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1. Introduction 

2. 
1
 

The often used spectrum width equation is (Doviak 

and Zrnić, 2006, Section 5.3) 

2 2 2 2 2 2

v s α d o t= + + + +σ σ σ σ σ σ ,   (1) 

where, σs, σα, σd, σo, and σt, represent the spectrum 

widths due to mean wind shear, antenna rotation, 

dispersion of hydrometeor terminal velocities, 

hydrometer’s oscillation and/or wobbling, and turbulence. 

Fang and Doviak (2008), through a rigorous derivation, 

showed (1) is valid only for the expected Doppler 

spectrum or the expected value of measured
2

vσ . 

Furthermore, the variance associated with shear and 

antenna rotation cannot be separated into a sum of 

second central moments as implied by (1). For a 

scanning beam directed at low elevation angles, the 

spectrum width equation they propose (Fang and 

Doviak , 2008, Eq. B13) is 

( ) ( ) ( ) ( )
(e) (e) (e) (e)

2 2 2 2 2 (e)

v s α o t c
ˆ ˆ, ,n nr t r r r t Tσ σ σ σ σ= + + + +
� � � �

,   (2a) 

where  

(e)(e)

c s t
ˆ2 ( ) ( , )nT v r v r tδ δ=

� �

.   (2b) 

For the cases of stratiform weather presented herein, 

s ( )v rδ
�

 is principally a function of height and thus it 

can be shown that only vertical shear of large scale 

turbulence couples with mean wind shear to 
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significantly contribute to
(e)

cT . At low elevation angles 

the
2

dσ  term can be ignored and thus it is not included in 

(2). Herein, the over bar emphasizes that the variable is 

a spatial average weighted by the antenna beam pattern 

and reflectivity field, r
�

is the vector range over which 

spatial average is performed, the superscript (e) 

indicates that an effective beam pattern defines the 

scanning resolution volume 
(e)

6V (Doviak and Zrnic, 

2006, Section  4.4.4), and the diacritical circumflex 

emphasizes that the marked variable is an estimate 

made from data collected over a short dwell time 

(typically a few tens of milliseconds) at tn. To shorten 

notation, the argument ( , )nr t
�

 henceforth will not be 

displayed. The most remarkable difference between (1) 

and (2) is that (2) has an extra term, the so-called 

coupled term
(e)

cT . Through this term, mean wind vs and 

turbulence vt are coupled together.  

Using the published data given by Hocking (1988), 

Fang and Doviak (2008) calculated the standard 

deviation of the coupled term and concluded its 

magnitude was compatible with the standard deviation 

of 
2

vσ  due to processing finite signal samples, and 

therefore it was significant. However, Hocking’s data 

was obtained with long wavelength (i.e., λ = 1506 m) 

vertically pointed radar sampling clear air scattering 

from about 80 km above ground. Thus estimating the 

variance of
(e)

cT  and its significance for weather radar 

observations is the focus of this study.   
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Because 
(e)

cT is a zero mean random variable, its 

variance is the parameter that needs to be evaluated. 

Thus the following Section 2 develops an analytical 

equation which expresses the variances of terms in (2). 

Section 3 calculates various variances including the 

variance of coupled term using data collected with 

weather radar. Section 4 introduces another method to 

estimate the variance of coupled term and compares the 

results. A summary and conclusions are given in 

Section 5.  

 

2. The equation relating variances of terms in the 

    spectrum width equation 

Because
(e)

2

oσ̂ is typically small (i.e., less than 0.1 

m
2
s

-2
; Zrnic and Doviak, 1989) compared to other 

spectral broadening terms, it can be ignored and (2a) 

can be expressed as 

(e) (e) (e)
2 2 2 2 (e)

v s α t c
ˆ ˆ ˆ Tσ σ σ σ− − = + .          (3a) 

It is noteworthy that 
(e)

2

sσ in (2) has been changed 

to
(e)

2

sσ̂ . In the derivation leading to (2a) it has been 

assumed that mean wind is perfectly known. In 

analyzing weather data however, mean wind must be 

estimated from data; thus the mean estimates will have 

some uncertainty. Nevertheless, this uncertainty or 

variance is very small (Appendix A) for the stratiform 

weather cases to be presented herein. Because
2

ασ is 

deterministic it does not have variance. Thus the 

variance of left side of (3a) is completely attributed to 

the fluctuation of 
(e)

2

vσ̂ , and its variance can thus be 

expressed as 

(e) (e) (e)
2 2 (e) 2 (e)

v v v t v c v t c
ˆ ˆ ˆVar Var Var CovT Tσ σ σ      = + +           

.   (3b) 

In the derivation of (2) the ensemble average over 

the scatterers’ configurations and backscattering cross 

sections had been made (Fang and Doviak, 2008; the 

subscript ‘v’ denotes variance associated with changes 

in the velocity field). But 
(e)

2

vσ̂ estimates are made with 

weather radar using data taken over short dwell times, 

and those ensemble averages are therefore not made. 

Thus the observed variance,
(e)

2

obs v
ˆVar  

  
σ , is 

associated both with the changes of the scatterers’ 

configuration, as well as changes of the velocity field. 

That is 

(e) (e) (e)
2 2 2

obs v v v sc v
ˆ ˆ ˆVar Var Varσ σ σ     = +          

 (4a) 

where 
(e)

2

sc v
ˆVar  

  
σ  is the variance due to changes 

in the scatterers’ configurations, (this is the variance 

addressed by most radar meteorologists when 

computing errors in estimating 
(e)

2

vσ̂ ), 

whereas
(e)

2

v v
ˆVar  

  
σ  is principally due to the change 

of large scale turbulence across the resolution volume. 

Mean Doppler velocity as well as the width of the 

spectrum change from estimate to estimate, but the 

focus of this study is on the fluctuations in the second 

central moment of the estimated Doppler spectra. 

Substituting (3a) into (4a), the following result is 

obtained:  

(e) (e) (e) (e)
2 2 (e) 2 (e) 2

obs v v t v c v t c sc v
ˆ ˆ ˆ ˆVar Var Var Cov VarT Tσ σ σ σ        = + + +               

,            (4b)

 

2.1  The covariance of spectrum width due to 

       turbulence and the coupled term 

Arguments are in this section presented to 

show
(e)

2 (e)

v t c
ˆCov T 

  
σ  is negligibly small. To simplify 
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the analysis without losing its objective, let’s assume the 

radar beam is fixed so that
(e)

2 (e)

v t c
ˆCov T 

  
σ can be 

expressed as
2

v t c
ˆCov Tσ 

 
. If the vertical 

spectrum z( )S K of horizontal wind has a 
3

zK −
 power 

law dependence on wavenumber as the few meager 

measurements suggest for quiescent weather 

conditions (i.e., Endlich et al., 1969), theory (Doviak, et 

al., 2008) shows the spectral coefficients contributing 

most significantly to cT  are those from around the peak 

of z( )S K . In this case turbulence at scales about 5 km 

contributes most to cT , whereas the turbulent eddy of 

scale eΛ = 0.3 km contributes most to 
2

tσ̂  (Fang 2008, 

Section 10). The correlation between 
2

tσ̂  and cT  

depends on the wavenumber separation between the 

spectral coefficients that contribute to each. If the 

separation is large, the coefficients are statistically 

independent (Batchelor, 1960, p. 112). Because the 

eddies that significantly contribute to cT  are far 

removed from those that contribute to
2

tσ̂ , we conclude 

2

tσ̂  and cT  are not strongly correlated; thus 

2

v t c
ˆCov 0Tσ  ≈

 
 

A physical argument that supports the above 

conclusion is now presented for stratiform weather 

cases examined herein. Consider that in absence of 

strong convection there is little coupling between flows 

at various levels. Thus vertical perturbations in the 

horizontal flow would be generated as regions of higher 

(lower) horizontal momentum are differentially 

transported, by a vertically sheared mean wind, to be 

above regions of lower (higher) momentum. These 

vertical perturbations of the horizontal flow likely formed 

the spectrum z( )S K  reported by Endlich et al, (1969). 

Such transport likely also occurs in stratiform 

precipitation in which vertical shear is strong and 

convection is weak. Furthermore, long horizontal scales 

(i.e., tens and hundreds of kilometers) have relatively 

large spectral intensity (Vinnichenko and Dutton, 1969, 

Nastrom and Gage, 1985). Thus equally large spectral 

intensity (i.e., velocity variance) would exist at smaller 

vertical scales. Doviak et al., (2008) show turbulence at 

vertical scales larger than 
(e)

6V contributes most 

significantly to cT . Thus, based on this argument one 

should expect the larger and more energetic vertical 

scales of the differentially advected horizontal velocity 

perturbations mostly contribute to cT , and these are 

uncorrelated with the smaller scales of turbulence, often 

generated in situ, that principally contribute to
2

tσ̂ . In 

conclusion it appears reasonable to accept the 

hypothesis that
(e)

2 (e)

t c
ˆCov 0Tσ  ≈  

, and (4b) then 

simplifies to 

(e) (e) (e)
2 2 (e) 2

obs v t c sc v
ˆ ˆ ˆVar Var Var VarTσ σ σ      = + +           

 (5) 

 

2.2 The variance equation with quantization  

 

Because spectrum width data recorded by WSR-

88D radar is coarsely quantized (Fig. 1), the variance 

associated with quantization needs to be considered. 

Appendix B shows quantization 

variance
(e)

2

q v
ˆVar σ

 
 
 

 is significant and should be 

included in the variance equation. Thus (5) is then 

expressed as 

(e) (e) (e) (e)
2 2 2 (e) 2

obs v q v v t v c sc v
ˆ ˆ ˆ ˆVar Var Var Var VarTσ σ σ σ        + = + +               

  (6)
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This equation will be the focus of attention. To 

deduce
(e)

v cVar T   the variances for terms on the 

both sides of the above equation will be calculated. 

 

3. Calculating the various variances  

 

In the following subsections variances of the terms 

in (6) are calculated. We consider stratiform weather for 

which the horizontal turbulence contributing significantly 

to 
2

t
ˆ ( , )nr tσ
�

 is 2D horizontally isotropic and 

homogeneous. Because weather radar observations are 

typically made at low elevation angles, the radial 

component of wind observed by Doppler radar is 

principally due to the horizontal wind components. Thus 

it is reasonable to focus attention on the spectral 

characteristics of the horizontal component of 

turbulence. The assumption of 2-D isotropy is supported 

by observations of Vinnichenko and Dutton (1969) and 

Nastrom and Gage (1985). These observations show 

spatial spectra of horizontal turbulence to be 2D 

horizontally isotropic for wavelengths from the order of 

tens of kilometers to least 2 km. Most of these data 

were collected by aircraft and balloon soundings, and 

apply principally to fair weather turbulence. But we 

assume these results are also applicable to the 

stratiform weather where the convection is weak. 

 

3.1  The variance of the spectrum width 

       associated  with turbulence 

 

It can be shown (Fang, 2008, Section 10) were 

(e) (e)
2 2 2

v t 1 v t
ˆ ˆVar Ecσ σ   =      

,   (7) 

1c , the factor of proportionality, is 1≤ . Equation (7) is 

the basis for us to calculate 
(e)

2

v t
ˆVar  

  
σ  from radar 

measured data. Taking the expectation of (3a) over the 

ensemble of velocity fields, noting 
(e)

v c 0E T  =  , 

gives  

(e) (e) (e)
2 2 2 2

v t v v s α
ˆ ˆ ˆE Eσ σ σ σ   = − −      

.    (8) 

The term on the right hand side of (8) can be calculated 

from observed radar data. If 
(e)

2

tσ̂  is statistically 

homogeneous and 2D horizontally isotropic, we can 

estimate 
(e)

2

v t
ˆE  

  
σ  using the spatial 

average
(e) (e)

2 2 2

v s α

s

ˆ ˆσ σ σ − −  
, but the spatial 

average domain needs to be large enough, otherwise 

( )e

c
s

T  might not average to zero or to a sufficient 

small value so as not to bias the estimate of 

( )
(e)

2

v t n
ˆE ,r tσ 

  
�

. 

Fig. 1 shows the azimuth dependence 

of
(e) (e)

2 2 2

v s α
ˆ ˆσ σ σ− − (equivalently 

(e)
2 (e)

t c
ˆ T+σ ) for 

two snow storms observed by the KLSX. 

Each
(e) (e)

2 2 2

v s α
ˆ ˆσ σ σ− − datum in Fig. 1 is calculated 

using (3a) where 
(e)

2

sσ̂  is determined from a VAD 

analysis of the radial velocity data (Appendix A), and the 

second central moment
2

ασ =
2 20.34m s− is calculated 

using the parameters for the KSLX and the formulas 

presented by Doviak and Zrnic (2006, Section 5.3). 

The pair of narrow peaks at 110
o
 and 290

o
 in Figs. 

1a and 1b could be an artifact due to radiation from 

other radar because the peaks exist for both cases and 

remain in at fixed directions for data collected a year 

apart. If 
(e)

cT were zero, Fig. 1 would be a plot of 
(e)

2

tσ̂ . 
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The Azimuth Dependecy of 

Sigma_sub_v_squared - Sigma_sub_s_squared - Sigma_sub_alfa_squared  

 on the Azinuth in a Snow Storm at Five Consecutive Gates between 17.5 and 18.5 km

KLSX 01/16/1994  19:19:18    Elevation Angle = 2.4 Degrees
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The Azimuth Dependecy Of  

Sigma_sub_v_squared - Sigma_sub_s_squared - Sigma_sub_alfa_squared    

On the Azinuth In A Snow Storm At Five Consecutive Gates between 17.5 and 18.5 km   

KLSX 01/06/1995  06:02:42  Elevation Angle = 2.4 Degrees
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Fig. 1. Azimuth dependence of ( ) ( )
(e) (e)

2 2 2

v s α
ˆ ˆ, nr t rσ σ σ− −
� �

for 2 snow storms observed by KTSX 

 

Because 
(e)

2

tσ̂  is the second central moment of 

turbulence it cannot be negative. But if
(e)

2

sσ̂ and/or 

2

ασ are overestimated, or 
(e)

2

vσ̂ is underestimated, 

(e)
2 (e)

t c
ˆ T+σ can be negative even if

(e)

cT is zero. It is 

common practice to attribute negative values of 

(e)
2

tσ̂ to these over and/or underestimates. Because 

the variance associated with the estimation of ( )2

s
ˆ rσ �

is 
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very small (Appendix A) 
(e)

2

sσ̂ is unlikely to be 

overestimated. Furthermore
2

ασ can be accurately 

calculated. Thus, negative values in the figures are 

primarily attributed to
(e)

cT . 

The data shown in the Fig. 1 is obtained from five 

consecutive range locations of 
(2)

6V  spaced 250 m. 

Only five range gates are used because of the need to 

limit the change of beam height to 52 m (at the 2.4
o
 

elevation angle) so that vertical variations of turbulence 

can be neglected. At the range of 20 km, beam 

width θ 0σ r  is about 100m. The arithmetic average of 

data in Fig.1 over 360
o
 of azimuth is 3.8 m

2
s

-2
. 

Because
(e)

cT is a zero mean random variable, this 

average should reduce 
(e)

cT to zero if the averaging 

domain contains a sufficient number of independent 

samples of 
(e)

cT . If this were the case, the average 

would then be an estimate of
(e)

2

tσ̂ . But the 3.8 m
2
s

-2
 

average is much larger than the spatial average of data 

around 130
o
 and 310

o
 where

(e)
2

s
ˆ 0σ ≈ (Fang, 2008, 

section 9.3) and therefore
(e)

cT should also equal zero. 

Either the average cannot effectively reduce
(e)

cT , or 

(e)
2

tσ̂ is not horizontally homogeneous, or both. The 

fact that
(e)

cT is mostly positive suggests that 

sδv and tδv  are positively correlated. Large velocity 

perturbations in the direction of faster flow and weaker 

perturbation in slower flow is expected, and thus it is 

natural sδv and tδv are positively correlated.  

Because
(e)

cT is zero around 130
o
 and 310

o
, the 

spatial average
(e) (e)

2 2 2

v s α

s

ˆ ˆσ σ σ − −  
 equals 

(e)
2

t
s

σ̂ . Thus using data at five consecutive range 

gates that lie in 3
o
 sectors centered at these two 

directions, 

30(e) (e) (e)
2 2 2 2 2

v t t t
s 1

1
ˆ ˆ ˆ 0.57ms

30 i i

E σ σ σ −

=

   ≈ = =      ∑ .

(9) 

By taking c1 = 1 in (7), the variance of 

( )
(e)

2

t
ˆ , nr tσ �

 is at most 

( )
(e) (e) 2

2 2 2 2 2 4 4

v t v t
ˆ ˆVar E 0.57m s 0.32m sσ σ − −   = = =      

. 

(10) 

for the data presented in Fig. 1a. For the case 

presented in Fig. 1b,  

   
(e) (e)

2 2 2 2

v t t
s

ˆ ˆE 1.2 m sσ σ −  = =  
,        (11a) 

and for this case, 

( )
(e) (e) 2

2 2 2 2 2 4 4

v t v t
ˆ ˆVar E 1.2m s 1.44m sσ σ − −   = = =      

.(11b) 

Because the variance of 
(e)

2

sσ̂ is very small, the 

negative values in Fig 1 are attributed to
(e)

cT . 

 

3.2 The variance of the observed spectrum width  

      squared  

Because variances of
(e)

2

sσ̂ and
2

ασ are 

negligible, it is deduced from (3a) that 
(e)

2

obs v
ˆVar  

  
σ  

=
(e) (e)

2 2 2

obs v s α
ˆ ˆVar σ σ σ − −  

and is computed vs 

azimuth using the following formula, 
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2
(e) (e) (e) (e) (e)

2 2 2 2 2 2 2

obs v v,sc v s α v,sc v s α
ˆ ˆ ˆ ˆ ˆVar E Eσ σ σ σ σ σ σ

       = − − − − −              
.     (12)

where subscript ‘v and ,sc’ is appended to the 

expectation operator E to emphasize the average is to 

been taken over the ensembles of both the velocity field 

and the scatterers’ configurations.  

The second term in the brackets on the right side of 

(12) is evaluated using the following procedure. The 

only term in (3a) that depends on the changes in the 

scatterers’ configuration is 
(e)

2

vσ̂ . Thus the ensemble 

average of (3a) can be expressed as  

(e) (e) (e)
2 2 2 2 (e)

v,sc v s α v t c
ˆ ˆ ˆE E Tσ σ σ σ   − − = +      

. (13) 

Because
(e)

v cE T   = 0, (13) simplifies to 

(e) (e) (e)
2 2 2 2

v,sc v s α v t
ˆ ˆ ˆE Eσ σ σ σ   − − =      

,       (14) 

substitution of (14) into (12) gives 

 

 

2
(e) (e) (e) (e)

2 2 2 2 2

obs v v,sc v s α v t
ˆ ˆ ˆ ˆVar E Eσ σ σ σ σ

       = − − −              
   (15)

As in Section 3a 
(e) (e)

2 2 2

v,sc v s α
ˆ ˆE σ σ σ − −  

is 

estimated by spatially averaging over large horizontal 

domains. 

Fig. 2 shows the plot of 
(e)

2

obs v
ˆVar σ 

  
 calculated 

from data collected for the two snow  

storms observed by KLSX. The plot shows azimuth 

dependence of 
(e)

2

obs v
ˆVar σ 

  
. Each point in the plot 

is calculated from data in a patch containing 10 radials 

and 5 range gates centered at 18 km. Thus the plot is a 

running average of data from 50
(e)

6V . 

 

The Dependency of Total Variance on Azimuth in a Snow Storm 

at Five Consecutive Range Gates  between 17.5 and 18.5 km

KLSX 01/16/1994  19:19:18  Elevation Angle = 2.4 Degrees
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The Dependency Of Total Variance On Azimuth In A Snow Storm 

At Five Consective Range Gates between 17.5 and 18.5 km  

KLSX 01/06/1995  06:02:42  Elevation Angle = 2.4 Degrees
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Fig. 2.  Azimuth dependence of variance
(e)

2

obs v
ˆVar σ 

  
of the observed spectrum  

width squared vs azimuth based on data collected with KLSX as in Fig.1.  

 

 

3.3 The variance associated with changes in  

      scatterers’ configuration  

 

 Doviak and Zrnić (2006, section 6.5) discuss 

the variance due to changes in the scatterers’ 

configuration (i.e., weather signal fluctuations). They 

present equations to compute 
(e)

2

sc v
ˆVar σ

 
 
 

 

( [ ]v
ˆVar σ in their notation). For large signal to noise 

ratios, as has the data used herein, the equation to 

compute this variance is 

2(e)
2 vn

sc v 2

s

3
ˆVar

128 MT

λ σ
σ

π

 
= 

 
   (16) 

where λ  is the radar wavelength (i.e., ≈ 0.1 m); M 

( ≈ 50) is the number of samples, Ts ( ≈ 1 ms) is the 

pulse repetition time, and vnσ  is the normalized 

spectrum width defined as 

(e) (e)
2 2

v s v

vn

a

2

2

T

v
= =

σ σ
σ

λ
  (17) 

where a s/ 4v T= λ is the unambiguous velocity, 

and
(e)

2

vσ is the expected second central moment.  

We need variance of 
2

vσ̂ whereas (17) gives 

the variance of
2

vσ̂ . But 
(e)

2

sc v
ˆVar σ 

  
 can be 

related to 
(e)

2

sc v
ˆVar σ

 
 
 

 by the approximate formula 

(Papoulis, 2003, p.150) 

(e) (e) (e)
2 2 2 2

sc v v v sc v
ˆ ˆ ˆVar 4E Varσ σ σ

     =          
. (18) 

By substituting (16) and (17) into (18), and using 

spectrum width data, we can compute the variance due 

to weather signal fluctuations caused by changes in the 

scatterers’ configuration. Fig. 3 shows the azimuth 
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dependence of the variance (i.e. 
(e)

2

sc v
ˆVar σ 

  
) for a 

snow storm observed with KLSX. The variance plot for 

the second snow storm corresponding to Fig. 1b is quite 

similar to that shown in Fig. 3. Each point in the plot 

corresponds to a value of 
(e)

2

sc v
ˆVar σ 

  
computed 

from (18). 
(e)

2 2

v v
ˆE σ

 
 
 

 is calculated by squaring the 

running average of observed spectrum width at 10 

radials and 5 consecutive range gates. 

Because
(e)

2

sc v
ˆVar σ 

  
is proportional 

to
(e)

2 2

v v
ˆE σ

 
 
 

as shown by (18), and 

because
(e)

2

vσ̂ is strongly dependent on
(e)

2

sσ̂ (Fig. A2), 

the two broad peaks in Fig. 3 are correlated with
(e)

2

sσ̂  

The Azimuthal Dependency of Variance Due to the Change of Scatterers' 

Configuration  in a Snow Storm at Five Consecutive Range Gates between 17.5 and 18.5 km      

KLSX 01/16/1994  19:19:18     Elevation angle = 2.4 Degrees
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Fig. 3 Azimuth dependence of variance
(e)

2

sc v
ˆVar σ 

  
due to weather signal fluctuations  

caused by changes in scatterers’ configuration for the same data set shown in Fig. 1a. 

 

3.4 The variance of the coupled term 

 

It finally comes to the point to calculate  

 

(e)

v cVar T    using (6) expressed as 

(e) (e) (e) (e)
(e) 2 2 2 2

v c obs v q v v t sc v
ˆ ˆ ˆ ˆVar Var Var Var VarT σ σ σ σ         = + − −                

.   (19)

 The plots in Fig. 4 show the azimuth dependence of

(e)

v cVar T   , as well as the variances 
(e)

2

sc v
ˆVar σ 

  

and 
(e)

2

obs v
ˆVar σ 

  
for comparison; the other variance 

terms are much smaller. There are a few negative value

s in Fig. 4. Variance is a squared variable, it should nev

er be negative. But because
(e)

v cVar T   is calculated f

rom the sum and differences of other variances that are 

estimates, 
(e)

v cVar T   fluctuates around about its true

 positive value and thus it likely creates some negative  
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The Dependency of Variances on Azimuth in a Snow Storm  

at Five Consecutive Range Gates between 17.5 and 18.5 km  
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Fig. 4. Azimuth dependence of the three major variances: 
(e)

2

obs v
ˆVar σ 

  
(black), 

(e)

v cVar T   (red), 

(e)
2

sc v
ˆVar σ 

  
(blue). Data collected with KLSX as in Fig.1. 

 

values. Asexplained before, the broad peaks of variance

 centered at about 50
o
 and 230

o
 is related to the influenc

e of shear of the mean radial wind component. 

The important point is that most azimuths and for  

 

both cases
(e)

v cVar T   is larger 

than
(e)

2

sc v
ˆVar σ 

  
(i.e., the variance due to 

fluctuations of weather signals,
 

the benchmark for 
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assessing performance for measuring spectrum width 

estimators). If turbulence measurement is the main 

purpose for using spectrum width data, 
(e)

cT is then 

significant whenever
(e)

v cVar T   is comparable 

to
(e)

2

sc v
ˆVar σ 

  
 

 

 

4.   Another method to calculate variance of the 

coupled term 

By computing term by term the variances in Eq. (6) 

as explained in Section 3, 
(e)

v cVar T    was calculated 

as a function of azimuth. In this procedure, there are two 

assumptions. One is that the large scale turbulence 

primarily contributing to 
(e)

cT  is horizontally 

homogeneous and 2D horizontally isotropic; another is 

that turbulence primarily contributing to 
(e)

2

tσ̂  is at 

least 2D horizontally isotropic. These assumptions 

enabled us to derive an equation to 

calculate
(e)

2

v t
ˆVar  

  
σ . This Section offers another 

simpler method, not requiring these assumptions, to 

roughly estimate
(e)

v cVar T   . But this alternative 

approach only yields a lower bound for
(e)

v cVar T   . 

Nevertheless it provides us with a chance to compare 

(e)

v cVar T    estimates obtained in section 3d with 

those obtained in this section.  

On the left side of (3a) 
(e)

2

vσ̂ is a radar measured 

datum, 
(e)

2

sσ̂ can be calculated from data (Appendix A), 

and 
2

ασ  is known (section 3a). Without
(e)

cT , the right 

side of (3a) is a squared variable, and therefore should 

be never negative. Thus, without
(e)

cT , the left side 

should be never negative, unless
(e)

2

sσ̂ is an 

overestimate larger than
(e)

2 2

v α
ˆ −σ σ . However, Fig. A3 

shows the variance associated with the estimation of 

(e)
2

sσ is very small, and Fang (2008, Fig. 9.9) shows 

( )
(e)

2

s rσ �

changes slowly and monotonically with time. 

Thus, if there are negative values of 

(e) (e)
2 2 2

v s α
ˆ ˆσ σ σ− − , the negative values should be 

primarily attributed to
(e)

cT .  

Fig. 5 shows histograms 

of
(e) (e)

2 2 2

v s α
ˆ ˆσ σ σ− − for the two snow storms 

observed with KLSX. It can be seen that there are many 

negative values. By discarding the values larger than 

zero and assuming the negative data represents the 

negative half the distribution of
(e)

cT , we subjectively 

fitted the remaining data with a Gaussian function to 

estimate
(e)

v cVar T   equal to about 5.3 and 1.7 m
4 

s
-4

 

respectively for cases in Fig. 5a and 5b. 
(e)

cT is a 

random variable with zero mean, but the mean 

of
(e) (e)

2 2 2

v s α
ˆ ˆσ σ σ− −  is usually larger than zero 

if
(e)

2

tσ̂ > 0. Choosing a zero mean for 

(e) (e)
2 2 2

v s α
ˆ ˆσ σ σ− − and only negative values to fit the 

Gaussian function gives us a conservative or lower 

bound estimate of
(e)

v cVar T   . 

These
(e)

v cVar T   values can be compared with the 

average of those shown in Fig. 4 estimated to be a few 

tens of m
4
s

-4
. Although

(e)

v cVar T   estimated from the 

histograms is significantly smaller, they are lower 

bounds and thus consistent with the average obtained 

from Fig. 4. 
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The  Histogram of Sigma Sub t Squared Plus Tc In Snow Storm At 18.5km    

KLSX 01/16/1994  19:19:18  Elevation Angle = 2.4 Degrees
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Fig. 5. Histograms of
(e) (e)

2 2 2

v s α
ˆ ˆσ σ σ− − for data collected with KLSX as in previous figures.  

 

5. Summary and conclusions 

 

The second central moment of the estimated 

Doppler spectrum has been shown not to be a weighted 

sum of second central moments associated with each 

independent spectral broadening mechanism, as has 

been commonly accepted, and there is an additional 

term
(e)

cT . This term is a weighted cross product of the 

shears of mean wind and turbulence across the radar’s 

resolution volume
(e)

6V . This study reported herein, 

using weather radar data, focuses on estimating the 

intensity and significance of
(e)

cT . Examination of data 

from stratiform weather shows that the coupled term Tc 
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is significant for weather where vertical shear is strong. 

It is found that most values of the 

variance
(e)

v cVar T   of the coupled term are larger 

than the variance
(e)

2

sc v
ˆVar σ 

  
due to fluctuations of 

weather signal (Fig. 4). Thus, the coupled term can 

impede the accurate measurement of turbulence in 

strong shear layers. Furthermore, the 

variance
( )

2

q v
ˆVar

e 
  
σ  associated with quantization of 

the recorded spectrum width data can be larger than 1 

m
4
 s

-4
 (Section 2b), and therefore it needs to considered 

if turbulence in strong shear layers is to be accurately 

measured.  
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APPEADIX A 

 

Assessing the Intensity of the Squared Spectrum 

Width due to Shear 

 

In order to simplify problem, the calculation of 

(e)
2

sσ̂  and its variance is conducted assuming a 

uniform vertical shear layer wherein the wind speed and 

wind direction are 

h v 3V k z b= + ,  w φ 4k z b= +ϕ .     (A1a, b) 

where vk , φk , b3 and b4 are constants that can be 

determined by least square fitting, to (A1), the Vh and 

wϕ  data, obtained from a VAD analysis of the radial 

velocities as a function of azimuth for every 
(e)

6V on a 

circle of constant range. Thus one pair of Vh and wϕ  

(Fig. A1) is obtained for each circle of radial velocities. 

To obtain reliable wind profiles with good resolution, the 

VAD analysis is performed at each range between 5 

and 20 km (at 20 km, beam width θ 0σ r  is about 100m) 

whenever there are at least 240 radial velocities 

available on the constant range circle for each of 

elevation angles. Therefore an ensemble of Vhs and 

wϕ s are obtained. 

The pink lines are the least squares linearly fitted 

profiles of horizontal wind speed and direction; each 

blue point is the wind speed and direction obtained from 

a single VAD analysis of radial velocities on a circle at a 

single range. The hV , wϕ  data ensemble (Fig. A1) 

shows a case of a relatively uniform shear layer 

between 400 and 1100 m; a similar uniform layer of 

slightly weaker shear was obtained for the snow storm 

on 6 January 1995 (Fang 2008).  

Under the condition the weighting functions and 

reflectivity are product-separable, Doviak and Zrnić 

(2006) showed that, if radial velocity is linear across the 

radar beam,
(e)

2

sσ  can be separated into three 

contributions, expressed as: 
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Fig. A1a. VAD derived data (blue points) and the linearly fitted profile (pink) of horizontal  

wind speed Vh in a snow storm observed by KLSX at 1919 UTC 16 January 1994. 
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Fig. A1b. Same as Fig. A1a, but for the horizontal wind direction wϕ . 

 

(e) 2
2 2 2 2

s r r φ 0 φe 0 0 θ 0 θ( ) ( ) sin ( )k k r k r = + + σ σ σ θ θ σ (A2a) 

where 0θ  is the zenith angle, kr, kϕ and kθ are shears in 

radial, azimuth and elevation directions respectively. 
2

θσ  

and
2

φe 0( )σ θ are second central moments of the two-

way antenna power pattern in the elevation and azimuth 

directions, and σr
2
 is the second central moment of the 

weighting function in radial direction. Note that (A2a) 

differs from that presented by Doviak and Zrnić (2006) 
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because (A2a) accounts for the change in φe 0( )σ θ with 

change in zenith angle and also accounts for the 

change in φe 0( )σ θ  for a scanning beam by 

replacing φ 0( )σ θ with the effective azimuth 

beamwidth φe 0( )σ θ . For a circular symmetric (i.e., 

when not scanning) beam  

2
2 1
θ

16ln 2

θ
σ =  

 ,  

2

1e
φe 0 2

0

( )
16(ln 2)sin

=
θ

σ θ
θ

, (A2b, c) 

where θ1 is one-way half power beam width. For a 

rectangular transmitted pulse and a receiver with 

Gaussian shaped response (Doviak and Zrnić, 2006, 

Section 5.3), 

2

2

r

0.35

2

cτ
σ

 =  
 

           (A2d) 

approximates the range weighting function of the WSR-

88D.  

Fang (2008, Section 9.3) has shown that kr, and kϕ  

are at least one order magnitude smaller than kθ, so that 

(A2a) reduces to 

( )
(e) 22 2

s sθ θ 0 θ
ˆ k r≈ =σ σ σ ,  (A3) 

Because 0 / 2θ π≈ (A3) can be then be 

expressed as, 

( )
(e) 2 22

s v 0 w φ h0 0 w 0 θ
ˆ cos( ) sin( )k kV r ≈ − + − σ ϕ ϕ ϕ ϕ σ . (A4) 

(e)
2

sσ̂ is plotted in Fig. A2 for the data presented in Fig. 

A1. Very similar results are obtained for the snow storm 

case one year later (i.e., 6 January 1995), but
(e)

2

sσ̂ is 

weaker. 

The Azimuth Dependency Of Sigma Sub s Squared In A Snow Storm At 17.5 km  

KLSX 01/16/1994  19:19:18 UTC  Elevation Angle = 2.4
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Fig. A2. The spectrum width squared
(e)

2

sσ̂ due to mean wind shear of the fitted profile in Fig. A1. 

 

Using all the Vh and wϕ data within the shear layer 

between 400 and 1100 m, the variances of Vh and wϕ  

are calculated about a linear fit to the data. Thus using 

(A4) it can be shown (Fang, 2008, Section 9.3) 

(e)
2

s
ˆVar  

  
σ  is given by 
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( ) ( ){(e) 222 2

s 0 θ h φ v 0 w φ h 0 w
ˆ Var 4 cos( ) sin( )Var r V z k k k V   =   − + −     
σ σ ϕ ϕ ϕ ϕ

( )
2

2

0 w w v 0 w φ h 0 wsin ( ) 4Var cos( ) sin( )z k k V × − +   − + −   ϕ ϕ ϕ ϕ ϕ ϕ ϕ  

        }v 0 w φ h 0 wsin( ) cos( )k k V × − − − ϕ ϕ ϕ ϕ             (A5) 

 

Fig. A3 shows the time series of 
(e)

2

s
ˆVar  

  
σ  

calculated using (A5) for the snow storm that produced 

the data shown in Fig. A1. It can be seen 
(e)

2

s
ˆVar  

  
σ  

is very small (it is even smaller for the  

 

 

snowstorm on 6 January 1995). Thus it is expected that 

the calculated 
(e)

2

sσ̂  is very close to the expected 

value
(e)

2

sσ . 
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Fig. A3. The time series of 
2

s
ˆVar σ 

 
 for the same snow storm data presented in Fig. A1. 
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APPENDIX B 

 

 Quantization Variance 

 

If a random variable x has a uniform probability 

density function between –w/2 and w/2, that is p(x) = 

1/w, the variance of x then is 

[ ]
3 3 22

2

2

1 1 1
Var

3 2 2 12

w

w

w w w
x x dx

w w
−

    = = − − =    
     

∫ .(B1a) 

If the distribution of vσ̂  is uniform across the 

quantization interval, the quantization variance is given 

by (Shrader, 1970, p.17-50),  

2(e)
2 v

q v

( )
ˆVar

12

  ∆
= 

 

σ
σ ,   (B1b) 

where vσ∆  is the quantization interval; for the WSR-

88D vσ∆  = 0.5 m s
-1

, and therefore 

2(e)
2

q v

0.5
ˆVar 0.02

12

 
= = 

 
σ  m

2
s

-2
.  (B1c) 

What we need in the variance equation (5) however 

is
(e)

2

q v
ˆVar  

  
σ not

(e)
2

q v
ˆVar

 
 
 
σ . Applying the 

methods outlined by Papoulis and Pillai (Papoulis and 

Pillai, 2003, p.150), it can be shown that 

( ) (e) (e)
2 2 2 2

q v v v q v
ˆ ˆ ˆVar 4E Var

e

σ σ σ
     =          

, (B2) 

which is valid for distributions of 
(e)

2

vσ̂ that are  

sufficiently narrow so that a linear approximation (i.e. to 

the squared dependence of 
(e)

2

vσ̂ on 
(e)

2

vσ̂ ) about 

the expected value is maintained for most of the data 

contained in the distribution. The 

expectation
(e)

2

v v
ˆE σ

 
 
 

is approximated using a 

running spatial average of spectrum width data from 10 

radials at 5 consecutive range locations. Then 

quantization variance
( )

2

q v
ˆVar

e

σ 
  

 is calculated using 

(B2) and (B1c).  

 Fig. B1 shows the azimuth dependence of 

(e)
2

q v
ˆVar σ 

  
vs azimuth angle. 

Another issue associated with 
(e)

2

q v
ˆVar  

  
σ  is 

whether it should be added to or subtracted 

from
(e)

2

obs v
ˆVar  

  
σ . In order to determine this, let’s 

consider a random variable x uniformly distribute 

between -1.5 and 1.5 with a zero mean. From Eq. (B1a), 

the variance, in absence of quantization, 

is [ ]
23

0.75
12

Var x = = . Now consider x is quantized 

with an interval 1. That is, if x lies between -1.5 and -0.5, 

it takes the value -1; if x lies between -0.5 and 0.5, it 

takes the value 0; if x lies between 0.5 and 1.5, it takes 

the value 1;  The variance for the quantized x is then

[ ] ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2

1 2 3

1 1
1 0 1 0.667.

3 3
Var x x x x x x x   = − + − + − = − + + =    

Thus, quantization decreases the variance of the 

observed variable and quantization variance should 

therefore be added to the left hand side of (5) which 

becomes,  

(e) (e) (e) (e)
2 2 2 (e) 2

obs v q v v t v c sc v
ˆ ˆ ˆ ˆVar Var Var Var VarTσ σ σ σ        + = + +               

  (B3)
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The Azimuthal Dependency of Variance Due to Quantization in A Snow Storm  

at Five Consecutive Range Gates between 17.5 and 18.5 km   

KLSX 01/16/1994  19:19:18  Elevation Angle = 2.4 Degrees
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Fig. B1 Azimuth dependence of quantization variance
(e)

2

q v
ˆVar σ 

  
for  

a snow storm observed by KLSX data presented in Fig. 1a. 
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