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1. ABSTRACT  

 In this study we use a large dataset of snow 
measurements collected by a ground-based 
optical disdrometer Hydrometeor Velocity and 
Shape Detector (HVSD).  Measurements were 
taken at the Centre for Atmospheric Research 
Experiments (CARE) during winter 2005/2006 as 
part of the Canadian CloudSat/CALIPSO 
Validation Project (C3VP). The HVSD 
measurements provide particle size and its 
terminal fall speed for each interval from which 
the velocity- and area ratio-size relationships 
can be derived. Using the derived relationships 
and the proposed relations in the literature 
between the Best and Reynolds numbers, an 
approximate average relation between the 
coefficient in the experimentally obtained 
velocity-size relationship and the coefficient in 
the estimated mass power law is retrieved. The 
validation is made by comparing the time series 
of the reflectivity factor calculated from the 
derived mass-size relationship for a snowflake 
for each snow event together with the size 
distribution measured by the HVSD, with the 
reflectivity obtained from the collocated POSS 
(Precipitation Occurrence Sensor System) 
measurements. Furthermore, the snowflake size 
distributions are investigated in the scaling 
normalization framework with one and two 
normalizing moments, in order to develop a 
parameterization of snowflake size distribution, 
particularly with regard to the higher-order 
moments that are important for the mass 
content, reflectivity and mass- and reflectivity-
weighted fall speed calculations. The obtained 
results agree very well with the previous studies 
showing that the exponential form represents a 
good approximation to the mean observed 
snowflake size distributions. 
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2. INTRODUCTION 

 The retrieval of microphysics of precipitating 
snow from Doppler radar and other remote 
sensing measurements, as well as snow 
microphysical parameterization requires 
knowledge of the form of the size distribution 
that allows an accurate derivation of the 
distribution moments that are important for 
microphysical description; moreover, the 
characteristics of individual snowflakes such as 
representative dimensional relations of mass 
and fallspeed are needed.  
 In the first part of this study we retrieved an 
approximate relation between the mass and 
terminal velocity of a single snowflake assuming 
that other factors, like for example the shape of 
the individual crystals, introduce only small 
correction to the average mass-velocity 
relationship. Subsequently, we assume here that 
the variability in fallspeed for snowflakes with the 
same size is due mainly to the particle density, 
and the details of the crystal types composing 
the aggregates have much smaller influence on 
the velocity. 
  Theoretical and laboratory work on the 
determination of the terminal velocity through a 
relation that involves the particle mass has been 
directed mainly to the use of the relationship 
between the Reynolds number, Re, determined 
by the product of the velocity and the size and 
the Best (or Davies) number, X, related to the 
drag coefficient and calculated from the ratio of 
the particle mass to the effective cross-sectional 
area projected on the flow.  For a given type of 
falling particle a certain dependence of the 
effective area on the particle size and density is 
expected. For example an empirical average 
expression relating particle size, density and 
effective area has been proposed by Heymsfield 
et al. (2004). 
 



 The same theoretical approach based on the 
relation X-Re is used here to estimate the mass 
relations from the optical spectrograph 
measurements of terminal velocity and area ratio 
as a function of snowflake size, for different 
snow events. The particle mass estimation via 
this approach has been proposed by Hanesch 
(1999), Schefold (2004) or Lee et al. (2008).  
The next step is the determination of the 
approximate average relation between the 
coefficient in the experimentally obtained 
velocity-size relationships and the coefficient in 
the estimated mass expression.  
 Two types of uncertainties contribute to the 
uncertainty of the derived relation. The first type 
represent fluctuations in the measured data such 
as the velocity or the area ratio for a given size 
category, used as an important starting point for 
the calculations. The second type of 
uncertainties arises from the fact that the 
theoretical formulae used for the derivation of 
the resulting relation are not well known. These 
two types of uncertainties are combined when 
investigating the uncertainties of the derived 
relations.  
 The measurements that we use are 
measurements from an optical disdrometer, that 
can give information not only on velocity and 
area for each size bin of snowflake but also on 
snowflake particle size distribution (PSD). The 
measured PSDs have been used to the 
validation of the retrieved relation through the 
comparison of the expected and measured radar 
reflectivity time series; moreover, in the second 
part of this study, we investigate the measured 
PSDs in order to propose a snowflake PSD 
parameterization simple and compact, 
representing the measured higher order 
moments well. The used scaling normalization 
approach leads to power-law relationships 
between the PSD moments and does not rely on 
a particular functional form imposed on the PSD. 
However, to determine the coefficients in the 
relating moment power-laws, requires, in 
general, the knowledge of the underlying 
generic/intrinsic function providing an acceptable 
accuracy of the quantities of interest such as 
radar reflectivity and snow mass content, despite 
a very large variability of the actual PSD; 
therefore, these quantities of interest, as well as 
the available observations have to be taken into 
account to determine the choice of the functional 
form of the generic PSD function and the 
number and also order of normalizing moments. 
 

 Over the past years, the concept of scaling 
normalization has been found very convenient to 
describe the rain DSD (e.g. Sempere-Torres et 
al. 1994, Lee et al. 2004, Szyrmer et al. 2005) 
and for ice/snow PSD (Sekhon and Srivastava 
1970, Delanoë et al. 2005, Field et al. 2005, 
2007). The investigation of a general analytical 
form describing observed snow/ice PSD is a 
topic of some recent studies (Brandes et al. 
2007, Heymsfield et al. 2008, Wood et al. 2008, 
Newman et al. 2009).  

3. EXPERIMENTAL DATA USED IN THE 
STUDY 

 In this study we use a large dataset of snow 
measurements collected by a ground-based 
optical disdrometer Hydrometeor Velocity and 
Shape Detector (HVSD) (Barthazy et al. 2004).  
Measurements were taken at the Centre for 
Atmospheric Research Experiments (CARE) 
during the winter 2005/2006 as part of the 
Canadian CloudSat/CALIPSO Validation Project 
(C3VP) (Hudak et al. 2006).  The HVSD 
measurements provide particle size and its 
terminal fall speed for each size class. The study 
of Zawadzki et al. (2009, henceforth Z09) give a 
detailed description of the measurements and 
investigate the variability in the velocity-size 
power-law [u(D)=auDbu] coefficient. They showed 
that both the depth of the precipitation system H 
and surface temperature Ts stratify fall velocity 
and the following relationship was derived by 
Z09: 

su
THa 011.0009.073.0 ++=  

 

au in m s-1 mm-bu, H in km, Ts in °C. 
 In this study, 9 snowfall events have been 
selected as in Z09 by inspecting the VertiX 
(vertically pointing X-band radar) records and 
retaining only the snow systems uniform in time. 
An additional requirement for this study was the 
availability of the complete time series of the 
measured by HVSD spectra. For each snow 
event and each size bin, the mean values of 
velocity and area ratio, and their standard 
deviations were obtained from Z09 (see Table 1 
for the summary of the analyzed events). 
Values of the measured velocity and area ratio 
that deviate by more than 2 standard deviations 
from the value expected for given size class by 
the obtained relations were discarded as 
outliers. 

 The data collected by the HVSD, and then 
the observed snowflake dimensions, correspond 



to the two-dimensional side view pattern. As a 
reference dimension D is chosen the maximum 
side-view size i.e. the maximum of the two 
perpendicular extensions: height of the image 
(vertical dimension as the snowflake falls) and 
width of the image (Z09). This definition of the 
snowflake reference size is used in our 
dimensional relationships obtained from 
measurements of the velocity and area ratio and 
retrieved for mass, as well in the PSDs 
representation. 
 The validation of the retrieved mass-velocity 
relation is made by comparing the time series of 
the reflectivity factor calculated for a derived 
mass-size relationship for an individual 
snowflake and applied for the size distribution 
measured by the HVSD, with to reflectivity 
obtained from the 0th moment of spectrum 
measured by the collocated Precipitation 
Occurrence Sensor System (POSS). The POSS 
is a small X-band bistatic Doppler radar. The 
HVSD and POSS data are averaged over 6 
minutes periods. The total number of analyzed 
spectra is 805. 
 The temperature at the ground during these 
events varied between -17 and -2°C. The 
observed reflectivity factor varied between about 
-10 and 35 dBZ.  
 

4. ESTIMATION OF AVERAGE 
RELATIONSHIP BETWEEN SNOWFLAKE 
MASS AND VELOCITY OF AVERAGE 
RELATIONSHIP BETWEEN SNOWFLAKE 
MASS AND VELOCITY 

4.1 Theoretical basis and main assumptions 

 The form of a mass-size and terminal 
velocity-size relationships adopted here is the 
most common power-law: 

                u=au Dbu                              (1a) 
m=am Dbm                            (1b) 

or equivalently for (1b), density-dimension 
relationship 

( ) 3
6

!
= mb

m
Da"#   (1c) 

where D represents reference size of snowflake. 
Moreover, application of the hydrodynamic 
theory requires calculation of the effective area 
Aeff  that is directly related to the area ratio, Ar. 
The area ratio is defined as 

( )22)25.0/( DDDAA eqeffr =! "             (2) 

As shown in Z09, two forms have been 
proposed for the parameterization of Ar for the 

side-view particle images, depending on the 
snowfall event: 

 [ ]1)exp( !!= DbaA
rrr

  (3a) 

reb
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 The calculation of best estimation of mass for 
D-size snowflake from its fallspeed is based on 
the determined relation between the Reynolds 
number Re and the Best (or Davies) number X 
related to the drag coefficient but having no 
dependence on fallspeed.  The two numbers are 
defined as (e.g. List and Schemenauer 1970): 
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taking 
snowairsnow
!!! "# . The environmental 

conditions are included via the kinematic 
viscosity and air density ν and ρa, respectively. g 
denotes gravitational acceleration. The 
expression for X contains the mass m and the 
effective particle area projected normal to the 
flow !effA in addition to D* that denotes the 
chosen characteristic dimension of the particle. 
Introducing the area ratio normal to the flow, 

!rA  and using (2) X can be expressed as 
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!D  is the maximum diameter in the direction 
normal to the flow that (what does that refer to?) 
is not measurable and therefore must be 
estimated. The final expression for X depends 
on the choice of the characteristic size D*. 
Taking D* equal to the maximum diameter 
projected on the flow and assuming an idealized 
spheroidal shape for the snowflakes !D , Böhm 
(1992) modified (6) by introducing the fourth root 
of the inverse of area ratio and the axial ratio !  
of this assumed oblate spheroid shape of 
snowflake: 
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 A theoretical relationship between Re and X 
derived from the boundary layer theory was 
developed by Böhm (1989) and Mitchell (1996) 
on the basis of the previous work of Abraham 
(1970) in the form : 
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with the two constants 
0
!  and 

0
C characterizing 

the boundary layer shape and thickness. For 
aggregates, Mitchell and Heymsfield (2005) 
modified slightly the relation by adding an 
empirical term 0

0

b
Xa! . Khvorostyanov and 

Curry (2005) proposed an alternate method to 
introduce this correction. In this study, the 
particle mass is deduced from the Best number 
that is calculated from Re. Therefore, we need to 
invert the proposed relations Re=f(X). Equation 
(8) can be directly inverted while the two other 
relations Re=f(X) were inverted by fitting log(X) 
to a 6th order polynomial of log(Re): 
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with the constants 
l
C . 

 Snowflake size and area measured by the 
HVSD represent a side-view of the particle. In 
general, the falling snowflakes, due to 
aerodynamic forcing, are oriented preferably 
horizontally. On average, their horizontal 
dimension is larger than the value measured 
when viewed on side-projection (e.g. Magono 
and Nakamura 1965; Matrosov et al. 2005; 
results from the Snowflake Video Imager, SVI, 
deployed in Canada for C3PV during winter 
2006/07). Since the horizontal, flow-normal 
dimensions that are required for the velocity 
calculations cannot be measured, they must be 
estimated from the side projection.  
  The relations used to estimate the horizontal 
projection dimensions are based on 1) the 
assumption that

rr
AA !"  i.e. the area ratio is 

independent of the angle of observation, normal 
or parallel to the flow, and 2) the relation from 
Schefold (2004) giving the ratio of the effective 
area projected normally to the flow to the area 
from the side view, given as a function of the 
canting angle !  and the side projected axial 
ratio ε.  The latter is the quotient of the side 
projected minor axis to the side projected major 

axis: ( )
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where 
min
!  describes the minimal value of the 

axis ratio evaluated from the measurements. 
The last relation together with the assumption 

rr
AA !"  is also used to calculate the maximum 

horizontal dimension !D  from the maximum 
side dimension D taken as reference dimension.  
 
4.2. Steps in the derivation of the mass-
velocity relationship 
 
 An average relation between a snowflake 
mass and velocity has been derived in the 
following steps with the four first steps calculated 
separately for each snow event:  
i) Calculation of Re from the HVSD 
measurements of terminal velocity and area 
ratio.  
ii) Estimation of the value of X from Re using (8) 
and the two versions of (9).  
iii) Best estimation of mass for D-size snowflake 
from the estimated X and area ratio normal to 
the flow. For each size-bin 36 different values of 
mass is calculated from different combinations of 
the applied relations (X-Re relationships, 
expressions of X, smoothed and no smoothed 
measured u and Ar, different approaches to 
define the characteristic size), each value of 
mass is considered as the ‘measured’ value of 
mass using different method and interrelated 
through the common parameters, their 
geometric weighted mean is taken as the best 
estimation of the snowflake mass with reference 
diameter D. The weight of each ‘measured’ 
mass is the reciprocal of the corresponding 
uncertainty obtained by combining the 
contribution of the uncertainty related to the 
different quantities involved having the estimated 
uncertainties shown in Table 2.  The uncertainty 
of the best estimated mass is done by 
calculating only the maximum uncertainty that is 
simply the linear sum of the weighted 
uncertainties of an individual mass values, 
otherwise, the existing correlations between the 
different components makes the calculations of 
the resulting uncertainty very complex. The 
results of the calculations for one snow event 
are shown as an example in Fig.1.  
iv) Determination by regression of the 
coefficients in the power-law relation m-D given 
by (1b) from the best estimated mass for each 
D. An example is shown Fig. 1 where the blue 
line shows the best-fit power law. For the studied 
9 snow events, the obtained coefficients am and 
bm and their values are quoted in Table 1 and 
shown in Fig. 2. For comparison, the mean value 
obtained by Brandes et al. (2007) from a very 



large dataset is also superposed in Fig. 2. 
However, because D in their study was taken as 
equivalent diameter, their relation has been 
recalculated using the average relation Deq -D 
obtained from our data: 95.0

688.0 DDeq = (in 
CGS units). The results of Bringi et al. (2008) for 
individual snow events, shown also in Fig.2, 
have been recalculated as for Brandes’s result. 
 v) From all events, derivation by regression an 
average relation between the power-law 
coefficients in the mass and velocity dimensional 
relationships. This relation is obtained for the 
mass and velocity exponents fixed at 2 and 0.18, 
respectively.  The value of 2 corresponds to 
effective snowflake density decreasing with size 
as D-1 [ ( ) ( ) mb

m
DaDm

+!! ==
33

66 ""# ] and is 
in good agreement with numerous observational 
studies of snow at the surface (Mitchell et al. 
1990 from the overall observed particle types; 
Brandes et al. 2007) and aircraft observations 
(e.g. Heymsfield et al. 2002) as well with 
theoretical studies (Westbrook et al. 2004). The 
derived values of bm in the present study, shown 
in Fig. 2 for analyzed snow events, cluster 
between the value of 1.8 and 2.1. Taking into 
account all these factors together with the 
general uncertainty in the mass-size relation, we 
set the exponent bm to 2 for power law relation 
representing the precipitating snow; the 
coefficient am becomes then the only coefficient 
to be determined in the mass-size relationship. 
On the other hand, the obtained by Z09 velocity 
power laws of the form (1a) for different 
homogenous snow events, show the relatively 
small variability of the exponent bu. Since we are 
looking for simplified relations, the value of bu is 
fixed at 0.18. The best values of au for bu=0.18 
were obtained via least squares method from the 
data for each event. In Fig. 3 the values of am 
derived for bm=2 and bu=0.18 are plotted as a 
function of the velocity coefficient au obtained 
from the data. Each point represents one of the 
9 events. The analytical relation between am and 
au is assumed to have the form: 

um
aa !" +=log   (12) 

Coefficients !  and !  have been determined by 
least squares regression with the weighting 
factor equal to ( )[ ]2log/1

m
a!  for each [au, 

log(am)] pair. The uncertainty of the coefficient au  
is not taken into account, its value has been 
included in the uncertainty of retrieved am. The 
solid line in Fig. 3 represents the least squares 

fitting squares with 92.2!="  and  
00558.0=!  in the CGS units. 

 
4.3. Validation 
 
 In this study the snowflake mass/density 
retrieval process use the measured reflectivity, 
to validate the retrieved mass-size relationships. 
For each snowfall event, the mass coefficient is 
estimated from the velocity coefficient au using 
(12). Knowing the mass-size relationship, the 
backscatter cross section of each size category 
is calculated from Model 5 described in Fabry 
and Szyrmer (1999). The expected reflectivity 
factor is then computed from the snowflake size 
distributions measured by the HVSD. The time 
series of the calculated reflectivity are compared 
with the reflectivity derived from the collocated 
POSS. The HVSD and POSS data are averaged 
over 6 minutes periods. The scatter plot of 
reflectivity calculated for the all 9 events versus 
the POSS measured reflectivity is presented in 
Fig. 4. The root mean standard error (RMSE), is 
equal to 2.86 dB. Fig. 5 presents an example of 
the reflectivity time series. The black line gives 
the POSS measured reflectivity, while the blue 
line is the reflectivity calculated from the mass 
relationship derived for the given event. The red 
line show the reflectivity calculated for the same 
spectra but using the mass relation retrieved for 
the event of 2006-Jan 09. 
 
4.4. Application 

 With (12) and the information about the PSD, 
the reflectivity- and mass-weighted velocity or 
snow precipitation rate can be calculated 
together with the reflectivity factor. In Fig. 6 the 
reflectivity-weighted velocity UZ is plotted against 
the reflectivity as obtained from the calculations 
for all snow events. The solid lines are obtained 
through regression for assumed following linear 
relation between Uz and Ze in dBZ and log(am):  

 [ ] ( )
meZ
adBZZU log120484.0365 ++=   (13) 

UZ and am are in the CGS units. 

 In Fig. 7, the calculated snow precipitation 
rate S is plotted as a function of the calculated 
Ze. Four empirical relations reported in the 
previous studies are also shown in this figure. 



5.  PARAMETERIZATION OF SNOWFLAKE 
PSDs MEASURED BY HVSD WITHIN 
SCALING NORMALIZATION FRAMEWORK 

 Measured variables related to the PSD are: 
  - PSD function: n(D), where  n(D)dD is a 
concentration of particles between D and D+dD; 
measured is nD: particle concentration in size bin 
D;  the scattergram of all 805 measured 6-min 
averaged spectra composed of 16574 counts is 
shown in Fig. 8;  
- PSD bulk/integral representation by the PSD 
moments of different orders p: 

( )dDDnDM p
p !"  

  from measurements: 
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 The use of the power-law form to describe 
the dimensional relations for various specific 
properties of individual particles, such as mass 
and fall-speed, leads to the bulk quantities of 
PSD expressed in terms of the PSD moments. 
 The PSD normalization is based on the 
assumption that the distributions are self-similar 
and depend only on the normalizing PSD 
moments.  This approach naturally gives rise to 
the occurrence of power law relationships 
between different PSD moments with the 
scaling/normalizing moments relating all other 
moments to each other. For a given self-
preserving distribution, the actual PSD can be 
calculated from the normalizing moments.  
Characteristic sizes such as mean-volume 
diameter are defined in terms of two moments 
as: ( ) ( )ij

ijjiD
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, ## . For the snowflake density 
assumed to change with (1/D), i.e. for am in (1b) 
equal to 2, the mean mass-weighted diameter is 
given by D2,3 = M3 / M2. 
 In an one-moment scheme 1-M with the ith 
moment Mi of the distribution used as the 
normalizing moment the normalized PSD 
function is given by ( ) ( ) i
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expression relating any pth moment to the 
normalizing moment is:                       
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where the coefficient ( )i
pC , is the moment of 

order p of g(xi):  
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 In the two-moment (2-M) normalization, the 
general form of the normalized PSD is written 
as:    
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where Mi and Mj are two normalizing moments 
and ( ) ( )ij
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, ## . It follows that any 
moment of order p can be obtained from: 
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given by g(xi) or h(xi,j) is independent of the 
value of normalizing moments and is called the 
generic (intrinsic) distribution function. Its form 
remains free, but in order to determine the 
coefficients Cp it has to be fixed. The accuracy of 
the estimated moments Mp is limited by this 
inherent assumption of a fixed shape for the 
distribution.  
 We investigate our dataset of the snowflake 
PSDs with the second and third moments as 
normalizing moments, as in Field et al. (2005, 
2007). These two moments are assumed to be 
not affected by the truncation effect during the 
measurements. The tested schemes are: 1-
M(2), 1-M(3) and 2-M(2,3), where the two former 
are one-moment schemes and the latter two-
moment scheme. The normalization with the 3 
schemes of our dataset from Fig. 8 is shown in 
Fig. 9. In the 1-M schemes, the values the 
scaling exponents, 

2
!  and 

3
! , are 0.208 and 

0.252, respectively. They are derived following 
the procedure from Sempere-Torres et al. (1998) 
using weighted total least squares fitting. The 
comparison of the scatter of data points in Fig. 9 
with Fig. 8 shows that the use of normalization 
overcomes to some extent the issues of the 
variability of the shape of the PSD.  
Consequently, the dependence of the relations 
between the moments (the coefficients Cp) on 
the variability of the PSD shape is reduced, 
particularly in the 2-M normalization.  
 In Fig. 9 the average functions obtained from 
the data points are shown as solid color lines 
(except red) with bars indicating standard 
deviation. The over plotted red lines represent 
an exponential function in the following forms: 
1-M schemes:        
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2-M scheme: 
( ) [ ]

3,23,2 3exp5.13 xxh != . 

These forms satisfy the self-consistency 
constraints: ( )

1=
i

i
C for 1-M and ( ) ( )

1
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ji
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i CC for 
2-M. In general, the exponential distribution is 
very close to the average generic function, 
except at the smallest sizes. The derived 
coefficients in the moment-relating power-law 
(14) for the two 1-M schemes are plotted in Fig. 
10 as a function of the order of the derived 
moment. Also, in the same figure, the 
exponents, calculated from the derived values of 
i
! , are shown. 
 The exponential function is a special case of 
the Generalized Gamma (GG) function that is 
very flexible in shape having two shape 
parameters µ  and ! : 

  

! 

fGG x( ) = A0 " x( )
µ
exp # " x( )

$[ ] ,  

A0 is a normalization factor, and !  is a scaling 
parameter. 5 forms of ( )xfGG  corresponding to 
different combinations of the two shape 
parameters are plotted in Fig. 11. Because of its 
flexibility, the function GG has been chosen to 
the further investigation of the best 
representation of the observed PSDs of 
snowflakes using the 2-M(2,3) scheme.  
 To evaluate the uncertainties in the retrieved 
moments using 2-M(2,3) scheme combined with 
the GG function, we use the Standard Deviation 
of Fractional Error (SDFE), defined as: 
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where n is the total number of spectra, Mp,mes 
and Mp,est are the pth moment from measurement 
and from estimation, respectively. Fig. 12 
displays a contour map of log(SDFE) in the 
space of the two fGG shape parameters. The 
presented results are for the moments M1 and 
M4. The point representing exponential form is 
shown by a red “x” symbol. From this contour 
plots, it can be seen that the minimum SDFE 
area is a broad valley with very small changes in 
SDFE that spans over the whole presented 
range of the two shape parameters. With the 
constraint α=1 that corresponds to the modified 
gamma function, the results presented in Fig. 12 
show that the value of µ=0, i.e. exponential form, 
is a good choice with respect to the retrieved 
moments M1 and M4. 

Limiting our investigation to the generic 
normalized PSD in the exponential form, SDFE 
in the moment estimate is calculated using the 3 
schemes. The results are plotted in Fig. 13 as a 
function of the order of the estimated moment. 
The average value of the ratio FM defined for the 
moment of order p as Mp,mes/Mp,est is also plotted 
in the same figure. A quantitative comparison of 
the accuracy of the 3 schemes can be done from 
the results presented in Fig. 13. In the 1-M(2) 
scheme, SDFE increase very rapidly for high 
moments because of relatively important scatter 
of g(x2) at larger normalized sizes as shown in 
Fig. 9. A very good accuracy is obtained with the 
2-M(2,3) scheme, SDFE is less than about 0.3 at 
the overall range of p. For higher order 
moments, all 3 schemes become progressively 
underestimating with increasing moment order. 
The presented results for low order moments are 
affected by the truncation from the sampling, 
and therefore are highly biased. 
Fig. 14 shows scatterplots for all dataset of the 
estimated 4th order moment vs the measured. 
Each graph shows the results for each scheme. 
For the scheme 2-M(2,3), the scatterplot lie very 
close along a 1:1 line. In general, for all 3 
schemes the convergence becomes better for 
the lower values of the moment, i.e. for the 
PSDs with the smaller volume- (or mass-) 
weighted size. 
 

6. SUMMARY 

 To reduce the number of parameters 
describing an individual snowflake with size D, 
we propose an approximate relation between its 
mass and velocity, assuming that other factors, 
like for example the shape of the individual 
crystals, introduce negligible correction to the 
average mass-velocity relationship. The power 
law exponents describing derived mass-size 
relation and obtained directly from measurement 
velocity-size relation have been set to the fixed 
values of 2 and 0.18, respectively.  
 The validation of the results is made by 
comparing the time series of the reflectivity 
factor calculated for a derived mass-size 
relationship for an individual snowflake and 
applied for the size distribution measured by the 
HVSD, with to reflectivity obtained from the 0th 
moment of spectrum measured by the collocated 
POSS.  Moreover the obtained mass-velocity 
relation together with the PSDs measured by 
HVSD is also used to derive an approximate 
average expression relating the reflectivity-



weighted velocity to the radar reflectivity and 
mass/density of falling snow.  
 The measured snowflake PSDs have been 
investigated in the scaling normalization 
framework using the schemes 1-M(2), 1-M(3) 
and 2-M(2,3) in order to determine an analytical 
function that well represent the higher-order 
moments of the snowflake PSDs and to 
compare the accuracy of the moment estimation 
using different schemes. It is concluded as in the 
previous investigations of the ice/snow PSDs 
(e.g. Brandes et al. 2007, Heymsfield et al. 
2008) that the exponential distribution assure 
relatively accurate estimates the higher-order 
moments. In general, the one moment scheme 
1-M(3) appear to be much more accurate than 1-
M(2) for the higher moment estimation.  The 
moment scheme 2-M(2,3) provide very accurate 
estimation of the observed higher-order 
moments. 
 The parameterization proposed by Field et al. 
(2005 and 2007) for the schemes 1-M(2) and 2-
M(2,3) has been applied to our dataset. In 
general, their parameterization with the two-
moment scheme, using the sum of exponential 
and gamma functions, produce a very accurate 
estimates of the observed moments. However, 
their moment-relating power laws with the 
temperature dependence and the 2nd order 
normalizing moment give an important SDFE for 
higher order moments. Probably it is related to 
the fact that the temperature of snow in this 
study is relatively high (>-17°C) compared to the 
large interval of temperature corresponding to 
their studies. 
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TABLES  

 

Table 1. Summary of the characteristics of the analyzed events. All parameters are given in the CGS 
units. The symbol color from red to dark violet corresponds to temperature of measurement from -2°C 
to -17°C. The events associated with a deep system (>3 km) are described by a diamond, with 
moderate system (1.5 km to 3 km) by a triangle, while a square is used to represent shallow systems. 

 

Table 2. Assumed range of uncertainty for the variables used to estimate m-D relationship  

 

FIGURES 

 

Fig.1 Example of calculated the mass-size relationship for one snowfall event. The size D on the x-
axis represents the snowflake side-view maximal extension. The red plus signs correspond to the 
values obtained from different combinations of the used relations. The black diamonds represent the 
geometric mean taken as the best estimate of snowflake mass of size D. Their estimated uncertainty 
is shown by the error bars. Solid blue and green lines represent the least squares regression with the 
value of bm from fitting and fixed at 2, respectively. 

 



 

Fig.2 Estimated parameters in the mass-size power law for the 9 analyzed snow events. For 
comparison, the set of the mean relation parameters obtained by Brandes et al. (2007) is also plotted, 
together with the results of Bringi et al. (2008) for individual snow events. Our average relation 
between D and Deq was used to recalculate the parameters since their relations are in terms of Deq. 

 
Fig.3 Mean relationship between the coefficients in the mass and velocity power laws with fixed 
exponents of bm=2 and bu=0.18. Solid line shows the linear best-fit. The dotted line gives the average 
value of am for all events. 

  

 

Fig.4 Scatterplot for all events of the calculated Ze from the estimated mass relationship for each 
event and the time series of size spectra measured by HVSD versus the Ze measured by POSS. The 
RMSE (Root Mean Standard Error) is equal to 2.86 dB. 

 



 

Fig.5 Example of time series plot of Ze. The black line shows the POSS measured Ze; the blue line 
gives the calculated Ze from the HVSD spectra with mass power coefficient am  derived from the 
velocity coefficient au for the presented event, while the red line shows the calculation results for am 
retrieved for the event of 2006-Jan-09. The POSS measured Ze and HVSD spectra are averaged over 
a 6 minute period.  

 

 

Fig.6 Calculated reflectivity-weighted velocity UZ vs calculated reflectivity Ze for all data points. The 
solid lines show the approximate linear relation obtained through regression between UZ and Ze and 
the mass coefficient am. 

 

 

Fig.7 Relation between snow precipitation rate S and reflectivity factor Ze calculated for the estimated 
mass relationship. For comparison, the black lines show four empirical relations from different studies. 

 

 



 

Fig.8 Scattergram of 805 analyzed snowflake PSDs with 16574 counts. Time period for averaging is 6 
minutes. 

 

             

Fig.9 Scattergrams of the normalized PSDs with 3 schemes: 1-M(2), 1-M(3), 2-M(2,3). The red lines 
show the exponential form, while the other color line show the average normalized distribution with 
bars indicating standard deviation. 

 

 

Fig.10 Coefficient Cp
(i) and exponent in the moment-relating power-law in the two investigated 1-M 

schemes as a function of the moment order.  The exponential form is used to calculate the value of 
Cp

(i). 



 

Fig.11 Five forms of the generalized gamma (GG) function. 

 

Fig.10. Contour of log(SDFE) (SDFE: Standard Deviation of Fractional Error) for the moments M1 and 
M4 in the two shape parameters space for the generalized gamma analytical function in the two-
moment normalization 2-M(2,3). 

 

 

Fig.11. SDFE and average ratio of observed to estimated moments as a function of the moment order 
calculated for the 3 schemes. 
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Fig.12 Scatterplots of the measured 4th order moment vs the estimated by the 3 schemes. 

 


