
P1.5
McGILL ALGORITHM FOR PRECIPITATION NOWCASTING BY LAGRANGIAN

EXTRAPOLATION (MAPLE) APPLIED TO THE SOUTH KOREAN RADAR
NETWORK. PART 2: REAL-TIME VERIFICATION FOR THE SUMMER SEASON

Hee Choon Lee ∗†, Yong Hee Lee†, Jong-Chul Ha†,Dong-Eon Chang†,
Aldo Bellon§, Isztar Zawadzki§, and Gyuwon Lee‡

†National Institute of Meteorological Research, KMA, Seoul, Rep. of Korea
§Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

‡Department of Astronomy and Atmospheric Sciences, Kyungpook National University,
Daegu, Rep. of Korea

1 INTRODUCTION

Regarding weather prediction, the general pub-
lic is concerned essentially with whether it will rain
or not. The onset time and the amount of rainfall
are other inevitable matters of concern when rain-
fall is predicted. People in the fields of agriculture,
transportation, general services and sports and
leisure are equally concerned about the quality
of meteorological information. However, in spite
of this overall interest, the prediction of precipita-
tion is one of the most difficult aspects of weather
forecasting because of the large spatial and tem-
poral variability of rain and of its imperfect pa-
rameterization. The main reason for this diffi-
culty is that precipitation processes are not con-
trolled by one specific factor, but by a multitude
of factors. Although many other types of meteo-
rological information are forecasted, quantitative
precipitation forecast (QPF) is a primary issue in
the assessment of numerical weather prediction
(NWP) models. Ebert et al. (2003) assessed
the QPFs from several operational NWP models
and evaluated their predictabilities and character-
istics with various verification techniques. Similar
comparisons were performed through the Sydney
2000 Forecast Demonstration Project (Ebert et al.
2004). The predicted intensity, occurrence and
location of rainfall were evaluated with the tradi-
tional verification methods. A prediction system
must be objectively verified in order to assess fur-
ther development aimed at improving the original
algorithm. In addition to the traditional verification
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techniques that use a simple contingency table, a
variety of verification techniques that consider the
spatial characteristics of the prediction as well as
the ensemble prediction and the socio-economic
perspective have been developed and applied by
Casati et al. (2008).

Since 2007, the National Institute of Meteoro-
logical Research (NIMR) of Korea Meteorological
Administration (KMA) has developed a nowcast-
ing system for the Korean Peninsula in collabora-
tion with McGill University in order to enhance the
short-term predictability of precipitation. The sys-
tem called MAPLE (McGill Algorithm for Precip-
itation nowcasting by Lagrangian Extrapolation:
Germann and Zawadzki 2002) uses radar com-
posite maps to predict the location of precipitation
echoes several hours in advance (up to 6 hours)
using the variational echo tracking (VET) method
and a semi-Lagrangian backward advection tech-
nique (Turner et al. 2004). This system has been
operating in real-time since June 2008, the out-
put being used in operations by KMA′s weather
forecasters and hydrologists.

There are two main considerations in the eval-
uation of the predictability of the MAPLE system,
namely, which technique and which ground truth
ought to be used. Regarding the former, one
of the options is the traditional verification tech-
nique that does not consider the spatial attributes
of the predicted maps. The relation between fore-
cast and observation is simply evaluated at each
grid point by means of a simple contingency ta-
ble. Small location errors can mislead the fore-
cast performance in this approach. We seek a
more objective verification technique in order to
evaluate both the spatial distribution and the loca-
tion of the pattern of predicted rainfall in relation



to that observed. Therefore, in this study, we im-
plement the Contiguous Rain Area (CRA) method
proposed by Ebert and McBride (2000), one of
the objective-oriented verification methods that is
best suited for our intended purpose. This method
quantitatively separates the location, volume and
pattern error that are included in the total error.
Grams et al. (2006) used a modified CRA tech-
nique to identify the systematic sources of error
in the forecasts of convective systems during the
2002 International H2O Project (IHOP) made with
the Eta, MM5 and WRF models.

Regarding the other consideration, rainfall fore-
casts of NWP models are generally evaluated
with rain gauge data using the traditional statis-
tical methods (Savvidou et al. 2007). How-
ever,Tartaglione et al. (2008) demonstrated that
some problems induced by the uncertainty in their
representation of a mean area rainfall can occur
when gauges are used. Unlike other observations
such as temperature, the space-time characteris-
tics of the ground truth should be similar to those
of the predicted rainfall fields. Therefore, we have
simply taken the observed radar rain rate pat-
tern corresponding to the forecast time as ground
truth.

The purpose of this study is thus to evaluate the
predictability of the MAPLE system over the Ko-
rean Peninsula and to provide the guidelines for
its practical interpretation. The evaluation of the
prediction is performed for the summer period of
2008 using the CRA technique. Section 2 of this
paper provides the characteristics of the MAPLE
system, section 3 describes the CRA technique
and section 4 summarizes the results of the CRA
analysis.

2 NOWCASTING MODEL

The MAPLE system provides the prediction of
rain echoes over several hours. The Variational
echo tracking (VET) method, originally suggested
by Laroche and Zawadzki (1995), is used to es-
timate the optimum field of motion vectors as de-
scribed by Germann and Zawadzki (2002). The
sensitivity of the many VET input parameters on
the resultant field of motion is examined in a com-
panion paper by Lee et al. (2009). Three radar
composite maps of maximum reflectivity (along
the vertical) are used to estimate the field of mo-
tion. The model domain is (1024 × 1024) pixels
at 1 km horizontal resolution which covers the Ko-
rean radar network. The echo motion vectors are

calculated over (25 × 25) sub-areas that cover
a sub-domain of (800 × 800) pixels, each sub-
area thus representing an area of (32 km by 32
km). In order to apply the semi-Lagrangian advec-
tion scheme, a velocity vector at each grid point
is then derived by bilinear interpolation using the
field of (25 × 25) vectors as described by Ger-
mann and Zawadzki (2002).

MAPLE does not incorporate a dynamic pro-
cess for precipitation, which is a fundamental limi-
tation of its prediction. Germann et al. (2006) dis-
cusses the sources of uncertainty in the MAPLE
prediction associated with the growth or dissi-
pation of precipitation echoes as well as with
changes of the echo motion field over the fore-
cast time. Turner et al. (2004) uses a wavelet
transform method for filtering the non-predictable
scales of precipitation in order to reduce forecast
errors.

In this study, we evaluate the MAPLE prediction
without applying filtering. Even though the total
forecast time is up to 6 hours, the detailed anal-
ysis is performed for only up to 3 hours. The 6-h
forecasts were generated every 10 minutes with
a 10-min time step. The verification period covers
the summer season of 2008, (June to August in-
clusively). A total of 852 forecasts was used for
verification.

3 METHODOLOGY

Ebert and McBride (2000) propose a CRA
technique that is based on the concept of contigu-
ous rain areas defined as a region bounded by a
specified isopleth in the union of the observed and
forecast rain field. Predicted and observed radar
composites for CRA analysis are smoothed in or-
der to reduce the negative impact of noisy radar
reflectivity measurements at the small scale. The
amount of smoothing is simply achieved by aver-
aging the 1 km resolution data over a (5 × 5) pixel
neighborhood.

The main advantage of applying this technique
is to decompose the total error into its compo-
nents due to location (or displacement), volume
(or intensity), and pattern structure. The total
mean squared error MSEtotal [mm2h−2] can thus
be written as the sum of each error component as
follows.

MSEtotal = MSEdisplacement+MSEvolume+MSEpattern



The total MSE is defined as

MSEtotal =
1
N

N∑
i=1

(fi − oi)2

where fi and oi are the forecast and observed
rainfall at grinpoint i, repectively. N is the number
of gridpoints in the verification domain. The veri-
fication domain in the CRA technique is extended
in order to include the shifted forecast field in the
initial area bounded by the specified isopleth. The
displacement error is determined by shifting the
forecast field with respect to the observed field in
the north-south and west-east directions until the
cross-correlation coefficient is maximized or until
the total squared error is minimized.

The MSEdisplacement is then obtained by subtract-
ing the mean squared error between the forecast
and observed field after this optimum shift (and
denoted by MSEshift) from the total mean squared
error computed prior the shift at its original fore-
cast position, that is,

MSEdisplacement = MSEtotal −MSEshift

The mean squared error after the optimum shift is
recalculated as

MSEshift =
1
N

N∑
i=1

(f
′

i − oi)2

where f
′

i is the shifted forecast at gridpoint i.
The volume or bias error component is obtained

as the square of the difference between the mean
forecast F and observed O rain rate of the CRA
entity after the shift.

MSEvolume = (F −O)2

The pattern error component is the subtraction
of the volume error component from the mean
square error obtained after shifting.

MSEpattern = MSEshift −MSEvolume

The threshold of 1.0 mmh−1 is used in identify-
ing entity and error analysis.

4 RESULTS

The traditional statistical method is applied for
the verification of rainfall rates > 1.0 mmh−1

(Fig.1). The threat score (TS) for 30 min forecasts
is about 0.55 with an e-folding time that is greater

FIG. 1. Threat score for the MAPLE system veri-
fied with a 1 mmh−1 threshold over the 2008 sum-
mer season. The red dotted line denotes the 1/e
level.

than 90 minutes. The threat score is computed as
(Wilks 2006)

TS =
a

a + b + c

where a, b and c are respectively the number of
hits, misses and false alarms defined by a se-
lected threshold. The threat score exceeds 0.3
for up to a 2-h forecast.

4.1 Displacement Analysis

The location errors of the MAPLE forecasts
are calculated through the CRA analysis. Fig.
2 shows the distributions and histograms of the
CRA displacement errors for forecasts of 30 min-
utes up to 3 hours. As expected, their distribution
becomes wider with forecast time, indicating the
larger discrepancy between the forecast and ac-
tual positions of the rain echoes. Nonetheless,
most errors are restricted within a 20-km range
up to a 3-h forecast. These results show that the
MAPLE system adequately predicts the location
of rainfall echoes. However, as the forecast time
increases, it becomes evident that the distribution
of the displacement error is skewed towards the
southwest.

This feature is well illustrated in Fig. 3 that
shows the 95% elliptic confidence region of the
displacements for the each forecast time. The
major axes and the centers of the ellipses are
tilted and displaced toward the southwest, but the
latter remain within a 10 km distance for up to
a 3-h forecast. This bias indicates that the ob-



(a) (b)

(c) (d)

(e) (f)

FIG. 2. Distribution and histogram of CRA dis-
placements for each forecast time. (a) 30 min.,
(b) 60 min., (c) 90 min., (d) 120 min., (e) 150 min.,
and (f) 180 min.

FIG. 3. 95% elliptic confidence region of the CRA
displacements for the each forecast time.

served echoes are usually southwest of their lo-
cation predicted by MAPLE. However, this feature
is not considered to be a systematic bias caused
by the MAPLE system and is regarded as negligi-
ble in relative magnitude.

4.2 Rainfall Area and Volume

The analysis of rainfall area and volume is per-
formed not only in order to evaluate the MAPLE
system but also in order to understand the behav-
ior of the precipitation patterns in the 2008 sum-
mer season. Figure 4 and 5 show the difference
between the forecast and observed rain area and
volume respectively. The length of the bars indi-
cates the number of cases (frequency) that the
given area or volume fall in the category of %
difference shown along the x-axis. The percent-
ages are calculated from the difference between
the forecast F and observed O average values
expressed as

% difference = (F −O)/O × 100

Both rain areas and rain volumes are stratified
into five size categories of the observed quan-
tity. The size of categories are in terms of the
observed quantity.

The percentage difference in rain area and vol-
ume are generally unbiased in all rainfall cases

FIG. 4. Frequency of the percentage difference
between the forecast and observed area of CRAs.



FIG. 5. Frequency of the percentage difference
between the forecast and observed volume of
CRAs.

for forecasts up to one hour, but as the latter
increases, a bias develops that depends on the
size category. There is a larger probability of
positive differences, that is, overestimation, with
lead time when the area or volume is small. This
simply means that the forecast areas or volumes
were more likely to be larger at the time of fore-
cast. Conversely, for the observed larger size cat-
egories, an underestimation is more likely with the
longer forecast times, implying that the echo pat-
tern was more likely to be weaker at the moment
of forecast. This does not imply that large areas
or volumes become larger with time because the
stratification has been done in terms of the ob-
served, not of the forecast quantity. In general
terms, we can state that observed CRA feature at
both ends of the spectrum at verification time are
more likely to have originated from the middle part
of the spectrum.

4.3 Error Analysis

The most important characteristic of a CRA
analysis is its ability to decompose the total fore-
cast error into three types of components. The
total mean square error (MSE) for rain rate fore-
casts of the MAPLE system ranges between
about 19 mm2h−2 and 35 mm2h−2 for up to 3

FIG. 6. Mean squared error of the MAPLE sys-
tem for the 2008 summer season (June to August
inclusively). The threshold used for the CRA defi-
nition is 1.0 mmh−1.

hours as shown in Fig. 6. The MSEtotal rapidly in-
crease for the first half hour. The rapid increase in
the first 30 minutes can be attributed to the inabil-
ity to accurately forecast the intensity and location
of echo features at the smaller scale. A noticeable
increase is maintained until 90 minutes and then
the rate of increase diminishes for the longer fore-
cast times.

Figures 7 and 8 show the distribution and ratios
of the error components of the total error. In gen-
eral, each component has narrow distributions
with the 25th and 75th percentiles of less than
10% from the median and a few extremes indi-
cated by the maximum and minimum percentage
values of the error (Fig. 7). The relative contribu-
tion of the pattern error to the total error shows a
decrease with forecast time while that of the dis-
placement error shows a slow increase. The vol-
ume error has a small magnitude but shows an
increase similar to that of the displacement error.

The mean contribution of each component to
the total error is shown in Fig. 8. The pattern error
contributes nearly 90% of the total error while the
maximum value of the displacement error barely
reaches 7% for a 3-h forecast. The remaining 3%
is attributed to the volume error. The relatively
small contribution of the displacement error indi-
cates that the MAPLE prediction of the location of
precipitation echoes is reliable. Most of the total
error is caused by the pattern error implying that
the main source of forecast errors is caused by
the change in the rainfall pattern during the fore-
cast period not in the position or volume of precip-
itation echoes.
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FIG. 7. The (a) pattern, (b) location and (c) vol-
ume error distribution over the forecast time as a
% of the total error. The box represents the in-
terquartile range, from the 25th to the 75th per-
centile, and the line through this box represents
the median. The dotted line extends from the 25th

and 75th percentiles to the outermost minimum
and maximum values of the sample.

4.4 Contingency Analysis

The contingency table shown in Table 1 is used
to evaluate the forecasts of the MAPLE system
in terms of ′events′. The displacement error and
the forecast mean rain rate are the two variables
considered in the evaluation of the skill in predict-
ing the location and quantity of precipitation. The
threshold for the displacement error is chosen to
be 20 km, a value that is also used by Ebert et al.
(2004). The selection for the amount of rainfall

FIG. 8. The distribution of the pattern, location
and volume errors as % of the total error.

depends on whether the differences between the
forecast F and observed O mean rain rates are
within acceptable limits so as to be qualified as
a good quantitative forecast. We have required
that the difference in mean rain rate (F -O) be
within 10% of the observed value. An event is
designated a ′hit′ (HT) if both errors are within the
thresholds established above. An ′underestimate′

(UE) is categorized when the displacement error
is within 20 km but the forecast mean rate differ-
ence < -10%. Conversely an ′overestimate′ (OE)
is recorded when the displacement is within 20
km but the difference exceeds +10%. If the fore-
cast mean rain rate is within ±10% but the dis-
placement from observation exceeds 20 km, then
the event is designated a ′missed location′ (ML).
A ′missed event′ (ME) or ′false alarm′ (FA) is tab-
ulated when, in addition to an erroneous loca-
tion, the underestimate or overestimate is consid-
erable, that is, each exceeds the selected thresh-
old.

Figure 9 shows the result of this comparison
over a 3-h period for CRAs with a mean rain rate
threshold of 1 mmh−1. The total number of the
events for each forecast time is shown in the up-
per part of the figure. The frequency of the six cat-
egories just defined is plotted as a percentage of
the total number of events for each forecast time.
The frequencies of FA, ML and ME associated
with a large displacement error show a gradual
linear increase only after the first hour. This be-
havior reflects similar results obtained from the er-
ror decomposition analysis (Figs. 7 and 8). Both
OE and UE do not change significantly with fore-
cast time. Even though HT shows a sharp de-
crease from 80% at 30 minutes to just over 20%



TABLE 1. Contingency table used for event verification according to Ebert and McBride (2000). F and
O indicate the forecast and observed mean rain rate, respectively.

Difference between F and O
Less than -10% Within 10% More than 10%

Displacement ≤ 20km Underestimate Hit Overestimate
> 20km Missed Event Missed Location False Alarm

at 2.5 hours, it remains the most probable cate-
gory throughout this period. The crossover of HT
and ME or FA occurs around 2.5 hours. We can
thus advise our forecasters that the MAPLE sys-
tem provides reliable rainfall prediction up to 2.5
hours in terms of both the location and quantity of
precipitation.

Figure 10 shows a similar analysis for several
discrete rainfall thresholds from 1 up to 8 mmh−1.
The number of cases for each threshold is again
provided on the top part of each plot for all the
six forecast times. This figure reveals that HT
remains the main category for most rates < 6
mmh−1 for up to a 2-h forecast. The frequencies
of FA and of OE decrease towards zero for higher
rates simply because it is rare to have predicted
rates that were still higher than the already high
rates observed. The UE frequencies increase for
rates > 5 mmh−1 for all forecast times underline
the common occurrence that weaker rates were
instead predicted when such moderate rates were
observed. The ME frequency for higher rain rates
is particularly prominent in the 3-h forecast, em-

FIG. 9. The event verification for CRAs with rates
≥ 1 mmh−1. The numbers on top of the plot indi-
cate the number of events for each forecast time.

phasizing the tendency for any nowcasting sys-
tem at longer forecasting intervals to both under-
estimate the occurrence of observed higher rain-
falls and to misplace their location. This charac-
teristic of MAPLE forecasts, that is, underestima-
tion with strong precipitation, is consistent with the
results of rain area and volume analysis shown in
Figs. 4 and 5.

FIG. 10. The event verification as a function of
the forecast time and of the observed rain rate
threshold. The number of events for each inter-
val of rain rate and of forecast time is provided on
top of each plot.



5 DISCUSSION

The MAPLE nowcasting system, originally de-
veloped by McGill University for the continental
United States, has been adapted for the smaller
Korean radar network in 2007. Its evaluation
has been performed over the 2008 summer sea-
son using the object-oriented Continuous Rain
Area (CRA) technique after applying a (5 × 5)
smoother to the original 1-km resolution data. Be-
ing an advection model according to the same
optimally derived velocity field throughout the en-
tire period of the forecast, MAPLE is not meant
to predict the growth or dissipation of precipita-
tion echoes. However, in spite of this limitation,
the threat score, one of the traditional stochas-
tic skill scores, remains above 0.3 for up to 2
hours (Fig. 1). The evaluation of the quantita-
tive predictability of MAPLE has been illustrated
by means of an analysis of rain area and vol-
ume (bias). The differences between forecast
and observation become biased as the forecast
time increases with MAPLE overestimating CRAs
with small area or volume and underestimating
those with larger area and volume (Figs. 4 and
5). However, this simply implies that small areas
(volumes) observed at verification time were more
likely to be larger at the moment of forecast, and
observed larger areas (volumes) were more likely
to be smaller at the moment of prediction.

While the general stochastic verification meth-
ods estimate only the total error, the CRA tech-
nique decomposes the total error into its three er-
ror component defined as the pattern, displace-
ment and volume (or bias) error. The pattern er-
ror due to the fine scale structure of the precipita-
tion patterns accounts for 90% or more of the to-
tal error throughout the 3-h forecast period, (Fig.
8). The error in the predicted location increases
with forecast time but is mainly distributed within
20 km from the forecasted location up to 3 hours
(Figs. 2 and 3), and remains within about 7% of
the total error throughout the forecast period, (Fig.
8). The volume (or bias) error is the smallest of
the three contributors at less than 3%. The event
verification indicates that MAPLE maintains reli-
able forecasts up to 2.5 hours in terms of both lo-
cation and amount of rainfall (Figs. 9 and 10). We
suggest that this threshold may be considered by
forecasters as a guideline for the upper limit of
MAPLE forecasting skill in South Korea.
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