P5.4

USING WSR-88D DATA TO ASSESS THE INTENSITY OF THE COUPLED

TERM IN THE SPECTRUM WIDTH EQUATION

Ming Fang '* Richard J. Doviak? and Bruce Albrecht’

1. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

2. National Severe Storms Laboratory, Norman, Oklahoma

1. Introduction

The often used spectrum width equation is (Doviak

and Zmic¢, 2006, Section 5.3)
ol=0’+0.+0,+0.+0,, (1)
where, 0s, 04, 04, 0o, and o, represent the spectrum
widths due to mean wind shear, antenna rotation,
terminal  velocities,

dispersion of  hydrometeor

hydrometer’s oscillation and/or wobbling, and turbulence.

Fang and Doviak (2008), through a rigorous derivation,

showed (1) is valid only for the expected Doppler
spectrum or the expected value of measured sz .

Furthermore, the variance associated with shear and
antenna rotation cannot be separated into a sum of
second central moments as implied by (1). For a
scanning beam directed at low elevation angles, the
spectrum width equation they propose (Fang and
Doviak , 2008, Eq. B13) is

11 (F) 4 () T, (2a)
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(1) =2l

v n

where

© _ 50 (7 1)
;% =20v,(F)ov,(r,t) . (2b)
For the cases of stratiform weather presented herein,
ov,(7) is principally a function of height and thus it

can be shown that only vertical shear of large scale

turbulence couples with mean wind shear to
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significantly contribute to Tc(e) . At low elevation angles

the O'j term can be ignored and thus it is not included in

(2). Herein, the over bar emphasizes that the variable is

a spatial average weighted by the antenna beam pattern

and reflectivity field, 7 is the vector range over which

spatial average is performed, the superscript (e)

indicates that an effective beam pattern defines the
scanning resolution volume Vée) (Doviak and Zrnic,

2006, Section

emphasizes that the marked variable is an estimate

4.4.4), and the diacritical circumflex

made from data collected over a short dwell time

(typically a few tens of milliseconds) at t,. To shorten
notation, the argument (7,7 ) henceforth will not be

displayed. The most remarkable difference between (1)

and (2) is that (2) has an extra term, the so-called
coupled term Tc(e) . Through this term, mean wind vs and

turbulence v; are coupled together.

Using the published data given by Hocking (1988),
(2008) calculated the standard
deviation of the coupled term and concluded its

Fang and Doviak

magnitude was compatible with the standard deviation
of 65 due to processing finite signal samples, and

therefore it was significant. However, Hocking’'s data

was obtained with long wavelength (i.e., A= 1506 m)
vertically pointed radar sampling clear air scattering

from about 80 km above ground. Thus estimating the
variance ofTC(e) and its significance for weather radar

observations is the focus of this study.



e). . .
Because TC( )IS a zero mean random variable, its

variance is the parameter that needs to be evaluated.
Thus the following Section 2 develops an analytical
equation which expresses the variances of terms in (2).
Section 3 calculates various variances including the
variance of coupled term using data collected with
weather radar. Section 4 introduces another method to
estimate the variance of coupled term and compares the
results. A summary and conclusions are given in

Section 5.

2. The equation relating variances of terms in the

spectrum width equation
—(e

Because &j is typically small (i.e., less than 0.1

m?s?% Zmic and Doviak, 1989) compared to other
spectral broadening terms, it can be ignored and (2a)

can be expressed as

R -~ ©
P -0l =67 +T9. (3a)

v N 0] t

—(e)

It is noteworthy that (752 in (2) has been changed

— (e

to 6'32 . In the derivation leading to (2a) it has been

assumed that mean wind is perfectly known. In
analyzing weather data however, mean wind must be
estimated from data; thus the mean estimates will have
some uncertainty. Nevertheless, this uncertainty or

variance is very small (Appendix A) for the stratiform
weather cases to be presented herein. Because O'j is

deterministic it does not have variance. Thus the

-© -© —-©
V&V[of }:\/ﬁrvl:of }Va‘v[fc‘e)}&vv[of 1“} (3b)
In the derivation of (2) the ensemble average over
the scatterers’ configurations and backscattering cross

sections had been made (Fang and Doviak, 2008; the

subscript ‘v’ denotes variance associated with changes
— (€

in the velocity field). But 6‘3 estimates are made with

weather radar using data taken over short dwell times,

and those ensemble averages are therefore not made.
5 ©
Thus the observed variance, Var, | o, , s

associated both with the changes of the scatterers’

configuration, as well as changes of the velocity field.

That is
5 (©) 5 5

Var, |o, |=Var,|o, |+ Var|o, (4a)

} is the variance due to changes

2

2
where Var, l:O'V

in the scatterers’ configurations, (this is the variance

addressed by most radar meteorologists when

5 ©)

computing errors in estimating o, ),

—©

whereas VarV [O'VZ } is principally due to the change

of large scale turbulence across the resolution volume.
Mean Doppler velocity as well as the width of the
spectrum change from estimate to estimate, but the
focus of this study is on the fluctuations in the second

central moment of the estimated Doppler spectra.

variance of left side of (3a) is completely attributed to Substituting (3a) into (4a), the following result is
: ~© . , obtained:
the fluctuation of o, , and its variance can thus be
expressed as
~5(©) 5 () —5© (© 5 ©
Var, | o, |=Var,|o; + Var, [TC ]+COVv o, 1.7 |+Var |o, |, (4b)

2.1 The covariance of spectrum width due to
turbulence and the coupled term

Arguments are in this section presented to

2 ©
show COVv [O'tz Tc(e)} is negligibly small. To simplify



the analysis without losing its objective, let's assume the

-5 ©)
radar beam is fixed so thatCov [O‘tz Tc(e)}can be

expressed as COVV |:62T} . If the vertical

t ¢

spectrum S(K ) of horizontal wind has a K> power

law dependence on wavenumber as the few meager

measurements  suggest for quiescent weather
conditions (i.e., Endlich et al., 1969), theory (Doviak, et

al., 2008) shows the spectral coefficients contributing

most significantly to TC are those from around the peak
of S(K,) . In this case turbulence at scales about 5 km

contributes most to TC whereas the turbulent eddy of

scale Ae = 0.3 km contributes most to 63 (Fang 2008,

Section 10). The correlation between 63 and TC

depends on the wavenumber separation between the
spectral coefficients that contribute to each. If the
separation is large, the coefficients are statistically

independent (Batchelor, 1960, p. 112). Because the

eddies that significantly contribute to TC are far

removed from those that contribute to oA't2 , we conclude

6‘5 and TC are not strongly correlated; thus
Cov, [&fzg}zo

A physical argument that supports the above
conclusion is now presented for stratiform weather
cases examined herein. Consider that in absence of
strong convection there is little coupling between flows
at various levels. Thus vertical perturbations in the
horizontal flow would be generated as regions of higher
(lower) horizontal momentum are differentially
transported, by a vertically sheared mean wind, to be

above regions of lower (higher) momentum. These

5 5 (
Var, |6, |+ Var| o,

—5

()
o, } + Var, [Tc(e) } + Var, {63 } 6)

€)
} = Var, [

vertical perturbations of the horizontal flow likely formed
the spectrum S(K,) reported by Endlich et al, (1969).

Such

precipitation in which vertical shear is strong and

transport likely also occurs in stratiform
convection is weak. Furthermore, long horizontal scales
(i.e., tens and hundreds of kilometers) have relatively
large spectral intensity (Vinnichenko and Dutton, 1969,
Nastrom and Gage, 1985). Thus equally large spectral
intensity (i.e., velocity variance) would exist at smaller

vertical scales. Doviak et al., (2008) show turbulence at

vertical scales larger than Vé(e) contributes most

significantly toTc. Thus, based on this argument one

should expect the larger and more energetic vertical

scales of the differentially advected horizontal velocity
perturbations mostly contribute to Tc and these are

uncorrelated with the smaller scales of turbulence, often

generated in situ, that principally contribute to 6‘3 . In

conclusion it appears reasonable to accept the

hypothesis that COV[OA'Z

© e
. T, |=0, and (4b) then

simplifies to

Var, [65@ } =Var[éf(e)}+\/ar[]:e) ] +Var, {62(? (5)

v

2.2 The variance equation with quantization

Because spectrum width data recorded by WSR-
88D radar is coarsely quantized (Fig. 1), the variance
associated with quantization needs to be considered.

Appendix B shows

/T<e>
variance Varq{ 0'3 } is significant and should be

included in the variance equation. Thus (5) is then

quantization

expressed as




This equation will be the focus of attention. To

deduce Var, [Tc(e)] the variances for terms on the

both sides of the above equation will be calculated.
3. Calculating the various variances

In the following subsections variances of the terms
in (6) are calculated. We consider stratiform weather for

which the horizontal turbulence contributing significantly

to &7(¥,t,) is 2D horizontally isotropic and
homogeneous. Because weather radar observations are
typically made at low elevation angles, the radial
component of wind observed by Doppler radar is
principally due to the horizontal wind components. Thus
it is reasonable to focus attention on the spectral
characteristics of the horizontal component of
turbulence. The assumption of 2-D isotropy is supported
by observations of Vinnichenko and Dutton (1969) and
Nastrom and Gage (1985). These observations show
spatial spectra of horizontal turbulence to be 2D
horizontally isotropic for wavelengths from the order of
tens of kilometers to least 2 km. Most of these data
were collected by aircraft and balloon soundings, and
apply principally to fair weather turbulence. But we
assume these results are also applicable to the

stratiform weather where the convection is weak.

3.1 The variance of the spectrum width
associated with turbulence

It can be shown (Fang, 2008, Section 10) were

(e) -5 ©
Var, [&f } =cE? {&f } : (7)

¢, , the factor of proportionality, is < 1. Equation (7) is

-5 ©

A2

the basis for us to calculate Var, [Ut } from radar

measured data. Taking the expectation of (3a) over the

ensemble of velocity fields, noting Ev [TC(S)]:O ,

gives

- (e) () —5()
~2 _ ~2 ~2 2
Ev[at }—Ev[av -0, —aa}. (8)
The term on the right hand side of (8) can be calculated

(e)

from observed radar data. If 63 is statistically

homogeneous and 2D horizontally isotropic, we can

(©)
estimate Ev[af} using the  spatial

v

> 5@ 2
average o — O, -0, , but the spatial
S
average domain needs to be large enough, otherwise
<Tc(e)> might not average to zero or to a sufficient
N

small value so as not to bias the estimate of

E, [&3 (7, )(“}_

Fig. 1
() ()

shows the azimuth dependence

2 : 2 (e)
— 0, (equivalenty o, +1."") for

two snow storms observed by the KLSX.

5

5
Eacho,

-0, —(7; datum in Fig. 1 is calculated

— (e

using (3a) where 6': is determined from a VAD

analysis of the radial velocity data (Appendix A), and the
second central moment (75 =0.34m’s s calculated

using the parameters for the KSLX and the formulas
presented by Doviak and Zrnic (2006, Section 5.3).

The pair of narrow peaks at 110° and 290° in Figs.
1a and 1b could be an artifact due to radiation from
other radar because the peaks exist for both cases and
remain in at fixed directions for data collected a year

——(e)
apart. If Tc(e) were zero, Fig. 1 would be a plot of &



The Azimuth Dependecy of
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Fig. 1. Azimuth dependence ofO"f (r,tn) - Sz (r) - O'j for 2 snow storms observed by KTSX

o ©
is the second central moment of O't2
common practice to attribute negative values of

@)

Because &, +Tc(e) can be negative even if];(e) is zero. It is

—(e

turbulence it cannot be negative. But if OA'S2 and/or ©
—(e

— ) O't2 to these over and/or underestimates. Because

2 . 2 . .
o, are overestimated, or O, is underestimated,

the variance associated with the estimation of 6'32 (}7) is



(e)

very small (Appendix A) 6‘52 is unlikely to be

overestimated. Furthermore O'(f can be accurately
calculated. Thus, negative values in the figures are
primarily attributed to 7.’

The data shown in the Fig. 1 is obtained from five
consecutive range locations of Vﬁ(z) spaced 250 m.

Only five range gates are used because of the need to
limit the change of beam height to 52 m (at the 2.4°
elevation angle) so that vertical variations of turbulence

can be neglected. At the range of 20 km, beam
width o7, is about 100m. The arithmetic average of
data in Fig.1 over 360° of azimuth is 3.8 m?s™

c) . . .
Because TC( ) is a zero mean random variable, this

average should reduce Tc(e) to zero if the averaging
domain contains a sufficient number of independent
samples of Tc(e). If this were the case, the average

2 ©
would then be an estimate ofO't2 . But the 3.8 m%™?

average is much larger than the spatial average of data

(e)

around 130° and 310° where 652 ~ 0 (Fang, 2008,

section 9.3) and therefore T®’

. should also equal zero.

Either the average cannot effectively reduce Tc(e) , or

- (©
&2

\ is not horizontally homogeneous, or both. The

fact that TC@ is mostly positive suggests that

0v, and dv, are positively correlated. Large velocity

perturbations in the direction of faster flow and weaker

perturbation in slower flow is expected, and thus it is

natural 0V, and 0V, are positively correlated.

Because Tc(e) is zero around 130° and 310°, the

) 50 2
spatial average o, —0, —0O, equals
S

2 ©
<O‘t2 > . Thus using data at five consecutive range
S

gates that lie in 3° sectors centered at these two

directions,

—©O [0 1 H—e P
<[ 3 oo
S =l ]

9)

By taking ¢1 = 1 in (7), the variance of

(e)
is at most

& (7.t,)
~© 2| :2© ) )2 4 4

Var,| 6 |=E|& :(0.57ms ) =032m's™.
(10)

for the data presented in Fig. 1a. For the case

presented in Fig. 1b,
-5 © (@) B
Ev[af }=<Uf > =1.2m’s”,  (11a)
S

and for this case,

Var, [?t(e)} =E [g(e)} :(I.Zmzs*2 )2 =1.4m's™ (11b)

t

2 ©

. 2\
Because the variance of O, is very small, the

negative values in Fig 1 are attributed to Tc(e).

3.2 The variance of the observed spectrum width
squared

- )

. ~2 2
Because variances of O, and o, are

()
negligible, it is deduced from (3a) that Var, {af }

5 5 2 )
=Var, |0, -0, -0, |and is computed vs

azimuth using the following formula,



S©

—(©
Var, | o, =

where subscript ‘v and ,sc¢’ is appended to the
expectation operator E to emphasize the average is to
been taken over the ensembles of both the velocity field
and the scatterers’ configurations.

The second term in the brackets on the right side of
(12) is evaluated using the following procedure. The
only term in (3a) that depends on the changes in the

5

scatterers’ configuration is o, . Thus the ensemble

average of (3a) can be expressed as

()
Var, | o, =

(e

. . ~2
As in Section 3a EV,SCl:O'V

estimated by spatially averaging over large horizontal

domains.

5

Fig. 2 shows the plot of Var,, |:6'V } calculated

from data collected for the two snow

2
(e) () (©)
A2 2 A2 n2 2
Ev,sc {(Gv O — 0y j - Ev,sc l:av — O — 0, :|}

2
(e) (e) (e)
A2 A2 2 A2
Ev,sc {(Uv _Us _O-aj_Ev l:gt jl}

(12)

—() ——(e) —5(e)
~2 ~2 2 ~2
EV’SC[O'V —0; —O'a:|=EV [at +];(e)} . (13)

Because E [Tc(e)] =0, (13) simplifies to

(&) —=(e) (e)
) ~2 2 | _ A2
Ev,sc [O-v - O-s - O-a jl - EV |:O-t

substitution of (14) into (12) gives

] (14)

(15)

storms observed by KLSX. The plot shows azimuth

— (e
A

)
dependence of VarObs [0'3 } Each point in the plot

is calculated from data in a patch containing 10 radials

and 5 range gates centered at 18 km. Thus the plot is a

running average of data from 50 Vée) .

The Dependency of Total Variance on Azimuth in a Snow Storm
at Five Consecutive Range Gates between 17.5 and 18.5 km
KLSX 01/16/1994 19:19:18 Elevation Angle = 2.4 Degrees
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The Dependency Of Total Variance On Azimuth In A Snow Storm
At Five Consective Range Gates between 17.5 and 18.5 km
KLSX 01/06/1995 06:02:42 Elevation Angle = 2.4 Degrees
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Fig. 2. Azimuth dependence of variance VarObs o, of the observed spectrum
width squared vs azimuth based on data collected with KLSX as in Fig.1.
—(© —©
3.3 The variance associated with changes in o = v _ s v (17)
vn
scatterers’ configuration 2v A

a

where v, =A /4T is the unambiguous velocity,
Doviak and Zrni¢ (2006, section 6.5) discuss

. . , —(e)
the variance due to changes in the scatterers andaj is the expected second central moment.

configuration (i.e., weather signal fluctuations). They

© We need variance of 6‘3 whereas (17) gives

[ 2 ©
the variance of Uv2 . But VarSC [0'3 :| can be

present equations to compute Varsc 6'2

\4

(Var[&v] in their notation). For large signal to noise

—(e

—©

ratios, as has the data used herein, the equation to related to Var & by the approximate formula
SC v
compute this variance is
—(© 3/126 (Papoulis, 2003, p.150)
Varsc Uv :—v112 (16)
1287 MT,

—5© 2 [2© —5©
Var | &2 |=4E2|\ &2 |Var |62 | (18)
where A is the radar wavelength (i.e., 0.1 m); M

(~50) is the number of samples, Ts (~1 ms) is the By substituting (16) and (17) into (18), and using
spectrum width data, we can compute the variance due
pulse repetition time, and ©,, is the normalized ) . .

v to weather signal fluctuations caused by changes in the

spectrum width defined as scatterers’ configuration. Fig. 3 shows the azimuth



v

5 (e)
dependence of the variance (i.e. VarSC [0'2 }) for a

snow storm observed with KLSX. The variance plot for
the second snow storm corresponding to Fig. 1b is quite

similar to that shown in Fig. 3. Each point in the plot

- (©)

corresponds to a value of Varsc I:oﬁ } computed

5

from (18). Ei &v is calculated by squaring the

running average of observed spectrum width at 10

radials and 5 consecutive range gates.
5 (©)
Because Varsc o, is proportional
2| [22©@
to E|40, as shown by (18), and
5 © 5 ©
because 0, s strongly dependent ono_  (Fig. A2),

2 ©
the two broad peaks in Fig. 3 are correlated with O'S2

The Azimuthal Dependency of Variance Due to the Change of Scatterers'
Configuration in a Snow Storm at Five Consecutive Range Gates between 17.5 and 18.5 km
KLSX 01/16/1994 19:19:18 Elevation angle = 2.4 Degrees
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Fig. 3 Azimuth dependence of variance VatrSc [O'f

2 ©
} due to weather signal fluctuations

caused by changes in scatterers’ configuration for the same data set shown in Fig. 1a.

3.4 The variance of the coupled term

It finally comes to the point to calculate

() 7 ) () 5
Var, [TC ]:Varobs o, |+Var|o, |-Var|o, |-Vag|o, |

The plots in Fig. 4 show the azimuth dependence of

v

— ()
Var, ':Tc(e)] , as well as the variances Var,_ I:O'2 ]

2

and Var, |:O'3 }for comparison; the other variance

terms are much smaller. There are a few negative value

Var, [Tf)] using (6) expressed as

(19)
s in Fig. 4. Variance is a squared variable, it should nev
er be negative. But because Var, [Tc(e)] is calculated f
rom the sum and differences of other variances that are
estimates, Var, [Tc(e)] fluctuates around about its true

positive value and thus it likely creates some negative



The Dependency of Variances on Azimuth in a Snow Storm
at Five Consecutive Range Gates between 17.5 and 18.5 km
KLSX 01/16/1994 19:19:18 Elevation Angles = 2.4 Degrees

200
180
o 160 -z
< 140 1 ":; ol
¥ 120 + ‘e
S0l B £ S ks fy
b o & %\ LY sivates A t
2 T 400 o ™ Al Yl o Y
5 N RE e -
i A
«
>

20 50 100 150 200 250 300 350~

Azimuth (degree)
Black: Total varance Red: Variance due to Tc
Blue: Variance due to the change of scatterers' configuration
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Fig. 4. Azimuth dependence of the three major variances: Var,, [Uvz :| (black), Var, [7;(8)] (red),

- ©

Var,, [&2 } (blue). Data collected with KLSX as in Fig.1.

v

values. Asexplained before, the broad peaks of variance

both cases Var, [Tc(e) ] is larger
centered at about 50° and 230° is related to the influenc

e of shear of the mean radial wind component.

—(©
than Varsc[af } (i.e., the variance due to
The important point is that most azimuths and for

fluctuations of weather signals, the benchmark for

10



assessing performance for measuring spectrum width

estimators). If turbulence measurement is the main

purpose for using spectrum width data, T(e)

. Is then

significant  whenever Var, I:TC(G)} is comparable

}

4. Another method to calculate variance of the

o (©

to Var,, |:O'V

coupled term

By computing term by term the variances in Eq. (6)
as explained in Section 3, Var, [TC@] was calculated

as a function of azimuth. In this procedure, there are two

assumptions. One is that the large scale turbulence

primarily  contributing to Tc(e) is  horizontally

homogeneous and 2D horizontally isotropic; another is

-

that turbulence primarily contributing to 6‘3 is at

least 2D horizontally isotropic. These assumptions
enabled us to derive to

an equation

—©

calculate Varv l:é't :| . This Section offers another

simpler method, not requiring these assumptions, to

roughly estimate Var, [Tc(e)] . But this alternative

approach only yields a lower bound for Var, [Tc(e)]
Nevertheless it provides us with a chance to compare
Var, I:Tc(e):l estimates obtained in section 3d with

those obtained in this section.

- ()

On the left side of (3a) 6‘3 is a radar measured

-

datum, 6'32 can be calculated from data (Appendix A),

and Ji is known (section 3a). WithoutTC(e), the right
side of (3a) is a squared variable, and therefore should

be never negative. Thus, without Tc(e), the left side

11

——(e)
. ~2 .
should be never negative, unless O, is an

—— (@)
overestimate larger than 0'3 — O'j . However, Fig. A3

shows the variance associated with the estimation of

—(©
o2

S

is very small, and Fang (2008, Fig. 9.9) shows

(e)
O'S2 (17) changes slowly and monotonically with time.

Thus, if there are negative values of
5 5 2
o, —O, — 0, , the negative values should be

primarily attributed to Tc(e) .

Fig. 5 shows histograms

() 5

A2
_O-S

2
of O, —o, for the two snow storms

observed with KLSX. It can be seen that there are many
negative values. By discarding the values larger than

zero and assuming the negative data represents the
negative half the distribution of Tc(e), we subjectively
fitted the remaining data with a Gaussian function to

estimate Var, [Tcm] equal to about 5.3 and 1.7 m*s™

respectively for cases in Fig. 5a and 5b. Tc(e) is a

random variable with zero mean, but the mean

() 5

A2 2 .
of O, . —O, is usually larger than zero
. a2 .
if o, > 0. Choosing a zero mean for
—© 5@ . ,
o, —O0, —0,and only negative values to fit the

Gaussian function gives us a conservative or lower

bound estimate of Var, [ﬂ(e) ]

These Var, [TC(S)] values can be compared with the
average of those shown in Fig. 4 estimated to be a few
tens of m*s™. Although Var, [Tc(e)]estimated from the

histograms is significantly smaller, they are lower
bounds and thus consistent with the average obtained
from Fig. 4.



The Histogram of Sigma Sub t Squared Plus Tc In Snow Storm At 18.Skm
KLSX 01/16/1994 19:19:18 Elevation Angle = 2.4 Degrees

14

12

Percentage

OD:‘D“""‘““““““‘:D:D:D:I]:I]:D:D::ﬂ:ﬂ:ﬂ

8-7-6-5-4-3-2-1012345¢6 7 8 91011121314151617 181920 2122232425
Sigma Sub t Squared + Tc (m"2/s"2)

The Histogram of Sigma Sub t Squared Plus Tc In Snow Storm At 17.75km
KLSX 01/06/1995 06:02:42 Elevation Angle = 2.4 Degrees
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Fig. 5. Histograms of0'3 - Usz - Gj for data collected with KLSX as in previous figures.

5. Summary and conclusions term Tc(e) . This term is a weighted cross product of the

shears of mean wind and turbulence across the radar’s

Doppler spectrum has been shown not to be a weighted ~ resolution volume Vée) . This study reported herein,

The second central moment of the estimated

sum of second central moments associated with each using weather radar data, focuses on estimating the

independent spectral broadening mechanism, as has . . oo N
indep P "9 ! intensity and significance ofTC(e). Examination of data

been commonly accepted, and there is an additional
from stratiform weather shows that the coupled term T,

12



is significant for weather where vertical shear is strong.

It is found that most values of the

variance Var, [Tc(e)] of the coupled term are larger

—(e

()
than the variance Varsc |:O'3 }due to fluctuations of

weather signal (Fig. 4). Thus, the coupled term can
impede the accurate measurement of turbulence in

strong shear layers. Furthermore, the

()
variance Varq l:o_f } associated with quantization of

the recorded spectrum width data can be larger than 1
m*s* (Section 2b), and therefore it needs to considered

if turbulence in strong shear layers is to be accurately

measured.
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APPENDIX A

Assessing the Intensity of the Squared Spectrum
Width due to Shear

In order to simplify problem, the calculation of

5

o and its variance is conducted assuming a

uniform vertical shear layer wherein the wind speed and

wind direction are

Vi=k,z+b;, @,=k,z+b,. (Ala,b)

where k_, k(P , bz and bs are constants that can be

determined by least square fitting, to (A1), the W, and

@,, data, obtained from a VAD analysis of the radial

velocities as a function of azimuth for every Vée) on a

13

circle of constant range. Thus one pair of Vi, and @,

(Fig. A1) is obtained for each circle of radial velocities.
To obtain reliable wind profiles with good resolution, the

VAD analysis is performed at each range between 5
and 20 km (at 20 km, beam width 0,7, is about 100m)

whenever there are at least 240 radial velocities
available on the constant range circle for each of

elevation angles. Therefore an ensemble of Vis and
@,, s are obtained.

The pink lines are the least squares linearly fitted
profiles of horizontal wind speed and direction; each
blue point is the wind speed and direction obtained from

a single VAD analysis of radial velocities on a circle at a
single range. The Vh , @, data ensemble (Fig. A1)

shows a case of a relatively uniform shear layer
between 400 and 1100 m; a similar uniform layer of
slightly weaker shear was obtained for the snow storm
on 6 January 1995 (Fang 2008).

Under the condition the weighting functions and
reflectivity are product-separable, Doviak and Zrni¢
(2006) showed that, if radial velocity is linear across the

— ()

radar beam, O'S2 can be separated into three

contributions, expressed as:



The Linearly Fitted Profile Of Horizontal Wind Speed In
The Shear Layer KLSX 01/16/1994 19:19:18 UTC

1100

1000

900

800

Height (m)

700

600

500

0 10 20 30 40
Speed (m/s)

400

Fig. A1a. VAD derived data (blue points) and the linearly fitted profile (pink) of horizontal
wind speed V;in a snow storm observed by KLSX at 1919 UTC 16 January 1994.
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The Linearly Fitted Profile Of Horizontal Wind
direction In The Shear Layer = KLSX 01/16/1994
19:19:18 UTC

Height (m)

|

-10 0 10 20 30 40
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Fig. A1b. Same as Fig. A1a, but for the horizontal wind direction @, .

—(©
G =(ho) k(@) ] sin’ G +(kyicr) (A2a)

and O'(ie(ﬁo) are second central moments of the two-

S
way antenna power pattern in the elevation and azimuth

here @, is th ith angle, k- k, and k h i o .
where Uy 1S the zenith angle, & K, and K, are shears in directions, and o2 is the second central moment of the

radial, azimuth and elevation directions respectively. 05 weighting function in radial direction. Note that (A2a)

differs from that presented by Doviak and Zrni¢ (2006)

15



because (A2a) accounts for the change in O'(Pe(ﬁo) with
change in zenith angle and also accounts for the

change in 0@6(6'0) for a scanning beam by

replacing 0, (6,) with the effective azimuth

beamwidth 0. (6,) . For a circular symmetric (i.e.,

when not scanning) beam
2
»_ 0

O
Oy =
16In2

16(In2)sin” 6,

where 6 is one-way half power beam width. For a

, O (0) = , (A2b, c)

rectangular transmitted pulse and a receiver with

Gaussian shaped response (Doviak and Zrni¢, 2006,

approximates the range weighting function of the WSR-
88D.

Fang (2008, Section 9.3) has shown that k; and k,

are at least one order magnitude smaller than kg, so that

(A2a) reduces to

—— () 2
~2 2

6, ~oy=(knoy)". (A3)
Because ), = 7t / 2 (A3) can be then be

expressed as,

& Sk )k Fusiia—) | (5ar)'- )

—©

2 - -
O, s plotted in Fig. A2 for the data presented in Fig.

A1. Very similar results are obtained for the snow storm

Section 5.3),
5 . @
, 0.35¢1 case one year later (i.e., 6 January 1995), buto, is
o, =|— (A2d)
2 weaker.
The Azimuth Dependency Of Sigma Sub s Squared In A Snow Storm At 17.5 km
KLSX 01/16/1994 19:19:18 UTC Elevation Angle = 2.4
18

Squared Spectrum Width (m”2/s72)

0 50 100 150

Azimuth (degree)

200 250 300 350

- ©

Fig. A2. The spectrum width squared 6'52 due to mean wind shear of the fitted profile in Fig. A1.

Using all the Vi and @, data within the shear layer

between 400 and 1100 m, the variances of Vi and @,

are calculated about a linear fit to the data. Thus using

16

(A4) it can be shown (Fang, 2008, Section 9.3)

— (e

— (o)
Var[of } is given by



Varl:&_sz(e)} B (1’00'9 )2 {Var[Vh (Z)]4k<§ [k‘/ cos(@y — @, ) + chVh sin(g, — (pw):lz

Fig. A3 shows the time series of Var| o

the data shown in Fig. A1. It can be seen Var| o

xsin® (@, — @, ) + 4Var[¢)w (z)][kv cos(¢, —@,) +k .V, sin(p, — @, )]2

><[kV sin(p, — @, ) — k,V, cos(¢, — ¢, )]} (A5)
]
s snowstorm on 6 January 1995). Thus it is expected that
calculated using (A5) for the snow storm that produced the calculated 6_52(6) is very close to the expected
o)
52 —(©
s value O,

is very small (it is even smaller for the

The Time Dependency Of The Variance Of Sigma Sub S Squared In A Patch
KLSX 01/16/1994 Elevation Angle =2.4
Azimuth From 40 to 60 degrees, Range From 18 to 20 km
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Fig. A3. The time series of Var [&j:| for the same snow storm data presented in Fig. A1.
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APPENDIX B
Quantization Variance

If a random variable x has a uniform probability

density function between —w/2 and w/2, that is p(x)

53)

If the distribution of 6‘V is uniform across the

1/w, the variance of x then is

W
=— (B1a)

2
V =
ar| x| L o
2

quantization interval, the quantization variance is given
by (Shrader, 1970, p.17-50),

() Ao )?
Varq[ o }zﬂ,

12
where AO'V is the quantization interval; for the WSR-

(B1b)

88D Ao, =0.5m s™, and therefore

()
Var, | 40,

What we need in the variance equation (5) however

0.5

=0.02 m%2

(B1c)

—©
not Var, | 40,

methods outlined by Papoulis and Pillai (Papoulis and
Pillai, 2003, p.150), it can be shown that
(e)
, (B2)

el 2
Var, | o, |=4E] Var,

7@
which is valid for distributions of Uvz that are

—(e)

is Varq I:O'f } . Applying the

) A2
O-V UV

Varla] :i[("l =) (%) +(x, —f)z}

Thus, quantization decreases the variance of the

observed variable and quantization variance should

> (© )
Var, (o, |+ Var | o,

©
} = Var, [

sufficiently narrow so that a linear approximation (i.e. to

5 ©
on \/O, ) about

the expected value is maintained for most of the data
the The

2 ©
the squared dependence of sz

contained in distribution.

A

(o)

v

(e)
expectation EV{ } is approximated using a

running spatial average of spectrum width data from 10

radials at 5 consecutive range locations. Then

—(©)

o . 2 . .
quantization variance VarCl [O‘V } is calculated using

(B2) and (B1c).
Fig. B1 shows the azimuth dependence of

—(e)
Varq [0'3 } vs azimuth angle.

Another issue associated with Varq [6‘3

(e)
is

whether it should be added to or subtracted

~2

(e)
from Varobs[(fV } In order to determine this, let's

consider a random variable x uniformly distribute
between -1.5 and 1.5 with a zero mean. From Eq. (B1a),

the variance, in absence of  quantization,

32
is Var[x] = E =0.75. Now consider x is quantized

with an interval 1. That is, if x lies between -1.5 and -0.5,
it takes the value -1; if x lies between -0.5 and 0.5, it
takes the value 0; if x lies between 0.5 and 1.5, it takes

the value 1; The variance for the quantized x is then

%[(_1)2 +(0)' +(1) | =0.667.

therefore be added to the left hand side of (5) which
becomes,

18

(
~2
O,

—(e

e) )
} + Var, [Tc(e) } +Var,, [é‘f } (B3)



The Azimuthal Dependency of Variance Due to Quantization in A Snow Storm
at Five Consecutive Range Gates between 17.5 and 18.5 km
KLSX 01/16/1994 19:19:18 Elevation Angle = 2.4 Degrees
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Fig. B1 Azimuth dependence of quantization variance Varq [0'2 ]for

a snow storm observed by KLSX data presented in Fig. 1a.
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