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1. INTRODUCTION

The thermodynamic characteristics of the rear flank
downdraft (RFD) and ambient environment have important
implications on tornadogenesis. Moist surface conditions
produce lower lifted condensation levels (LCLs), which
are more favorable for significant tornadoes (Rasmussen
and Blanchard, 1998). In a study of 30 supercell
cases, Markowski et al. (2002) found that high-boundary
layer relative humidities produce more buoyant RFDs and
increase the likelihood of tornadogenesis. Markowski et al.
(2002) also found that smaller differences in equivalent
potential temperature, θe, and virtual potential temperature,
θv, between the RFD and the environment increased the
likelihood of tornadogenesis and the intensity and duration
of the tornadoes. The warm RFDs (smaller difference
in θe) produce stronger tornadoes than cool RFDs (larger
difference in θe) because the warm RFDs have greater
buoyancy and increase low-level convergence. These
observational findings were later confirmed by modeling
studies, which also showed that high-boundary layer
humidities and small θe differences were favorable for
tornadogenesis (Markowski et al., 2003). Markowski and
Richardson (2009) suggested that boundary layer humidity
is one of the most promising variables for forecasters to
distinguish tornadic and nontornadic supercells.

Markowski et al. (2002) speculated that high-resolution,
near-surface thermodynamic measurements are one of
the most critical measurements for improving scientific
understanding of tornadogenesis. Radar refractivity
measurements (Fabry et al., 1997; Fabry, 2004; Cheong
et al., 2008) could partially address this issue by providing
surface moisture measurements in supercell environments
with up to 4-km spatial resolution. Recent studies
have shown that refractivity data can reveal moisture
changes associated with drylines, boundary layer processes,
convection initiation, outflow boundaries, misocyclones, and
others (Weckwerth et al., 2005; Fabry, 2006; Demoz et al.,
2006; Buban et al., 2007; Roberts et al., 2008; Wakimoto and
Murphey, 2008; Bodine et al., 2008, 2009a,b; Heinselman
et al., 2009).

This paper will develop the theory of refractivity errors
caused by precipitation, and present case studies illustrating
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the capability to use refractivity data for supercell and
tornadogenesis observations and forecasting. The radar
refractivity retrieval algorithm will be described in Section 2,
and the theory of refractivity errors caused by precipitation
will be developed in Section 3. Section 4 presents two
supercell case studies from 8 April 2008 and 1 May 2008.

2. RADAR REFRACTIVITY RETRIEVAL ALGORITHM

The ARRC has developed an independent algorithm for
refractivity retrieval based on the work by Fabry et al.
(1997). The University of Oklahoma algorithm has been
adapted easily for different weather radars, including the
Weather Surveillance Radar-1988 Dopplers (WSR-88Ds),
the Collaborative Adaptive Sensing of the Atmosphere
(CASA; McLaughlin et al., 2009) X-Band Radars, and the
National Weather Radar Testbed (NWRT) Phased Array
Radar (PAR; Zrnić et al., 2007), for example. Cheong
et al. (2008) provide a detailed description of the University
of Oklahoma refractivity algorithm, although it is briefly
described here for completeness.

The refractive index, n, is often rewritten in terms of
refractivity, N , to improve the ease of interpretation (Bean
and Dutton, 1968);

N = (n − 1) × 106. (1)

Bean and Dutton (1968) showed that refractivity could be
related to temperature, pressure and water vapor pressure
using the following equation,

N = 77.6
p

T
+ 3.73 × 105

e

T 2
, (2)

where p is pressure in millibars, T is the temperature
in Kelvin, and e is the water vapor pressure in millibars.
At warmer temperatures, refractivity provides a good
approximation for surface moisture, as temperature and
pressure changes affect refractivity less than moisture
changes.

Radar refractivity retrievals are obtained using phase
measurements between the radar and ground clutter targets.
Reference phase measurements are made when the
moisture field is nearly homogeneous and constant with
time. At the same time, an objectively analyzed refractivity
field is derived from Oklahoma Mesonet (Mesonet, hereafter)
data (Brock et al., 1995; McPherson et al., 2007) to create a
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reference refractivity field. Real-time phase measurements
are collected to produce a phase difference field using the
reference and real-time phase measurements. Poor clutter
targets are then censored based on clutter quality indices.
The resulting phase difference field is relatively noisy and
sparse, so the phase difference field is smoothed using a
2.5-km Gaussian window. Next, the radial derivative of the
phase difference field is computed to obtain the refractivity
change field. The resulting refractivity change field is
subsequently smoothed to reduce the noise introduced by
the derivative operation. Absolute refractivity (hereafter,
refractivity) can be computed by adding the refractivity
change and the reference refractivity fields. Scan-to-scan
refractivity change (hereafter, scan-to-scan refractivity) is
computed by substituting the phase measurements from the
previous scan for the reference phase measurements, and
applying the same procedure to the phase difference data.

3. PRECIPITATION EFFECTS THEORY AND MITIGA-
TION

3.1. Phase Variance Contribution by Precipitation

The phase data obtained for refractivity measurements can
be analyzed directly from the time series signal using a
Discrete Fourier Transform. When precipitation and clutter
targets are present in the range gate, the incident energy
is backscattered by both targets. Hence, both targets
contribute to the phase measurement used in refractivity
retrievals. Because the refractivity algorithm is not intended
to use phase measurements from precipitation, removing
the phase contribution from precipitation could improve radar
refractivity retrievals in regions with precipitation. The QI
may remove regions with precipitation where the signal
is dominated by precipitation, thus reducing the areal
coverage of refractivity measurements. Figure 1 illustrates
the absence of refractivity retrievals in regions with heavy
precipitation where phase data were censored. The scan-to-
scan refractivity data are also noisy, indicating poor quality
of phase measurements throughout the field. This section
will describe a method of filtering the precipitation signal
to improve the ground clutter signal, which could result in
better refractivity coverage and more accurate refractivity
measurements in regions with precipitation.

The combination of ground clutter and weather signals is
clearly observed in both the time and frequency domains.
Figure 2 shows the in-phase, and quadrature signals,
and the amplitude and phase after taking the DFT for a
combination of clutter and weather signals. Two peaks
are observed in the Doppler spectrum, indicating stationary
target(s) and moving target(s). Both targets exhibit a high
SNR, so the signal is likely a combination of ground clutter
and precipitation.

Filters can be designed to mitigate undesired signals.
Ground clutter filters are typically high-pass filters that
attenuate the ground clutter signal at near-zero frequency,
and preserve the weather signal at higher frequencies (e.g.,
Torres and Zrnić, 1999). Similarly, a low-pass filter could
be implemented to attenuate the weather signal (higher
frequency content), and simultaneously preserve the ground
clutter signal. Hence, a low-pass filter could improve the
phase measurements in regions of precipitation.

The OU Refractivity algorithm currently averages the I and
Q data before computing the phase. The averaging is
effectively a low-pass filter with equal filter coefficients. This
“averaging” filter produces relatively high sidelobes (Fig. 3a),
but a narrow pass band (Fig. 3b). When the filter length
is extended, the width of the pass band decreases and
the magnitude of the sidelobes decrease. The number of
pulses averaged by the OU algorithm depends on the VCP.
In clear-air modes, the number of pulses ranges from 60 to
80, whereas in precipitation modes the number of pulses is
only 15 to 20. Given the high sidelobes when integrating
fewer pulses (precipitation mode), all of the precipitation
signal may not be attenuated, particularly for heavy, or slowly
moving precipitation. Hence, for refractivity retrievals in
areas with heavier precipitation, decreased sidelobes are
needed to further attenuate the precipitation signal.

To address this problem, a filter with lower sidelobes was
designed. Fig. 4 shows several window functions that
were considered for the design of the low-pass filter. The
primary tradeoff is between the width of the pass band and
the sidelobe levels. The rectangular window generates a
narrow pass band and high sidelobes, whereas the hamming
window generates a wider pass band and a much lower
sidelobes. The Hamming and triangular windows present
a compromise between the two tradeoffs. However, the
difference in pass band width is relatively small among
the Hanning, Hamming, and triangular windows, while the
differences in sidelobe levels are much greater. Based on
the frequency response of the four windows, the low sidelobe
levels of the Hanning window will provide better attenuation
of precipitation, and the pass band width of the Hanning
window is close to the Hamming and triangular window.
Thus, a filter design based on a Hanning window should
produce the best filtered signal for refractivity processing.

The filter implemented on the I and Q data for refractivity
processing (hereafter weather clutter filter, or WC filter) was
based on the Hanning window. The filter produces a linear
phase shift, which must be corrected for accurate phase
measurements. For a zero-phase filter, the data are filtered
forward and then in reverse, resulting in zero-phase shift and
doubled the filter order. Increasing the length of the WC filter
resulted in a more narrow pass band, and reduced sidelobe
levels (Fig. 5). The WC filter will perform optimally in regions
of fast-moving precipitation because the WC filter attenuates
higher frequencies. In regions of slow-moving precipitation,
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Figure 1: a) Refractivity, b) scan-to-scan refractivity, c) Mesonet refractivity, and d) reflectivity at 1320 UTC 8 May 2007.

Regions of the refractivity field are missing because the censoring process removed areas of precipitation.
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Figure 2: This figure shows an example of I and Q data, and the resulting amplitude and phase data after the DFT for a

combination of ground clutter and weather signals. The a) in-phase (blue) and quadrature (green) signals are used to compute

the DFT, yielding the b) amplitude and c) the phase over a distribution of velocities (x-axis). The peak amplitude occurs at two

distinct peaks (approximately 0 m s−1 and -4 m s−1). Hence, the DFT shows that the target is likely a combination of ground

clutter and weather signals.

or where the radial velocity is small but the precipitation
has a large velocity in the azimuthal direction, the WC filter
will not significantly attenuate the weather signal, and the
“averaging” filter remains a better choice because of the very
narrow pass band.

To study the impact of the WC filter on phase, Level-I data
from KTLX was obtained for 7–8 May 2008 during a period
of persistent rainfall. A 5-hour period of Level-I data between
2047 UTC 7 May and 0156 UTC 8 May 2008 was analyzed.
The Level-I data were binned into 1◦ azimuth angles for
processing, and the in-phase and quadrature signals were
filtered using the WC filter. To avoid undesired windowing
effects, the length of the data window was increased by
filtering over three azimuth angles to increase the number of
pulses. Then, the data window was truncated by 1◦ azimuth
angle after filtering. The phase was calculated using

φ = tan−1

(

Q(t)

I(t)

)

, (3)

where φ is the phase, I(t) and Q(t) are the mean in-phase
and quadrature signals. The phase was computed for the
unfiltered and filtered in-phase and quadrature signals.

To develop thresholds for good and bad clutter points, a
bad clutter point was defined as a range gate below a
real-time RI threshold. Normally, the RI is only computed
when the moisture field is almost spatially homogeneous
and temporally invariant. However, the real-time RI can
still be used because good clutter targets should exhibit
greater phase coherence with time compared to poor clutter
targets. The real-time RI was computed for a data set
of 16100 points (gates 5–50, all azimuth angles). The RI
improvement was defined as the difference between the
unfiltered and filtered real-time RI. Fig. 6a shows that the
mean improvement after filtering is greatest for low real-
time RI, especially during the period of heavier precipitation
(Fig 6b). The number of good targets decreased significantly
as the real-time RI threshold was increased (Fig. 7a). The
mean RI improvement was greatest when the real-time RI
threshold was set to 0.5 (Fig. 7b), resulting in a mean RI
improvement of 0.2 (excluding gates where RI improvement
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Figure 3: a) Signal attenuation of the “averaging” filter for 20, 40, 60, and 80 pulses, and b) close-up of signal attenuation

in the pass band. The filter produces a narrow pass band between ±2.5 m s−1 at 20 pulses and ±0.7 m s−1 at 80 pulses.

However, the magnitude of the sidelobes is relatively high.
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Figure 4: a) Plot of signal attenuation using 20-tap rectangular, triangular, Hamming, and Hanning windows, and b) close-

up of the signal attenuation in the pass band. The Hanning window generates the largest stop band attenuation, while the

rectangular window generates the most narrow pass band.
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Figure 5: a) Plot of signal attenuation using 20, 40, 60, and 80-tap Hanning windows, and b) close-up of the signal attenuation

in the pass band. The higher-order filters produce a narrower pass band and lower sidelobe levels.
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Figure 6: a) Plot of the mean RI for all range gates up to the real-time RI threshold (x-axis), b) same as a) except for period of

heavy rainfall. The mean real-time RI for the filtered, and unfiltered approximated phase is shown. For poor targets (low RI),

the WC filter significantly improved the mean RI. For good targets (high RI), the WC filter decreased the mean RI compared

to the unfiltered mean RI.
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Figure 7: Plots showing a) number of clutter targets recovered given a set real-time RI threshold, and b) mean improvement

in RI after filtering for a set real-time RI threshold. The largest improvement occurs for a real-time RI threshold of 0.5.
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was negative). A surprising result was that the mean RI
for good clutter targets decreased after filtering (Fig. 6a), as
the mean RI decreased when the real-time RI threshold was
above 0.5. This counter-intuitive result could be explained by
the wider pass-band allowing greater signal contamination at
lower frequencies within the intersection of the stop band of
the “averaging filter” and the pass band of the WC filter.

A time-series of unfiltered and filtered phase was also
produced for different filter orders. High-order filters narrow
the width of the pass band and reduce sidelobes. However,
the wider data window may have the undesired effect of
allowing weather or poor clutter targets within the data
window. Hence, using a high-order filter does not necessarily
improve performance. The RI over the 5-hour period was
computed for different filter orders over the full study period
and over the first two hours when heavy precipitation covered
most of the gates within the domain. As the filter order
increased from 20 to 80, the mean RI remained nearly
constant.

Given the poor performance of the filter for clutter targets
with high RI, an adaptive filter could be designed and
applied to only poor clutter targets (below RI threshold).
Furthermore, the RI improvement could also be computed,
and used to determine if the unfiltered or filtered phase
is selected for refractivity processing. To implement the
WC filter for refractivity, the real-time RI would be needed
and thresholds should be established to determine which
range gates should be filtered. The WC filter could be
implemented relatively easily into the refractivity algorithm.
The WC filter is a time-domain filter, so the primary
operation is a convolution, which can be computationally
efficient. An example of a potential application of radar
refractivity retrievals in supercells will be discussed in
Section 4, illustrating an application within regions of heavy
precipitation.

3.2. Precipitation Bias

Refractivity bias occurs in precipitation because the radar-
measured refractivity is not only caused by the atmosphere,
but has contributions from the precipitation. The precipitation
causes additional propagation delay, caused by increased
refractive index resulting in a positive bias. These effects
are undesirable, as the goal of refractivity retrievals is to
provide a radar-based estimate of atmospheric moisture.
This section provides a background on the precipitation
bias, a method of estimating the bias, and suggestions for
mitigation.

The change in refractivity is proportional to the radial
gradient in phase difference between time t1 and t0 . The
change in phase difference, ∆φ, can be written in two
components,

∆φ = ∆φair + ∆φrain, (4)

where ∆φair is the phase changed caused by air, and
∆φrain is the phase change caused by precipitation. The
total change in refractive index, ∆n, can then be written as

∆n = ∆nair + ∆nrain, (5)

where ∆nair is the refractive index change caused by
air, and ∆nrain is the refractive index change caused by
precipitation. Assuming there is no precipitation at time t0
(reference scan), there is no contribution of precipitation to
phase (φrain(r, t1) = 0), so the phase change caused by
precipitation can be written as ∆φrain=φrain(r, t1). The
change in refractive index caused by rain can be written as

∆nrain = nmix − nair, (6)

where nmix is the refractive index of the mixture of air and
precipitation, nair is the refractive index of air, and ∆nrain

is the change in refractive index caused by rain. (6) can be
converted into refractivity using (1).

The Maxwell-Garnet mixing formula can compute the
refractive index of the air/water mixture, assuming water as
the enclosure and a known drop-size distribution (DSD). The
polarizability, y , can be calculated using

y =
ǫwater − ǫair

ǫwater + 2ǫair

, (7)

where ǫwater is the dielectric constant of water, and ǫair is
the dielectric constant of air. The fractional volume of water,
fw , is proportional to the third-moment of the DSD, which is
the volume distribution. Using a gamma DSD,

N(D) = N0D
µ exp (−ΛD), (8)

the fractional volume of water can be written as,

fw =

∫

∞

0

4π

3

(

D

2

)3

N0D
µ exp (−ΛD)dD, (9)

where µ, Λ, and N0 are DSD parameters. Using the
polarizability and the fractional volume of water, the refractive
index of the air/water mixture is

nmix =

√

∣

∣

∣

∣

ǫair

1 + 2fwy

1 − fwy

∣

∣

∣

∣

, (10)

which shows that no refractive index (hence, no refractivity)
bias will occur in regions without precipitation because the
fractional volume of water is zero.

Using (10), the refractivity biases was computed for a
Marshall-Palmer DSD (N (D) = 8000 exp(−ΛD), special
case of gamma DSD) for rainfall rates between 1 and 100
mm hr−1 (Fig. 8). The precipitation bias ranged from 1 to 6.2
N-units for light to heavy rainfall rates. A 6.2 N-unit bias is
approximately equal to a 1.2◦C bias in dewpoint temperature
at 20◦C. Thus, the bias in absolute refractivity is relatively
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Figure 8: Plot of the refractivity bias caused by rainfall rates between 1 and 100 mm hr−1, assuming a Marshall-Palmer DSD.

The precipitation bias can exceed 6 N-units for rainfall rates near 100 mm hr−1.

small, even at very heavy rainfall rates. However, scan-to-
scan refractivity changes are typically on the order of 1 to 5
N-units. Thus, large errors in scan-to-scan refractivity could
result from precipitation, even at light rainfall rates.

At heavier rainfall rates, observations of the precipitation
bias may not occur because the QI censors affected range
gates. Fig. 1 shows an example of the censoring in
refractivity and scan-to-scan refractivity. For this case, a
positive bias is not prominent in the refractivity (Fig. 1a),
or scan-to-scan refractivity data (Fig. 1b). The areas of
missing refractivity data correspond to locations with heavy
precipitation (Fig. 1d). The impact of the bias on the scan-to-
scan refractivity field is not quite as intuitive. A negative bias
in scan-to-scan refractivity would be observed in a region
with a decreasing rainfall rate between scans, because the
refractive index is decreasing. Hence, the variations in
rainfall rate over the domain lead to a noisy scan-to-scan
refractivity field.

Although the precipitation bias may already be mitigated
by the clutter target censoring method, some precipitation
bias could result in uncensored regions with lower rainfall
rates. Furthermore, if more ground clutter targets in regions
with precipitation can be obtained by filtering the in-phase
and quadrature signal, refractivity data may be obtained in

regions with heavy precipitation. Hence, a greater need
would exist for removing the precipitation bias.

A bias removal procedure could be developed, and would
require a hydrometeor classification algorithm to determine
areas of rainfall, and an algorithm to obtain the drop-size
distribution to estimate the fractional volume of water. Straka
et al. (2000) and Ryzhkov et al. (2005) established that
fuzzy logic algorithms for hydrometeor classification can
identify regions of rainfall, and other hydrometeor types
using dual-polarimetric radar. Several studies (e.g., Brandes
et al., 2004a,b; Cao et al., 2008) have obtained empirical
relations between the polarimetric radar variables and drop-
size distribution parameters, which could be used to produce
estimates of the drop-size distribution. The theory relating
the drop-size distribution to the refractive index and phase
could be utilized to design an algorithm to correct the phase
difference field. The refractivity algorithm applies significant
smoothing to the phase difference field that smears the
effects of the precipitation errors, thus phase difference
errors would need to be corrected before the smoothing
occurs.
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4. SUPERCELL CASES

This section presents two cases illustrating refractivity
applications for supercells and tornadogenesis. The 8 April
2008 case showed the capability to observe outflow from
the rear-flank downdraft (RFD). Refractivity data resolved
moisture differences between the RFD and the environment
for the 2 May 2008 case. VCP 12 was operating
during both cases, providing approximately 5-min refractivity
measurements. For the 2 May 2008 case, one volume
scan was missing at 0020 UTC, and two volume scans were
missing between 0028 and 0041 UTC.

4.1. 8 April 2008

The 8 April 2008 supercell case showed that refractivity data
could be used to identify the moisture characteristics within
the gust front produced by the RFD. While this supercell
passed through the refractivity domain, it had a well-defined
hook echo in reflectivity (Fig. 9a). A gust front produced by
the RFD was evident in reflectivity as a fine line extending
southward from the hook echo and in radial velocity as
convergent flow normal to the boundary.

As this gust front passed over the Oklahoma City North
(OKCN) Mesonet station (between 0415 and 0425 UTC),
the OKCN station measured an increase in dewpoint
temperature of 0.5◦C and a refractivity change from 321 to
323 N-units. The scan-to-scan refractivity change at 0428
UTC showed an increase in refractivity between 1 and 3 N-
units behind the gust front, with the greatest positive scan-
to-scan refractivity changes near the hook echo (Fig. 9b).
Scan-to-scan changes of 1 to 3 N-units were also observed
behind the gust front as it moved southeastward at 0445,
0502, and 0510 UTC (Fig. 9b). This case illustrated the utility
of refractivity data in tracking the position of the gust front in
addition to assessing moisture changes caused by the gust
front.

4.2. 2 May 2008

The 2 May 2008 case demonstrated potential for refractivity
applications for tornadogenesis forecasting. Refractivity data
from the 2 May 2008 case showed near-surface moisture
changes within the RFD and the updraft prior to a brief
tornado. As the supercell developed, negative scan-to-
scan refractivity changes were observed beneath the updraft
of the supercell (not shown). The author observed a
funnel cloud at 0013 UTC, approximately the same time as
the first hook echo was observed in reflectivity on KTLX
(Fig. 10a). While the storm was in the refractivity domain,
negative scan-to-scan refractivity changes were observed
within and east of the hook echo and positive scan-to-
scan refractivity changes were observed to the northwest of

the hook echo, forming a couplet of positive and negative
refractivity changes. Between 0015 and 0029 UTC, the
couplet signature moved with the hook echo as the hook
echo became more cyclonically curved (Fig. 10b). A very
brief tornado was reported approximately 1 km northwest of
Choctaw, Oklahoma at 0029 UTC, although this report has
been disputed by many observers. By 0040 UTC, the hook
echo was no longer observed in reflectivity and the supercell
had occluded. A volume scan was missing from the data set
between 0028 and 0040 UTC, so the occlusion of the RFD
was not observed in radar refractivity.

Given the potentially large temperature and pressure
perturbations within supercells and the small magnitude of
scan-to-scan refractivity changes observed in these cases,
temperature or pressure terms contribute more to refractivity
changes. While the pressure contribution would require a
30-hPa change for a 1 N-unit change in refractivity, a 1◦C
change in temperature could cause a 1 N-unit change in
refractivity. The dewpoint temperature was approximately
20◦C. Thus, the change in refractivity required for a 1-K
increase in dewpoint temperature is six times greater than
than the change required for a 1-K increase in temperature.
Given the sensitivity of refractivity changes to moisture,
the observed refractivity changes are most likely caused
by moisture changes, but temperature changes cannot be
ruled out. Another potential issue is the relatively sparse
data coverage near the edge of the domain, as refractivity
measurements near the edge of the domain are often
noisy. However, the temporal continuity of the couplet and
movement with the storm suggests that this signature is not
caused by poor data.

5. SUMMARY AND DISCUSSION

The 8 April 2008 case illustrated the capability of radar
refractivity retrievals to observe outflow associated with
the RFD of a nontornadic supercell. The role of low-
level outflow dissipating the mesocyclone and tornado is
well-documented. A three-dimensional modeling study by
Brooks et al. (1993) showed that cold outflow can cutoff
the updraft and limit the duration of a mesocyclone. Dowell
and Bluestein (1997) showed a case where low-level outflow
moved ahead of the updraft, causing the dissipation of the
tornado. Radar refractivity data could potentially identify low-
level outflow that could cutoff the mesocyclone or tornado.
For this case, a well-defined fine line was observed along the
RFD gust front. However, in cases where a well-defined fine
line or radial velocity signature is not observed, forecasters
could use refractivity data to identify low-level outflow.

The capability to observe moisture changes within the RFD
was demonstrated by the 2 May 2008 case. Moisture
changes associated with the boundary between the RFD
and the updraft were observed using radar refractivity
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Figure 9: a) Scan-to-scan refractivity change, and b) 0.5◦-tilt reflectivity at 0428, 0445, 0502, and 0510 UTC 8 April 2008.

The orange line shows the position of the gust front in reflectivity.



P6.3 14

Figure 10: a) Scan-to-scan refractivity change, and b) 0.5◦-tilt reflectivity at 0015, 0024, 0028, and 0041 UTC 2 May 2008.

The orange line shows position of the storm indicated in reflectivity.
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retrievals. The negative scan-to-scan refractivity changes
suggest drying beneath the updraft. Previous studies
showed that higher LCL heights decrease the likelihood of
significant tornadoes, and lower boundary layer humidities
decrease the likelihood of tornadogenesis. Thus, the
drying beneath the updraft could partially explain the failure
of tornadogenesis for this case. To determine what
moisture fields could discriminate between tornadic and
nontornadic supercells, output from numerical simulations or
field observations could be used. Then, the moisture fields
could be converted to refractivity to examine differences
between tornadic and nontornadic supercells in refractivity
data.

Although these cases show that the retrieval of moisture
fields within supercells could be useful for tornadogenesis
forecasts, two issues arise with refractivity retrievals in
regions of precipitation. The first issue is that the component
of backscattered phase from precipitation is random, so the
variance of the phase measurements in precipitation will
increase. Thus, noisier phase measurements will make
accurate refractivity measurements more difficult. The
second issue is a positive bias caused by precipitation, up
to 6 N-units at heavy rainfall rates. Currently, most phase
measurements within regions of heavy precipitation are
censored because targets with radial velocity and spectrum
width values above the radial velocity and spectrum width
thresholds are censored. While increased variance and
bias in regions of precipitation may not be observed in
regions with heavy rainfall rates, the bias will be observed
in uncensored regions of lighter precipitation.

Implementing a low-pass filter prior to computing the phase
may improve phase measurements, and could provide more
refractivity coverage in regions of precipitation. While filtering
may address the increased variance in phase measurements
by attenuating the precipitation signal, the precipitation
bias issue still remains. A method for correcting the
precipitation bias was outlined. Assuming the refractivity
errors within precipitation regions are understood and
mitigated, analysis of refractivity fields in supercells could
improve tornadogenesis forecasts.
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