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1. INTRODUCTION AND BACKGROUND 
 

Polarimetric radar is now widely recognised as a 
tool for measuring the variability in rainfall drop-size 
distribution and improving estimates of the resultant 
rain rate (e.g. Ryzhkov et al., 2005; Bringi & 
Chandrasekar, 2001). However, the accuracy varies 
as a function of rain rate, with some polarimetric 
estimates exhibiting high error at low rainrates. 
Consequently, various methods have been developed 
to optimise such estimates, typically using decision-
tree logic to determine which algorithm to use in 
specific conditions (e.g. Ryzhkov et al., 2005) or 
highly complex algorithms based on dropsize 
distribution characteristics (e.g. Bringi et al., 2004; 
Brandes et al., 2004). 
 

This paper considers polarimetric estimation of 
rainfall in Queensland, Australia, suggesting an 
alternative approach for improving estimation 
methods. This is investigated using 2DVD 
disdrometer data and T-matrix scattering calculations 
before validation against radar and gauge data. 
Standard algorithms are tuned using the disdrometer 
data, with a number of methods of combining 
algorithms investigated in both a traditional decision-
tree logic manner and by applying weightings to 
algorithms based on the inverse of theoretical errors. 
Results are presented with some comparison to 
relationships such as the Marshall-Palmer R-Z 
relation, existing CP2 codes and the Ryzhkov et al. 
(2005) Oklahoma study. 
 
2. DATA AND METHODOLOGY 

 
The CP2 10cm polarimetric radar is located in 

Redbank Plains, Australia, at 27°40.0’ S, 152°51.5’ E, 
close to Brisbane. Typical volumetric operation uses a 
maximum range of 142.35km (Figure 1), sampling 
every 1° of azimuth and 0.15km range. For this study, 
polarimetric radar data was retrieved from the first 
scan at 0.5° elevation at six-minute intervals for seven 
high-rainfall events between February 2008 and 
February 2009, totalling 20 days or parts thereof and 
665 complete half hours of radar data. A simple 
quality control procedure was applied, which removed 
all data with ρHV<0.8 or σ(φDP)>10 over ten range 
gates, KDP>5°.km-1 or ZDR>5dB. Due to noisiness of 
data, variables are first-order smoothed over three 
range gates and the two adjacent azimuths prior to 
further analysis. 
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 The data is supplemented by 30-minute rainfall 
totals from a dense tipping-bucket rain-gauge network 
(figure 1), with 293 stations within the range covered 
by the radar, concentrated to the east along the 
coastline, including ten high-resolution AWS stations 
which also record rainfall at 1 minute intervals. Drop 
size distributions (DSDs) are also available from a 2D 
video disdrometer located at 63° azimuth, 16.6km 
range, which additionally gives information on the 
shape and orientation of individual drops (for example 
Schönhuber et al. 2008). The DSDs were used to 
determine the mass-weighted median drop size (DM), 
the total number of droplets (NT) and rain rate.  
Simulated radar variables were derived using T-matrix 
scattering calculations, assuming (i) normalised 
gamma distributions, (ii) the oblate approximation of 
the Beard and Chuang (1987) shapes, (iii) with 
maximum drop diameter 2.5DM, (iv) standard 
deviation of canting angle of 7° and (v) water 
temperature of 20°C and (vi) for an elevation of 0°. 
Radar data are compared with ground-based 
measurements by averaging the radar data over the 7 
range gates and two azimuths surrounding the gauge 
location, and over five 6-minute scans to provide a 
half-hourly dataset.   
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Figure 1. Location of gauges used in this study 

relative to the CP2 radar, with the Queensland 
coastline marked. Red circles identify those gauges 
which record 1-minute data, with a black circle 
indicating the disdrometer. 

 
Error characteristics will be analysed in terms of the 

mean and standard deviation of the fractional bias 
(FB), and the fractional root mean squared error 
(FRMSE), defined below. To minimise the impact of 
outliers, a ‘trimmed’ FRMSE using only data with 
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fractional squared error between the 10th and 90th 
percentiles will also be used. 

Ti

Tii
i R

RRFB −
=             (1) 

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

N

i Ti

Tii

R
RR

N
FRMSE

1

2
1          (2) 

 
3. RADAR-RAINFALL ALGORITHMS 
 

A total of 18 significant rainfall events which 
occurred over the disdrometer between 20/11/2008 
and 19/02/2009 were used, with a total of 2299 
minutes of non-zero disdrometer rain data and 
derived radar variables. Only 64 measurements 
exceeded 35mm.hr-1, to a maximum one-minute rain 
rate of 131mm.hr-1. This data was used to determine 
optimised constants for each the four standard 
polarimetric relationships from bootstrapping 
regression over 1000 samples. The algorithms are 
given by: 

 
36.1200 Dh RZ =             (3) 

8.044)( DPDPD KKR =             (4) 

( ) 47.484.0017.0, −= drhdrhD ZZZZR           (5) 

( ) 51.288.09.88, −= drDPdrDPD ZKZKR           (6) 
 

When applied to simulated radar variables and 
compared with the rain rate derived from the same 
DSD data, each relationship had a mean bias less 
than ±6% at rainrates between 1mm-1 and 35mm.hr-1. 
The lowest biases were for multiparameter algorithms 
R(Zh,ZDR) and R(Kh,ZDR), both of which had FB of 
+2%. However, the standard deviation of bias varied 
significantly between methods, reaching 0.55 for R(Zh) 
due to several very high outliers, whereas all other 
algorithms had standard deviations lower than 0.30. 
Trimmed FRMSE was also low for all algorithms at 
rainrates <35mm.hr-1, decreasing slightly with rain 
rate for multiparameter algorithms but increasing 
slightly for the R-Z relation (figure 2a). In all cases the 
multiparameter algorithms outperform their single 
parameter counterparts in the absence of 
measurement error.  
 

This disdrometer data was then used to simulate 
real-world radar data by simulating expected 
measurement errors. This was achieved by applying 
to each data-point a set of 100 normally-distributed 
random numbers with mean zero and standard 
deviation defined by theoretical calculations (as given 
in Bringi & Chandrasekar 2001) using CP2 
characteristics and an assumed ρHV(0) of 0.98 for 
rain:  
 

hh ZZ 479.0)( =σ               (7) 

drdr ZZ 1360.0)( =σ               (8) 
1.745.0)( −= kmKDP

oσ              (9) 

This created a larger dataset of 229900 simulated 
datapoints to use for validation. Using this data, very 
similar error characteristics were seen to that 
anticipated from literature research, with KDP-based 
algorithms exhibiting high error at low rainrates. R(Zh) 
and R(Zh,ZDR) perform best at rainrates <40mm.hr-1, 
with FB only +2% for R(Zh) at these rainrates. 
Similarly, where R(KDP) and R(KDP,ZDR) are most 
valid, at rainrates >40mm.hr-1, R(KDP) has FB of only 
+3%. In both cases, the higher measurement error in 
multiparameter algorithms appears to counteract the 
lower parameterisation error seen in Figure 2a. 
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Figure 2. Trimmed FRMSE for disdrometer-derived 
algorithms using a) 1-minute disdrometer data and b) 
disdrometer data with propagated theoretical errors, 
using bins of 5mm/hr. 
 
4. SYNTHETIC ALGORITHMS 
4.1 Methodology 
4.1.1 Decision-tree logic method 
 

In order to optimise rain rate estimations at all rates, 
polarimetric algorithms may be combined, generally 
using simple decision-tree logic. Using disdrometer 
data, we therefore examined FRMS error after 
propagation as a function of reflectivity Z, in order to 
identify which disdrometer-tuned algorithm has the 
lowest error at each reflectivity and thus determine 
reflectivity-based decision criteria. For each algorithm 
we then re-performed a regression as in section 3 
utilising only the disdrometer data with reflectivities in 
the range at which that algorithm will be applied. This 



allowed us to develop a decision-tree logic based 
combination algorithm for non-hail cases given by: 

 
8474.00144.0 hs ZR =  if Zh < 25Dbz                      (10) 

2283.79148.00131.0 −= drhs ZZR  if 25 ≤ Zh < 40dBZ (11) 
4238.1968.05.73 −= drDPs ZKR  if Zh ≥ 40dBZ               (12) 

 
4.1.2 Theoretical error weighting method 
 

In comparison, a potentially more robust 
combination method is proposed, weighting the 
algorithms by the inverse of the theoretical error. On 
an individual point basis, this involves determining the 
theoretical errors of measurement σ(εM), as derived 
from Bringi & Chandrasekar (2001), and the 
parameterisation error σ(εP). Although traditionally the 
variance or square error would be used for such 
calculations, results using standard deviation were 
generally superior. Parameterisation error can either 
be treated as zero or represented by the FRMS error 
as derived from disdrometer data. The best results 
were found by approximating the derived FRMSE of 
parameterisation for each algorithm as a linear 
function of the derived rain rate.  
 

The combined rain rate for each datapoint is then 
estimated by summing the derived rain rate from each 
disdrometer algorithm weighted by the inverse of its 
total error, i.e. 
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4.1.3 Discrete error weighting method 
 

A third method of algorithm combination utilised the 
propagation of error through disdrometer data to 
combine both the measurement and parameterisation 
errors. This method used the simulated error dataset 
to calculate the FRMS errors for each disdrometer 
algorithm in discrete boxes as a function of one or 
more radar variables, where a box contained at least 
five measurements. These errors were used to create 
a set of matrices of weighting functions in a similar 
method to 4.1.2, which could then be applied to radar 
measurements with the correct weighting factors 
applied dependant on the discrete ‘box’ the variables 
fell in.  
 

The best results were found using either all 
variables (in boxes of 5dBZ ZH, 0.5mm.hr-1KDP and 
0.5dB ZDR) or just reflectivity and specific phase 
difference (in boxes of 5dBZ ZH, 0.2mm.hr-1KDP). Box 
sizes were decided to optimise the range of data 
represented while remaining robust to variations in 
real algorithm behaviour with variables. However, the 
discrete nature of the boxes results in a potential 
problem at values infrequently sampled in the 
disdrometer data set, particularly at very high 
rainrates. 
 
 
 

4.2 Validation against disdrometer data 
 

These three methods were applied to both raw 
disdrometer data and in the presence of simulated 
error, and compared with the Ryzhkov (2005) 
decision-tree method, the Bringi et al. (2004) DSD-
derived complex method and the Bringi (unpublished) 
CP2 code.  

 
Using raw disdrometer data at rates less than 

35mm.hr-1, the decision-tree logic method tuned by 
disdrometer data significantly outperformed both the 
polarimetric algorithms and the similar Ryzhkov and 
Bringi methods, with a mean bias of -0.2% and a 
standard deviation of 0.15. Using the Ryzhkov or 
Bringi decision-tree steps optimised to disdrometer 
data provided similar results to our method but no 
improvement (not shown). However, the more 
complex DSD-tuned method of Bringi et al. (2004) 
performs fairly well, although still worse than our 
weighted methods. Both the methods of weighting 
combination performed similarly at these rates, with 
low biases (< ±1% for all cases), but significantly 
higher FRMSE than the decision-tree method (figure 
3a).  

 

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Disdrometer Rainrate (mm.hr-1)

T
rim

m
ed

 F
R

M
S

E

Decision-tree method
Theory-weighted method
Discrete weighting method
Ryzhkov (2005) Method
Bringi CP2 Method
Bringi complex

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Disdrometer Rainrate (mm.hr-1)

T
rim

m
ed

 F
R

M
S

E

Decision-tree method
Theory-weighted method
Discrete weighting method
Ryzhkov (2005) Method
Bringi CP2 Method
Bringi complex

 
Figure 3. Trimmed FRMSE for combination algorithms 
using a) 1-minute disdrometer data and b) 
disdrometer data with propagated theoretical errors, 
using bins of 5mm/hr. 
 

Under simulated error conditions, combinations 
optimised to disdrometer data continue to have lower 



errors than the Ryzhkov or Bringi CP2 methods at 
most rainrates (figure 3b). However, the FRMS error 
for the decision-tree method increased substantially, 
with a mean bias of +50% and high susceptibility to 
outliers using untrimmed FRMSE (not shown), 
performing generally similar to or worse than the 
Bringi complex DSD-based method. The method 
weighted by theoretical error also exhibits rapidly 
increasing errors at low rainrates, with neither 
outperforming the disdrometer-derived R(Zh) 
relationship at rainrates < 25mm.hr-1. In comparison, 
the method using discrete weightings exhibits 
consistently low trimmed FRMS error at all rainrates, 
with biases remaining below ~±10% after propagation 
for all combinations except (ZDR,KDP). 
 
5. VALIDATION AGAINST CP2 DATA 
5.1. Disdrometer-tuned algorithms 
 

The disdrometer-tuned algorithms were then 
applied to the filtered radar data and compared with 
the Bureau of Meteorology gauge network for all 
rainrates exceeding 1mm.hr-1, below which tipping 
bucket gauges have poor resolution. These were 
compared to the standard Marshall-Palmer R-Z 
relation, and the polarimetric algorithms found most 
accurate in a study by Ryzhkov et al. (2005) (Table 1).  
 
Table 1: Mean FB and trimmed FRMSE (where 
R≥1mm.hr-1) for disdrometer-tuned algorithms and 
literature algorithms of similar types. 

 FB FRMSE  

 Disd Lit Disd Lit 
R(Zh) -0.08 -0.30 0.60 0.59 
R(KDP) 0.94 2.13 1.13 2.19 
R(Zh,Zdr) -0.00 0.80 0.59 1.01 
R(KDP,Zdr) 1.63 0.19 1.76 0.66 

 
The fractional mean bias for the disdrometer-tuned 

R(Zh) remained very low, with -8% compared to -30% 
for the Marshall-Palmer method, indicating an 
improved representation via tuning. However, the 
standard deviation of FB was significantly higher for 
the disdrometer-tuned algorithm, 1.4 compared to 0.8, 
indicating a strong influence of high outliers. This 
resulted in significantly worse FRMSE for the 
disdrometer-tuned method at all rainrates, but fairly 
similar values for trimmed FRMSE (figure 4a), the 
Marshall-Palmer method only superior at rainrates 
less than 10mm.hr-1. 

 
In comparison, the disdrometer-tuned R(KDP) and 

R(Zh,Zdr) algorithms were found to perform 
significantly better than their literature counterparts, 
with FRMSE approximately halved and low bias, 
nearly nil for R(Zh,Zdr). However, the Ryzhkov (2005) 
R(Zh,Zdr) algorithm has lower trimmed FRMSE than 
the disdrometer-tuned version at rates between 5 and 
20mm.hr-1 (figure 4a). The disdrometer-tuned 
R(KDP,Zdr) appears to have significantly higher bias 
than its literature counterpart; however, this is due to 
very high error at low rates, and at rates exceeding 
10mm.hr-1 this exhibits significantly lower FRMSE 
than its literature counterpart (figure 4b), with a mean 
FB of just -9%.  
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Figure 4. Trimmed FRMSE error where R>=1 using 
radar and gauge data for both disdrometer and 
literature algorithms by type: a) Zh-based algorithms 
b) KDP-based algorithms, with dotted lines 
representing the literature version. 
 
5.2. Combination algorithms 
 

We also applied all of the combination algorithms 
specified in section 4 to the same CP2 data. Of the 
decision-tree methods, the lowest overall error was 
found for that tuned against disdrometer data, so this 
will be used to represent this methodology. However, 
tuning the Bringi CP2 methodology to disdrometer 
data outperformed our method at rates >=30mm.hr-1 
by ~10%, although performing worst of all the 
algorithms at lower rainrates, indicating some 
combination of these may be viable. The Bringi et al. 
(2004) complex methodology will also be considered 
as an alternate methodology. 

 
Using all rainrates in excess of 1mm.hr-1, the 

decision-tree combination method has a very low 
fractional bias of +3%, significantly better than the 
bias of +24% for the theory weighted method using 
linear regression, the best of these methods, or the 
Bringi et al. (2004) method. However, the decision-
tree method is also strongly affected by outliers, with 
σ(FB) of 1.45, compared to 1.25 for the theory 
weighted method, leading to significantly higher 
FRMSE at all rainrates. Of the discretely weighted 
algorithms, the lowest FB was found for the Z-K 
combination, at -4%. However, the lowest standard 



deviation was found for the three-dimensional 
combination at just 1.00, leading to very similar values 
for FRMSE of ~1 but potentially different error 
characteristics.  
 

However, with the removal of outliers using trimmed 
FRMSE the errors were fairly consistent between our 
derived methods, all having trimmed FRMSE within 
±0.02 of 0.55 (table 2). This is too insignificant to 
indicate superiority of any method, indicating that the 
predominant difference between methods is in their 
sensitivity to outliers, with the discrete weighted 
method showing significantly better untrimmed 
FRMSE. Trimming also appeared to change the mean 
bias by ~ -20% for all algorithms, indicating that the 
majority of outliers were due to overestimation in each 
case. The smallest trimmed bias is +0% for the Bringi 
et al. (2004) method; however, this method has a 
significantly higher trimmed and untrimmed FRMSE. 
This suggests that although this method should 
represent a better representation of actual dropsize 
characteristics, it appears more sensitive to 
measurement error than our weighted methods. 
 

Table 2: Errors using radar data (where R≥1mm.hr-1) for 
two combination algorithms. 

 Untrimmed Trimmed 

 FB FRMS FB FRMS
Decision-tree 0.03 1.4 -0.16 0.57 
Theory Weight 0.24 1.3 0.04 0.54 
Discrete (Z,K) -0.04 1.1 -0.20 0.55 
Discrete (All) -0.09 1.0 -0.24 0.55 
Bringi (2004) 0.22 1.6 +0 0.67 

 
The theoretically weighted method has the lowest 

trimmed FRMSE at all rainrates greater than 
10mm.hr-1 but poorer estimation at low rainrates, 
probably due to overrepresentation of KDP-based 
algorithms at these ranges (figure 5). This is closely 
followed by the discretely weighted method using Zh 
and KDP, while error in the decision-tree method 
increases at high rainrate. However, the variation 
between the two weighting methodologies is low, and 
all three methods have lower trimmed FRMSE than 
the Bringi et al. (2004) methodology and all 
disdrometer algorithms for R>=1mm.hr-1.  
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Figure 5. Trimmed FRMSE where R>=1 using radar 
and gauge data for five methods of synthetic 
algorithm combination. 

6. DISCUSSION AND CONCLUSION 
 

An investigation of a number of methods of rainfall 
determination from polarimetric radar data has 
reiterated the known error characteristics of various 
polarimetric radar-rainfall relations as a function of 
rain rate. Parameterisation of algorithms to 
disdrometer data for a specific location has been 
shown to generally produces superior results to 
algorithms derived from literature, due to the strong 
variability of rainfall dropsize characteristics in various 
areas. However, the presence of measurement and 
comparison errors mean this is not necessarily 
constant at all rainrates. 
 

Several methods of combining algorithms to create 
a more robust estimation have also been attempted. 
All of these have slightly lower trimmed FRMSE than 
individual polarimetric algorithms or two decision tree 
methods derived from other studies. However, 
accuracy is poor at very low rainrates, indicating a 
continued need for simple Z-R relations at these 
rates. Nonetheless, using weighted averages of 
algorithms is found to consistently outperform 
decision-tree logic for both trimmed and untrimmed 
error, although it is yet unclear whether the discrete or 
theoretical weightings are most accurate. These 
algorithms also outperform a more complex DSD-
based algorithm derived by Bringi et al. (2004), to a 
greater extent with radar data than disdrometer-
derived, indicating this may be more susceptible than 
measurement error. However, this may be a 
consequence of the applicability of assumed DSD 
relationships to this area and warrants further study. 
These results indicate that more robustly weighted 
algorithm combinations may be a superior method for 
rainfall estimation at rates exceeding 5mm.hr-1. 
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