC2) model (Laprise et al., 1997) is used as the cloud 
model in the current study. The algorithm is 
semi-Lagrangian in advection with semi-implicit in time 
step. A complete warm and cold microphysical 
parameterizations (Kong and Yau 1997) are included in 
the model. The model uses a one-way (cascade) nesting 
strategy, where a coarse-grid forecast provides initial 
and boundary conditions for a fine-grid (1km) forecast, 
and there is no upscale feedback.  

 
3. Design of the experiments 

 
Following Houtekamer et al. (1996), we have added 

simulated errors to the observations, and used the 
McGill data assimilation system to obtain a set of 
analyses in this case study. 

In most studies using radar data (Snyder and Zhang 
2003, Tong and Xue 2005 and Xue et al. 2006), only the 
variance of the observation errors with zero mean is 
prescribed and perturbations with a Gaussian 
distribution are generated. To investigate the impact of 
the correlated structure of the observation errors (in 
space) on the ensemble forecasts, two types of 
perturbations are generated and taken as the 
observation errors: uncorrelated, known as white noise 
(hereafter, UNCP) and errors with prescribed 
correlations (hereafter, CORP). 

For the UNCP experiment, we have added 3D fields 
of uncorrelated, unbiased, Gaussian perturbations to 3D 
radar observations of reflectivity, Z, and Doppler velocity, 
Vr. In our case, we have respectively used σZ=2.5 dB 
and σv=1ms-1. An example of uncorrelated perturbations 
for reflectivity in the horizontal and the corresponding 
power spectrum are shown in Fig. 1. 



For the CORP experiment, the error variances are 
the same as UNCP, and we have imposed a horizontal 
decorrelation distance of 10 km and a correlation of 0.85 
at 250 m in the vertical for the reflectivity perturbations.  
The perturbations of Doppler velocity observations have 
been created with 5 km horizontal decorrelation distance, 
and 0.75 between contiguous layers. Fig. 2 illustrates 
the correlated perturbations in the horizontal and its 
corresponding power spectrum. 

Finally, to also consider the uncertainty in the 
background fields, in the third experiment, we perturb 
both observations (same way as CORP) and 
background fields at the initial time, (hereafter, CROB). 
We have chosen to perturb our background by using 
model forecasts for different lead times. By doing that 
we attempt to describe background errors as timing 
errors in the model fields. Prior high-resolution (1-km) 
MC2 simulations (without assimilating radar 
observations) at 1500 UTC, 1600 UTC and 1700 UTC 
are used as background fields in the ensemble 
forecasts. 

A case study is selected on 12 July 2004. It is a 
strong, long-lasting convective scale storm, and 
observed by the McGill S-band radar. Fig. 3 depicts the 
reflectivity observations of the storm at 1840 UTC and 
1910 UTC.  
 
(a) 

 
(b)  

 
Fig. 1. (a) Realization of the normalized 
perturbation added to the Z fields; (b) Its 
corresponding averaged power spectrum. 

 

 (a) 

 
(b) 

 
 
Fig. 2. The same data set as in Fig. 1, but 
correlated observation error distribution in (a) 
space domain; (b) spectral domain.  
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Fig. 3. Reflectivity observations of the McGill S-band 
radar on 12th July 2004 at (a)1840 UTC; (b) 1910 UTC. 
The dashed line indicates the analysis domain. 
   
4. Results of the ensemble forecasting errors 

 
The ensemble forecasts were run over a one-hour 

period, from 12 July 2004 at 1810 UTC to 1910 UTC 
with a 1-km resolution. The ensemble forecasting error 
statistics are estimated by calculating the difference 
between each ensemble member and the ensemble 
mean as defined by: 
B = (xb − xt )(xb − xt )

T = εbεb
T ≅< (xi − x )(xi − x )T > (1) 

where  stands for each ensemble member and ix x  
is the ensemble mean valid at the same forecasting time. 
< > is the average of the members. The ensemble mean 
is over 10 realizations in the experiment of UNCP and 
CORP, and 30 members in the CROB. 

All the following results were computed within a 
domain of 140 x 70 km2 around the storm (see the 
dashed domain in Fig. 3). A perfect–model framework 
has been used for the ensemble experiments in order to 
simplify the interpretation of the results.  

 
4.1 Ensemble Spread 

 
The ensemble spread at (x,y,z) for the control 

variable X has been computed as: 

SX x,y,z( )=
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and  and  are the number of grid points in x and 

y directions, and 
xn yn

( )zXμ̂  is the estimated 2D mean 
value at z.  

 
Figure 4 illustrates the spread in the 1-hour forecasts 

of horizontal wind u and vertical velocity obtained for the 
experiment UNCP.  Both fields show significant spread 
around the convective storm. Since only observations 
were perturbed for this experiment and they are only 
available in precipitating areas, far away from the storm 
the spread is much smaller. Fig. 5 displays the spread of 
the forecast error as in Fig. 4 but for the CORP 
experiment. Both fields manifest larger spread around 
the storm as UNCP. However, one should notice that the 
significant difference between the two experiments is 
that in each grid point, the CORP experiment presents 
much larger spread for the variables in the analysis 
domain, and it is more evident near the location of the 
convective storm. The results of ensemble spread in 
UNCP and CORP indicate that by using the 
uncorrelated perturbations as observation errors, the 
error variance may be underestimated.  

 
 
(a) 

 
(b) 

 



Fig. 4. Ensemble spread of 60-min forecast in UNCP at 
an altitude of 2.5km. (a) u component of the wind; (b) 
vertical velocity. 
 
 
(a) 

 
(b) 

 
Fig. 5. Ensemble spread of 60-min forecast in CORP at 
an altitude of 2.5km. (a) u component of the wind; (b) 
vertical velocity. 
 

Figure 6 is the ensemble spread resulting from a 
30-members CROB experiment. The high uncertainty of 
the control variables (larger spread) is mainly distributed 
around the convective storm. However, as compared 
with results in experiment UNCP (Fig. 4.) and CORP 
(Fig. 5.), the ensemble spread is noticeable almost all 
over the entire analysis domain, and this could be due to 
the use of three different backgrounds.  
 
(a) 

 

(b) 

 
Fig. 6. Ensemble spread with 30 members of 60-min 
forecast from the experiment CROB. (a) u component of 
the horizontal wind; (b) vertical velocity. 
 
4.2 Forecast Error correlations 

 
Here we investigate the impact of the forecasting 

error correlation in space. The error auto-correlation 
function (ACF), zX ,ρ̂ , in the horizontal at a height z is 

estimated as: 
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where εX ,k x,y,z( )= Xk x,y,z( )− X x,y,z( )  is the 
departure of the k-th member from the ensemble mean.  
L and M are the horizontal shift in the x and y directions, 
respectively. In the current study, the results are 
presented in the x direction. Error cross-correlations are 
also briefly described at the end of this subsection. 

Figure 7 presents the error ACF in the x direction 
computed from 5 individual members of the UNCP 
experiment for the wind components and temperature.  
One can see that the errors of u component have larger 
correlation in space than the vertical velocity errors. The 
error ACF resulting from the CORP experiment is shown 
in Fig. 8. The vertical velocity still decorrelates 
significantly in space as the UNCP experiment. However, 
one can notice that the errors in the horizontal wind in 
the CORP experiment are significantly more correlated 
in space than in the UNCP experiment. Similar results 
can be found in the v component and temperature as in 
the u component (results not shown). The comparison of 
error correlation in space between UNCP and CORP 
reveals that the error correlation decorrelates faster in 
space (except vertical velocity) when using uncorrelated 
perturbations as observation error.  

The error ACF in space for u component of the wind 
field at different heights in the experiment CROB is 
shown in Fig. 9a. The correlation is much longer 
compared to the experiments of UNCP and CORP. This 
larger error correlation in space is influenced by the use 
of three different backgrounds containing information 
from large (synoptic) scales. Figure 9-b shows the error 
ACF only within the precipitation area. It is manifest that 
the error decorrelates much faster as compared to the 



result from the entire domain. This indicates the need to 
discriminate background error covariances within and 
outside the precipitating areas. 

 
(a) 

 
(b) 

 
Fig. 7. ACF of the forecast error: 60-min forecast in x 
direction at an altitude of 2.5km for 5 realizations of the 
experiment UNCP. (a) u component of the wind; (b) 
vertical velocity. 
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Fig. 8. ACF of the forecast error: 60-min forecast in x 
direction at an altitude of 2.5km for 5 realizations of the 
experiment CORP. (a) u component of the wind; (b) 
vertical velocity.  
 
(a) 

 
(b) 

 
Fig. 9. ACF of the forecast error in u component of the 
wind for a lead time of 60-min forecast in x direction at 
different height of the experiment CROB: (a) computed 
in the entire analysis domain; (b) computed only within 
the precipitation region.   
 

Figure 10 depicts the cross-correlation errors 
between vertical velocity and cloud water mixing ratio at 



each point within the convective cell (defined as the 
area in which the absolute value of vertical velocity is 
greater than 1ms-1). It is found in general that vertical 
velocity and cloud water mixing ratio show significant 
correlations with a horizontal correlation scale that 
significantly varies in the vertical. Similar results are 
found between vertical velocity and rain water 
cross-correlations. Those results illustrate the strong 
connection of the uncertainty between dynamics and 
microphysics processes. 
 

 
Fig. 10. Cross-correlation errors between vertical 
velocity and cloud water within precipitation areas at 
30-min forecast ( in x direction ).  
 

 
5. Summary 
 

The current study showed how sensitive forecasting 
errors are to the representation of the observation error 
correlation. Based on this case study, our work is an 
attempt to add perturbations that account for the main 
sources of uncertainty in the initial conditions within a 
data assimilation system. The results show that the 
correlation of the errors greatly increases the spread of 
the ensemble as well as its correlation in space.  

In addition, the error correlation demonstrates the 
different characteristics within and outside precipitation 
areas, and cross-correlation errors reveal the strong 
coupling between dynamics and microphysics. 

Based on these findings, it appears desirable to 
account for those important components of error 
characterization within currently existing convective 
scale data assimilation schemes. 
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