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1. INTRODUCTION 

The main objective of this paper is to estimate the 
error in the rainfall derived from a polarimetric X-band 
radar, by comparison with the corresponding estimate 
of a rain gauge network. However the present 
analysis also considers the errors inherent to 
raingauge, in particular instrumental and 
representativeness errors. A special emphasis is 
addressed to the spatial variability of the rainfall in 
order to appreciate the representativeness error of the 
rain gauge with respect to the 1km square average, 
typical of the radar derived estimate. For this purpose 
the spatial correlation function of the rainfall is 
analyzed.  

The data set consists of one-year radar data 
collected by the X-band polarimetric radar HYDRIX®, 
located in Beauce region (80km south of Paris). All 
data were processed in real time using the ZPHI® 
algorithm. A dense rain gauge network provided 
ground comparison data. The various sources of 
uncertainties (instrumental and representativeness) 
are then analyzed and quantified for each sensor. 

2. EXPERIMENTAL SETUP 
 
The radar data used in this study comes from an X 

band dual polarization radar (named HYDRIX). This 
"compact" radar (antenna diameter is 1.2 m) uses the 
hybrid technology (i.e. simultaneous transmission of 
H&V polarizations). 

The HYDRIX radar was deployed on October 
2004, on the roof of a building of the Arvalis-Institut-
du-Végétal, an agricultural institute located 70 km 
south of Paris, France. To validate the measurements 
of the HYDRIX radar, a network of 24 rain gauges 
was specially deployed in the azimuth sector covered 
by the radar, within 25 km range. The radar scanning 
zone is a single elevation azimuth sector spanning 
from 200° to 275°, with a maximum range of 60 km. 
The 3 deg/s antenna speed ensures a revisit time less 
than 30 s long in average. During the reference period 
October 2004 to October 2005, the radar produced 
14745 estimates of the six-minute rainfall over the 24 
rain gauges of the network, representing a total 
rainfall of 307 mm (average at each rain gauge site). 

 
The HYDRIX radar data was processed in real 

time with the ZPHI® algorithm (Testud et al., 2000) to 
retrieve the rain rate and the parameter N0* of the 

drop size distribution (Testud et al., 1999). The latter 
helps to adjust the reflectivity (Z) – rainfall rate (R) 
relationship to the meteorological situations. The radar 
rain rates were then interpolated in a 1 km2 resolution 
geographic grid, using Cressman filtering. They were 
also time integrated primarily over 6 mn to fit the rain 
gauge time sampling. 

Two other algorithms are used for comparison 
purpose, a classical Z-R relationship with and without 
attenuation correction from ZPHI®. In both cases the 
N0* is set to a constant value optimized for the region 
(~106.4 m-4). 

3. RADAR ALGORITHM COMPARISON 

Table 1 summarizes the statistics of the point-by-
point comparison of the hourly rainfall measured by 
the rain gauges and by the radar during the reference 
period. Statistics are computed in terms of Pearson 
correlation coefficient, Nash criterion and slope of the 
orthogonal regression function. 

Compared to rain gages, the classical Z-R 
estimator is negatively biased, especially for higher 
rainfall, due to attenuation. The Pearson correlation 
coefficient and the Nash criterion are substantially 
improved not only with respect to the "classical Z-R", 
but also with respect to the "attenuation corrected Zc-
R". The performance of ZPHI® is due to two factors: 
first, the relationship between specific attenuation and 
rain rate is naturally less scattered than the Z-R 
relationship, and second, the ray-by-ray adjustment of 
N0* allows the effect of the natural variability of the 
DSD to be considerably reduced. 

 
Algo Slope Pearson Nash 
ZPHI® 0.88 0.92 0.84 
R(Zcorr) 1.09 0.85 0.66 
R(Zatt) 0.68 0.80 0.62 
Table 1.  Statistics of the comparison between radar and 

gauges, 3652 points, 1hour integration. 
 

4. RAIN VARIABILITY OBSERVED BY RADAR 

AND GAUGES 

A spatial correlation analysis has been carried out 
to characterize the rain variability based on the 
procedure described by Gebremichael and Krajewski 
(2004) (GK2004 hereafter). 

First the spatial correlation of gauge and 
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collocated radar data are computed, for 6min rain 
accumulation, assuming a lognormal distribution. 

Then, the gauge spatial correlation is fitted by the 
exponential point-correlation function: 

( )( )F
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where h is the separation distance, F is the shape 
parameter, R0 is the correlation radius (km), and ρ0 
defines the nugget parameter. The nugget parameter 
is the local decorrelation that can be caused by 
microscale variability or by random instrumental 
errors. A standard least square fit routine is used to 
adjust the shape parameter F and the correlation 
radius R0 for determining the best fit to the 
experimental points. The minimum distance between 
the gauges in the network was not small enough 
(>1.2km) to accurately determine the nugget 
parameter. The nugget parameter is fixed to 0.97 by 
default for all cases. 

Finally, the radar spatial correlation is fitted by the 
area-correlation function ρA using a Gradient-
expansion nonlinear least square algorithm: 

[ ] [ ]),(var/cov)( yxRhh AAA =ρ   (2) 

where the variance and covariance of the area 
average rain field RA(x, y) is a function of the three-
parameter exponential point correlation ρ(h)  

 

 
Fig. 1:  The "point” correlation functions derived from the 

three data sources: the 24-rain gauge network, the ZPHI® 
radar and the classical Z-R radar estimate. 

 
GK2004 observed that the correlation function 

determined from the radar dropped faster (meaning a 
shorter correlation radius) than the one determined 
from the rain gauge network. A similar observation 
can be made when comparing the "classical Z-R" 
correlation function with the rain gauge one (Fig 1). 
However, the correlation function for ZPHI® rainfall 
estimate turns out to be very close to the one for the 
rain gauge network (Fig 1). Such a result constitutes 
an independent way to validate the ZPHI® product in 
comparison with the rain gauge network. 

 
From the radar alone, thanks to the large number 

of available samples, an accurate correlation function 
may be derived from one month of hourly rainfall data 

(Figure 2). We notice the almost perfect fit of the area 
correlation function ρA over the radar data. From the 
spatial area correlation ρA(h) (eq. 2), one can deduce 
the spatial point correlation function ρ(h) (i.e. the one 
that would be obtained from rain gauge 
measurements). The latter, also plotted in Figures 2 
exhibits lower correlations up to 8km separation 
distance. The large reduction is observed at short 
distances and for the more convective events. The 
correlation radius decreases rapidly when considering 
only higher rainfall rates, R0 drops from 31km to 
6.5km when selecting rain rates higher than 3mm/h. 

 

 
Fig. 2:  spatial correlation derived from one month (October 
2004) of 1hr rain retrieved from radar measurements by 
ZPHI®. The fitted function ρA(h) and ρ(h) are represented by 
the dash and the solid line respectively. All rainfall rates (on 
the left). Rainfall rates higher than 3 mm/h (on the right). 

 

5. INSTRUMENTAL AND REPRESENTATIVENESS 

ERRORS 

As mentioned before, direct comparisons of gauge 
and radar estimates are problematic because of the 
large differences in their sampling volumes. The 
gauge represents only a small fraction of the sampling 
volume of the radar; ~0.1 m2 versus 1 km2 for the 
HYDRIX data. 

 
We define the instrumental error Arad attached to 

the radar, by: 
RAR radrad =    (3a) 

and for the gauge error Bg related to bucket 
sampling, by: 

gg BrR +=    (3b) 

where Rrad denotes the radar-rainfall estimates 
over the area A (1 km2) and Rg the gauge rainfall at a 
certain point within the area, r stands for the true point 
rainfall, R the true area-averaged rainfall defined by: 

∫=
A

dxrR
 

The error Arad is assumed multiplicative, 
independent of the rainfall intensity, lognormally 
distributed. The hypothesis that Arad is in addition 
independent of R means that the relative error is 
constant (hence the absolute error grows 
proportionally to R). We are conscious that this 
hypothesis of independence is imperfect and mainly 
dictated by convenience to perform the calculation. 
But it is probably the best we can do with our present 
knowledge. Similarly, it is assumed that the error Bg, 



additive and normally distributed, is independent of 
the rainfall intensity. Bg is an absolute error 
representing the resolution of the tipping bucket 
(0.2mm). All previously defined errors are assumed 
not biased. More details on the instrumental errors 
can be found in Moreau et al. (2009). 

 
The standard error for is defined as follows: 

)var( radinstrad A=−ε    (4) 

As the error in the rain gauge estimate is absolute, 
in order to be able to compare it with the radar 
estimate, a normalization is practiced as: 
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with var(Bg) = (0.2 mm/h)2  
εg-inst is referred to in the following as the "relative 

error" in the raingauge estimate. 
Similarly, the normalized representativeness error 

is defined by: 
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where E( ) and var( ) are the expectation and 
variance operators, respectively. 

 
The point-area difference variance divided by the 

point variance can be expressed, as in Ciach and 
Krajewski (2002), by: 
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where xg denotes the location of the gauge within 
the area and cov( ) is the covariance operator. The 
point correlation function 

0/~ ρρρ =  denotes the 

spatial correlation assuming no local decorrelation. 
The nugget parameter reflects the microscale 
variability in the rain fields and the random 
measurement errors of the rain gauges. As mentioned 
before, the rain gauge network used in this study is 
not dense enough to accurately estimate this 
parameter from the spatial correlation. Therefore, the 
nugget parameter is left as a free parameter that 
would be estimated. 

 
The variance of the difference between the rain-

radar and the rain-gauge can be expressed as: 
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The last term in eqn (8), the covariance between 
the rain-radar and the rain-gauge, can be written as: 

)()().(),cov( radgradgradg RERERRERR −= (9) 

 

Substituting Rg and Rrad by eqn (3a) and (3b) and 
considering that errors are not biased and 
independent of the rainfall, leads to: 

),cov()()()(),cov( RrRErErRERR radg =−= (10) 

 
The covariance between the point and the area-

average rainfall can be estimated by substituting eqn 
(8) into (10). 

 
Using eqns (7a) and (7b), the variance of the area-

average rainfall can be written as: 
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It has to be noticed that eqn (11) is totally 
independent of the nugget parameter. The variance of 
the point rainfall is deduced, by expressing the 
variance of eqn (3b), as: 

)var()var()var( gg BRr −=    (12) 

Finally, the nugget parameter can be derived by 
substituting eqns (13) and (14) into eqn (7b) : 
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The normalized representativeness εrep error can 
be estimated substituting eqns (12) and (13) into eqn 
(6). The normalized instrumental radar error εrad-inst 
can be derived, by expressing the variance of eqn 
(3a): 

)(

)var()var(
)var(

2

2

RE

RR
A rad

radinstrad

−==−ε  (14) 

The inputs to this approach are the variances of 
the observed radar rain estimate and gauge rain 
estimate, as well as the variance of their difference, 
and finally the point correlation function. The point 
correlation function ρ~  (assuming no instant 

decorrelation) is derived from the 1-hr rain radar data 
(Figure 2) when a rain threshold of 1mm/h (or 2 mm/h) 

is applied, the nugget parameter 0ρ being estimated 

through eqn (13). 
As mentioned before all rain measurements are 

assumed unbiased. The bias is estimated from the 
data set, from the slope of the orthogonal regression 
and removed from the radar rain measurements. The 
rain gauge data are assumed not biased. 
 

The error analysis is applied to the one year data 
set for 1 hour integration time. On figure 3 are 
displayed: the sample number (a), the Pearson 
correlation of radar versus gauge rain (b), the bias (c), 
the instrumental and representativeness gauge errors 
(d), the radar error (e).and the nugget parameter (f). 



The robustness of the error analysis to the 
hypothesis of independent errors is tested by applying 
different rain thresholds (from 0 mm/h to 2.0 mm/h) to 
the dataset. Larger rain thresholds reduce 
considerably the sample number leading to an 
unstable analysis. 

 

 
Fig 3:  error analysis of the one year rain data set. In all the 
panels, the statistics associated to ZPHI® are in solid line 
(¯ ¯ )̄, to the attenuation corrected “Zc –R” algorithm in dashed 
line (---) and to the gauges in dot line (…). From the top to 
the bottom; (a) the sample number used to derive the 
statistics; (b) the Pearson correlation coefficient; (c) the bias; 
(d) the instrumental (εg-inst) and representativeness (εrep) 
gauge error in dot line with square (..□..) and cross (..×..) 
symbols, respectively. The total gauge error 

( 22
repinstg εε +−

) is represented by the simple dot line; (e) 

the radar errors (εrad) for the two radar algorithms and the 

gauge error ( 22
repinstg εε +−

); (f) the nugget parameter of 

the point correlation function. On the x-axis the rain threshold 
(in mm/h) applied on the data set. 
 

When the radar reflectivity is corrected from the 
attenuation, the rain estimates shows no bias (Figure 
3.c). Using the ZPHI® algorithm causes the bias to be 
slightly negative (~0.9) and remains constant when 
considering the various rain thresholds 

 
The instrumental and representativeness gauge 

errors are presented in Figure 3.d. The gauge 
instrumental error decreases from 9% to 4% when the 
rain threshold increases. The representativeness error 
(εrep) is close to 20% when associated to a nugget 
parameter ranging from 1 to 0.94. 

 
The radar error with the attenuation corrected “Zc 

–R” algorithm is about 40%. The ZPHI® algorithm, 
which includes the attenuation correction, finally leads 
to an error of 25%, which approaches that of the 
gauge (Figure 3.e). 

 
Habib and Krajewski (2002) quantified the 

contribution of gauge representativeness error 
associated with an area of 2km by 2km square and 15 
min rain accumulation. The contribution of the 
variance of the gauge error to the variance of radar-
gauge differences is found to be around (30%-45%) 
for light rain and (40%-75%) for heavy rain. In our 
study, )(/)( radg RRVarRrVar −−  is in the order of 

(30%-40%) when considering Rrad the rain estimated 
by ZPHI®. However the integration time and area 
difference make it difficult for the results to be fully 
comparable. 

6. CONCLUSIONS 

One of the objectives of the experiment was to 
validate the rainfall measured by the “Hydrix+ZPHI” 
radar system, compared with that measured by a 
network of 25 rain gauges. The results presented in 
this paper show a reasonably good agreement 
between the ZPHI®-derived radar rainfall and the 
gauge measurements. The benefits of ZPHI® in 
correcting rain “attenuation” and in adjusting the 
retrieval from DSD “variability” were analyzed and 
quantified. 

 
The rain variability derived from the radar was 

compared to that measured by the gauge network, by 
computing the spatial correlation function. When using 
the standard Z-R relationship, the spatial correlation 
drops more rapidly, than that derived from the gauge 
network. Gebremicheal and Krajewski (2004) 
interpreted similar observations as significant that the 
radar provides a deteriorated information with respect 
to the rain gauge network. The correlation function 
obtained with the polarimetric algorithm ZPHI® 
improves significantly this picture: the radar derived 
correlation function really is really close to that from 
the gauges. However, it should be noticed that the 
scanning strategy of the radar and the location of the 
rain gauge network were particularly favorable in the 
Boigneville experiment.  

From the radar alone, thanks to the large number 
of available samples, an accurate correlation function 
may be derived from a single rain event. Thus, the 
influence of time accumulation or type of events 
(stratiform-convective) can be studied. The correlation 
radius of intense rain events was found in some 
instance as small as 2 km, for 6 min integration time. 

 
When comparing radar and gauge rain data, for 

validation purpose, the various error sources 
(instrumental and representativeness) should be 
considered. A new approach has been proposed, to 



estimate this errors, which allows coexistence of a 
multiplicative error for the radar, an absolute error for 
the raingauge, and a representativeness error 
(between point measurement and 1 km2 pixel 
average) derived from the correlation function.  

 
It was found, based on a one year rainfall data 

base, that the representiveness error is about 20%, 
while the gauge instrumental error ranges from 9 to 
5%. The radar error depends on the algorithm used to 
derive the rain, with an error of 25% with ZPHI®, an 
error of 45% with a classical Zc-R relationship (with Zc 
corrected for attenuation). 
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