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1. INTRODUCTION 

 
This paper presents a technique by which it is 

possible to retrieve the drop shape-size relation that 
governs the polarimetric radar observations of 
reflectivity, Zh, differential reflectivity Zdr, and specific 
differential propagation phase Kdp. To study the shape–
size relation, an observation domain is introduced. In 
this space, called Radar Drop Shape Size Domain, 
(RDSSD), the DSD variability is almost eliminated and 
any variation is essentially due to the drop shape 
variability, allowing the same to be observed. The 
RDSSD can be mapped to a corresponding domain in 
which the drop shape is expressed through the relation 
between the ratio between the semi-minor axis and the 
semi-major axis (b and a, respectively) of the oblate 
spheroid approximating the drop and the equivolumetric 
diameter of the drop (D). This drop shape-size domain 
is parameterized with a fourth-order polynomial. A 
minimization procedure of the error between the 
measured values of observables and values from a 
priori model in RDSSD is developed by changing 
elements of the above-mentioned polynomial. As a 
result, a relation between the axis ratio b/a and D that 
approaches the underlying unknown relation governing 
the prevailing radar measurements is found. 

 
The procedure is applied to three different radar data 

sets collected by the NCAR S-POL radar during 
campaigns conducted in different climatic region, 
namely Florida (Teflun B), Brazil (LBA) and Italy (MAP). 
The drop shape-size relations obtained for each 
campaign are compared with relations proposed in the 
literature. The mean drop shape-size relation retrieved 
is analyzed to explore whether the natural raindrop 
shape-size relation can be described by a unique 
model.  

 
2. THE RADAR DROP SHAPE-SIZE DOMAIN  

 
The radar measurements Zh, Zdr, and Kdp are all 

influenced by the DSD variability and by the raindrop 
shape-size relation. It has been long established that Zdr 
is mostly sensitive to drop median volume diameter (D0) 
and to raindrop shape, whereas Kdp is mostly sensitive 

to concentration and shape. Gorgucci et al. (2006) 
showed that by collapsing the self-consistency principle 
onto a two-dimensional space defined by the two 
variables Kdp/Zh and Zdr, the influence of DSD is nullified 
so that any variation in this domain comes 
predominantly from the drop shape variability. The ratio 
between Kdp and Zh will be henceforth referred to with 
χpp=10log10(Kdp/Zh), where Kdp is in units of deg km-1 
and Zh in m3 mm-6. The space defined by the two 
variables χpp and Zdr (in dB) is called the “Radar Drop 
Shape-Size Domain” (RDSSD) because it allows one to 
obtain drop shape information directly from radar 
observations. The position of a (χpp, Zdr) pair in the 
RDSSD is determined by the prevailing shape-size of 
the drops contained in the radar measurement volume. 

 
To study the raindrop shape–size variability in the 

RDSSD, the averaged χpp–Zdr relations can be drawn 
for commonly used raindrop shape models available in 
the literature. A simulation procedure was built using the 
following conditions: i) gamma DSD parameters varying 
in the range defined by 0.5<D0<3.5 mm; 3<log10Nw<5; 
-1<μ<5; ii) 10log10Zh<55 dBZ iii) rain rate less than 300 
mm h-1; iv) drops canted with the mean and standard 
deviation equal to 0° and 10°, respectively. In this study, 
the shape-size relations of Pruppacher and Beard 
(1970), Beard and Chuang (1987) as well as the two 
recent ones of Brandes et al. (2002) and Thurai et al. 
(2007) are considered. Hereinafter, these relations will 
be referred to as PB, BC, BZV, and THBRS, 
respectively. 

 
Figure 1 compares χpp versus Zdr for these models 

using results from the simulation described above. It can 
be seen that in the RDSSD most of the variability 
resulting from DSD has been eliminated and each drop 
shape–size model can be easily recognized. Therefore 
using polarimetric radar measurements, a domain that is 
essentially sensitive to raindrop shape has been 
created.  
 
3. DROP SHAPE RETRIEVAL PROCEDURE 

 
With the exception of the relation of PB that is linear, 

the other equations are expressed by forth order 
polynomials. For this reason, we attempt to retrieve the 
shape-size relation underlying polarimetric radar 
measurements in term of a fourth order polynomial. The 
procedure for retrieving the mean drop shape from radar 
measurements consists of the following steps: 
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a) 20000 triplets {Nw, D0, µ}, in the intervals defined in 
sect. 2 are generated. 

b) A fourth-order polynomial equation is chosen to 
describe the axis ratio-diameter relation. 

c) For each DSD triplet, radar measurements are 
simulated assuming the fourth order polynomial set 
at step b) to obtain a corresponding set of (χpp, Zdr) 
pairs. 

d)  Zdr is stratified in classes of 0.1 dB and the mean 
values of χpp are computed for each class  

e) The square error between mean values of simulated 
and measured χpp is computed for each Zdr class. 

f) The root mean square error (RMSE) is computed 
over all the radar data. 

g) The minimization of the RMSE is obtained by 
changing the coefficients of the fourth-order 
polynomial equation of the drop shape-size relation. 
 
To find the starting fourth-order polynomial, the 

plane describing the relation between the drop axial 
ratio b/a and the drop diameter D is divided in four 
regions bounded between the D values of 0-2 mm, 2-4 
mm, 4-6 mm, and 6-8 mm, respectively. In the first 
region, a drop is supposed to be spherical up to 0.5 mm. 
For larger diameters, the axial ratio is described by a 
curve whose points are at a fixed distance between the 
PB and BC curves. The distance is defined as a 
percentage ε of the axial ratio distance between the PB 
and BC models. Therefore, for ε<50 % the curve lies 

closer to the PB model whereas is closer to the BC 
model for ε>50 %. For ε>100% the curve describes 
drops that are less oblate than the BC model. In the 
subsequent regions, the axial drop ratio is described by 
a piece-wise linear curve whose segments have 
variable slopes. The fourth order polynomial equation is 
determined by fitting a fourth-order polynomial to the 
four segments. 
 
3.1 Influence of measurement errors on χpp 

 
The three polarimetric radar measurements Zh, Zdr, 

and Kdp are affected by measurement errors that are 
nearly independent and will directly affect any 
parameters that are derived from them, like χpp. Zh, 
based on an absolute power measurement, has a 
typical accuracy of 1 dB, while Zdr, which is a relative 
power measurement, can be estimated to an accuracy 
of about 0.2 dB. The accuracy of the Kdp estimate 
depends on the procedure used to compute the range 
derivative of the the differential propagation phase Φdp 
which can be estimated to an accuracy of a few 
degrees. A least square fit to the Φdp profile is used to 
estimate Kdp. To ensure that in χpp computation the 
measurements come from the same volume, Zh and Zdr 
are obtained from power measurements averaged over 
the path over which Kdp is computed. These path 
measurements can be affected by gradients. Gorgucci 
et al. (2006) showed that in the occurrence of the DSD 
variability along the path revealed by the presence of a 
Zh gradient, the difference between point- and path-wise 
values of χpp and Zdr is negligible. 

 
When Zdr assumes low values, due to signal 

fluctuation, Kdp has a high probability of assuming 
negative values and therefore χpp cannot be computed. 
As a result, for small Zdr, χpp will be biased to higher 
values. As the path length decreases, the variance of 
Kdp increases and then the χpp bias is expected to rise. 
The sensitivity of χpp with respect to the path length was 
studied by Gorgucci et al. (2009) using realistic profiles 
of DSD parameters simulated from NCAR SPOL radar 
measurements using the procedure of Chandrasekar et 
al. (2006). A shift of χpp toward values higher than those 
of the theoretical curve model was shown to be evident 
for small Zdr. Moreover, it increases as the path length 
decreases. In the case of 15-km path length, for Zdr 
greater than 0.7 dB, the average value of χpp practically 
coincides with the average point-wise χpp. 

 
3.2 Bias removal 

 
In the RDSSD, a bias on Zdr corresponds to a left or 

right shift along the abscissa, whereas any error on Zh is 
directly converted into an up or down shift of χpp. These 

Figure 1. Scatter plot of χpp as a function of Zdr for 
widely varying DSD and the drop shape-size relations of
PB, BC, THBRS, and BZV. Grey solid lines represent 
averaged χpp  as a function of Zdr. 



 

biases will be interpreted in terms of oblateness 
invalidating the drop-shape retrieval. However, the Zdr 
bias can be easily removed by several techniques (e.g. 
Gorgucci et al. 1999; Ryzkhov et al. 2005, Bechini et al. 
2008). Techniques based on the self-consistency of 
polarimetric measurements (Gorgucci et al. 1992) can 
be used to calibrate Zh. However, they require an a 
priori assumption of a fixed drop shape model and 
uncertainty of this assumption will affected the bias 
estimate. A different method can be implemented in the 
RDSSD. For each of the drop shape-size relation 
considered in this study, the root mean square error  
between the measured χpp and the mean χpp versus Zdr 
curve of the model was computed for profiles with 
Zdr>0.7 dB (see sect 3.1) varying the Zh bias. The 
absolute minimum RMSE provides the mean for 
knowing which model is closer to the underlying the 
radar measurements. The corresponding Zh bias is used 
to correct the measured radar reflectivity. In fact, in the 
extreme case that all the experimental χpp mean values 
coincide with the corresponding values of the fixed drop 
shape model, the Zh bias represents the absolute 
calibration of the radar system. The method utilized in 
this study to find the radar calibration bias is 
conceptually more accurate than the one based on the 
self consistency of the polarimetric measurements. 
Once the Zh bias is found, also the mean shape can be 
found as described before. This shape, in turn, will 
provide a slightly different bias in Zh such that the whole 
process converges In this way, the method 
simultaneously determines the mean shape model 
according to a fourth order polynomial as well as a Zh 
bias estimate. 

 
3.3 Reliability of retrieval 

 
The estimation error associated with the drop shape 

retrieval will depend on several factors, namely, Zh, Zdr, 
Kdp measurement errors, χpp population size, χpp 
population distribution in the RDSSD, reliability of 
obtaining the fourth-order polynomial by the fitting of a 
piecewise curve composed of four segments. The 
procedure to estimate the shape-size relationship was 
first tested applying it to data simulated assuming a 
fixed drop shape model (e.g. BC) and verifying the 
retrieval results. Results showed an excellent 
agreement (NSE of 3% and negligible NB). To evaluate 
the impact of measurement errors, a Gaussian noise 
was added to the curve of mean χpp for a given shape-
size model  The standard deviation of the Gaussian 
noise was chosen to correspond to that of χpp computed 
from a sample of 2000 measurements, which can be 
considered a small percentage of the amount of data 
that is usually collected by a meteorological radar. It has 
been shown that the residual region of the difference 
between the true BC relation and any of those retrieved 

is less than 0.002 for D< 3mm and less than 0.01 for 3 < 
D < 6.5 mm.  
 
4. RESULTS 

 
Radar data used for this study were collected by the 

NCAR S-POL radar during three campaigns, two of which 
were conducted as part of the validation program of the 
Tropical Rainfall Measuring Mission (TRMM), the Texas 
and Florida Underflight (TEFLUN-B) and the Large Scale 
Biosphere-Atmosphere (LBA) experiments. The third 
campaign was the Mesoscale Alpine Programme (MAP) 
conducted in Europe over the Alpine region. TEFLUN-B 
was conducted between 1 August and 30 September 
1998, in the central region of Florida; the TRMM-LBA 
campaign took place in Brazil in the Amazonia region 
from 1 January through 28 February 1999. The MAP 
experiment was carried out from September to November 
1999. The S-POL was located at the southern end of 
Lake Maggiore, in Italy. Only data collected during the 
Special Observing Period (SOP) of 19-21 September 
2001 are considered. 

 
Profiles of Zh, Zdr, and Φdp were selected based on 

the requirement that they refer to a rain path of over 100 
consecutive 0.15-km range bins. This condition was 
verified using appropriate threshold values of correlation 
coefficient, received power, reflectivity factor, and 
standard deviations of Zdr and Φdp (computed using a 5-
range-bin moving window). Moreover, the increase of 
Φdp had to be greater than 6 degrees. The procedure 
described in sect 3.2 was applied to correct the bias in 
Zh.  

 
Fig. 2a shows the RDSSD for the data set extracted 

from the TEFLUN-B campaign. The solid black line with 
circles represents the mean χpp vs. Zdr of experimental 
data. The curve corresponding to the solid red line 
represents in the RDSSD the retrieved fourth-order 
polynomial shape-size equation retrieved, that is  
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Also shown are the curves referring to PB, BC, BZV, 

and THBRS models. The polynomial (1) results from a 
curve characterized by an ε=170% in the region 0<D<2 
mm yielding drops that are less oblate than the BC 
model. In fact, it is very close to the BZV up to D=6 mm 
and, for larger diameters, presents an increasing 
oblateness. 

 
The RDSSD obtained using the profiles selcted from 

the TRMM-LBA campaign is shown in Fig. 2b. 



 

Estimation of the underlying drop shape-size relation is 
obtained as 
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Eq. (2) results from a curve characterized by ε=110% 

in the first region. This means that the LBA drop shape-
size relation is close to the BC model but drops are 
slightly less oblate. This behaviour holds up to D=4 mm. 
After that drops become more oblate than BC, with 
increasing values of b/a up to D=6.5 mm after 
decreasing up to join with BC for D=8 mm. 

 
The mean experimental χppcurve obtained form the 

MAP SOP of 19-21 September 2001, is shown in Fig. 
2b (black line with markers). For Zdr ranging between 1 
and 1.4 dB, it presents two slopes. This behaviour may 
be due to the presence of wet hail that increases Zh in 

the presence of low Zdr. The retrieved drop shape-size, 
represented by a thick solid blue line in Fig. 3c is 
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It must be pointed out that (3) results from a curve 

with ε=110% in the first region. In fact, up to D=3.5, (3) 
is superimposed onto the BC and for greater D presents 
axial ratio values lower than all the other relations. For 
D>7 mm and D=8 mm, the axial ratio remains almost 
constant. The comparison of the MAP with the LBA drop 
axial ratio shows that the two curves are very close 
except for D>6 mm, where MAP presents values higher 
than LBA.  

 
The ability of each model to represent the 

experimental data is analyzed in terms of NSE and NB 
computed between the experimental χpp values obtained 

 

Figure 2. RDSSD for the data collected 
during the TEFLUN-B (a), LBA (b), and 
MAP (c) campaigns. PB, BC, BZV, 
THBRS mean curves are also reported as 
reference. The solid black lines with 
circles represent, for each Zdr class of 0.1 
dB, the experimental mean value of χpp. 
Solid thick lines (red, green, and blue, for 
TEFLUN B, LBA, and MAP, respectively) 
represent the fourth-order polynomial 
equation expressing the retrieved shape-
size relations in the RDSSD. 

(c) 

(a) (b) 



 

experimentally by radar measurements and the 
corresponding mean value obtained by a fixed model 
normalized with respect to the mean value of the model 
and by the corresponding NB. NSE and NB are plotted 
as a function of Zdr in Fig 3 for the TEFLUN B dataset. 
NB presents a value close to zero (similarly to BZV). A 
similar behaviour is shown by the Fig. 2b for NSE. It 
should be noted that both NSE and NB are almost 
constant as a function of Zdr.  

 
Similar results are found for the LBA and MAP 

datasets. For the LBA dataset experimental χpp presents 
on average NB ∼ 0, whereas NB of PB, BC, BZV, and 
THBRS is 3.6%, 0.2%, 1.5%, and 0.8%, respectively. 
The NB of (2) does not present any variability with Zdr, 
denoting the good performance of the polynomial over 
the entire interval of the equivalent volume diameter. 

 
For the MAP dataset, (3) presents a performance 

very close to the BC relation. The average NB over the 
entire Zdr range variability is practically zero for both (3) 
and BC, whereas it is -3.5%, 1.7% and 0.9% for PB, 
BZV and THBRS, respectively. For NSE the 
performance of (3) and BC are very similar, showing 
lower values when compared to the other models (NSE 
is 4%, 2.7%, 2.3%, 2.1% and 2.0% for PB, BZV, 
THBRS, BC and (3), respectively). 

 
A thorough examination of the three fourth order 

polynomials in the RDSSD (Fig 2) reveals that the 
retrieved drop shape-size models exhibit two distinct 
regions with different characteristics. In the first one, for 
Zdr<1.2 dB, the curves reveal different slopes, in 
particular a smooth one for TEFLUN-B and steep one 
for MAP and LBA. In the second region, the slopes 

remain substantially similar to each other, with a slight 
tilt downwards. Figure 4 compares all the experimental 
shape-size relations with the PB, BC, THBRS, and BZV 
models. 

 
In conclusion, obtained results document the degree 

of change of the mean drop shape-size relation 
governing the natural rain. Specifically, for the cases 
considered in this study, the variability of the drop 
shape-size is between the values given by the BC and 
BZV models. 

Figure 4. Shape-size relations of oblate drops as a 
function of equivalent volume diameter retrieved from 
the NCAR SPOL daasets in comparison with shape-
size relations of PB, BC, BZV, and THBRS. 

Figure 3. NB (left) and NSE (right) between χpp values  obtained from TEFLUN-B radar data and the corresponding 
ones of the PB, BC, BZV, THBRS, and polynomial (2) model, respectively. NB and NSE are normalized to the mean 
χpp radar data. 
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