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1.  ABSTRACT  

A set of integral equations for dual-wavelength 
radar data provides a means of estimating liquid 
water content and parameters of the particle 
size distribution (PSD) [Meneghini et al., 1997] 
and constitutes a potential algorithm for the 
proposed DPR (Dual-wavelength Precipitation 
Radar) on the Global Precipitation Mission 
(GPM) satellite [Iguchi et al., 2002].  One version 
of the method, the forward-recursion, starts at 
the storm top.  Although this implementation 
requires no constraint, like the Hitschfeld-Bordan 
(1954) solution, it tends to be unstable when the 
path attenuation becomes significant.  As such, 
the method can be applied with confidence only 
in regions of frozen hydrometeors or light rain.  
For moderate rain or mixed-phase precipitation, 
the backward recursion is preferable because it 
is more robust.  The backward recursion, 
however, requires constraints of path-integrated 
attenuation (PIA) down to the surface at both 
wavelengths, estimates of which have typically 
come from the surface reference technique 
(SRT).    

There has been work on improving the stability 
of the method by constraining the behavior of 
the PSD parameters along the range direction.  
In addition, an iteration and consistency 
approach has been investigated with the 
purpose of deriving estimates that are 
independent of the SRT [Mardiana et al., 2004; 
Rose and Chandrasekar, 2006; Liao and 
Meneghini, 2005].  The behavior of the solutions 
with respect to variations in the PIA suggests an 
alternative to the SRT using the difference in the 
measured radar reflectivity factors near the 
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surface.  This difference, however, is a weak 
constraint in the sense that it is itself a function 
of one of the unknowns - the characteristic size 
parameter of the distribution.  This implies, in 
turn, that there are multiple solutions consistent 
with the constraint.  Three factors, however, may 
act to reduce the ambiguities.  The first is that, 
when the attenuation is moderate or strong, the 
solutions often converge quickly as the solution 
progresses toward the storm top.  A second 
mitigating factor is that the solution that 
assumes the correct or nearly correct size 
parameter typically exhibits the smallest 
variability in the rain rate and PSD parameters 
as the solution approaches the surface.  Thirdly, 
out-of-range values of the size parameter can be 
eliminated because they lead to negative path 
attenuations. Thus, if we assume that the PSD 
parameters are smoothly varying as the surface 
is approached, an accurate candidate solution 
can sometimes be chosen, particularly if the 
number of independent samples is large and the 
µ value is close to the true value.  

Some of the drawbacks and error sources of this 
approach, as well as comparisons to the forward 
and backward recursion with an SRT constraint, 
are discussed in the context of simulated and 
experimental airborne radar data.   

2.  INTRODUCTION & BACKGROUND 

The essence of the dual-wavelength approach 
that will be considered here is that information of 
the particle size distribution (PSD) can be 
inferred from non-Rayleigh scattering effects, or 
more precisely, by the differential non-Rayleigh 
scattering between the two frequencies.  The 
key to this is the relationship between the dual-
wavelength ratio, DFR, and the characteristic 
size parameter of the PSD.  Like ZDR in the 
dual-polarization methods, the DFR is 
independent of the particle number 
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concentration, Nt, so that with fixed shape 
parameter µ in the gamma distribution, the 
median mass diameter, D0, or a similar 
parameter like mass-weighted diameter, can be 
estimated from the DFR.  However, for typical 
spaceborne weather radar or cloud radar 
frequencies (Ku-band and above), attenuation 
must be corrected before the method can be 
applied.  For the method considered here, the 
attenuations are expressed in terms of the PSD 
parameters at previous range gates so the 
equations for D0 and Nt take the form of integral 
equations that can be solved either forward 
(from the storm top down) or backwards (from 
the surface up).  In the latter case, path-
integrated attenuations (PIA) are needed to start 
the recursion.  This can be done either by the 
use of the surface reference technique or by an 
arbitrary assumption regarding the attenuations 
which are then used as the first step in an 
iteration.   The approach examined here 
considers the reflectivity factor difference near 
the surface and its relationship to the differential 
path attenuation.  This provides a set of weak 
constraints on the backward recursion solution.  
In the following section, this is described in more 
detail.  In section 3, the behavior of the 
technique is shown using a simple simulation.  
In section 4, the analysis is carried out using 
dual-wavelength radar data from the JPL APR2 
airborne radar.   

 

3.  NEAR-SURFACE WEAK CONSTRAINT 

Expressing all quantities in dB, the DFR is 
related to the radar reflectivities, Z, at range r by 
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Where f1<f2 which for the frequencies of interest 
(f1=13.6, f2=35.5 GHz) ensures that the DFR is 
always positive for snow and positive for rain for 
most values of D0 and µ.  The measured radar 
reflectivity, Zm, and attenuation, A, are related to 
Z by: 
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Combining (1) and (2) gives 
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where )(~ rAδ =A(f1,r)-A(f2,r) and 

)(rZmδ =Zm(f1,r)-Zm(f2,r).  The dual-wavelength 

method proceeds by expressing the differential 
attenuation (dB) in terms of parameters of the 
PSD obtained at prior gates.  When the solution 
is run forward, from the storm top, δA(r=0) =0; 
when the solution begins near the surface, at 
range rs

-, then δA(r=rs
-) must be specified, where 

rs
- is used to denote the gate just above the 

surface.   Note that for the SRT, the attenuations 
are specified at the surface gate itself.  To 
understand the weak constraint, it is convenient 
to write (3) in a slightly different form, evaluated 
at r = rs

- 
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Where )( −
srAδ = - )(~ −

srAδ >0 

Eq. (4) states that the differential path 
attenuation is equal to the difference between 
the differential measured radar reflectivity factor 
and the DFR.  But as noted above, the DFR is 
independent of the particle number 
concentration, Nt, and depends only on D0 and 
µ.  This implies that for each assumed (D0, µ), 
the DFR can be evaluated so that, since  

)( −
sm rZδ is a measured quantity, the differential 

path attenuation, )( −
srAδ , can be obtained.  

From the )( −
srAδ , the PIA at the lower or higher 

frequency can be estimated.  This, along with 
the D0 estimate, provides the information 
needed to perform the backward recursion from 
the surface to the storm top.  For example, if we 
fix µ and let D0 take on n possible values at the 
near-surface gate, then we can obtain n 



corresponding pairs of (δPIA, PIA(f2)) which can 
be used in the backward recursion to produce n 
candidate profiles of the PSD.   

 

4.  SIMULATION RESULTS 

The simulation is performed by first assuming a 
range profile of the rain PSD parameters D0, Nt, 
for fixed µ, over a 4.5 km path.  Using a range 
gate length of 0.3 km, we generate the data: 
[{Zm(fi, rj), j=1, 150, i=1,2}k, k=1,500], where the 
quantities in the inner bracket represent a single 
dual-wavelength profile.  For each PSD, five-
hundred such profiles (k=1,..,500) are generated 
to study the variability of the Zm and its affect on 
the retrieval.  This variability depends on the 
number of independent samples and the radar 
receiver, which in this case is assumed to be 
logarithmic.   To test the weak constraint 
approach outlined above, each ‘retrieval’ now 
consists of 10 ‘sub-retrievals’ that correspond to 
10 D0 estimates at the final gate.  These have 
been assumed to range from 1 mm to 2.8 mm in 
steps of 0.2 mm.  Note that the path-attenuation 
estimates in these cases come directly from the 
differential Zm data at the final gate (gate 150) in 
the path, just above the presumed surface.   In 
the results below, we show only the mean 
values from the 10 sub-retrievals and not the 
associated standard deviations. 

The heavy solid lines in the 3 panels of Fig. 1 
show the input profiles of D0 (center panel), Nt 
(bottom panel) and the resultant rain rate (top 
panel) for an assumed µ of 2.  For this example, 
the input or true D0 profile is assumed to 
increase from 1.4 mm at the ‘storm top’ (0 km 
range) to 1.8 mm at the gate just above the 
surface (4.5 km range).  The input Nt is assumed 
to decrease slightly from 500 m-3 to 450 m-3 over 
the same range interval.   Nine of the ten profiles 
generated from the 10 D0 assumptions can be 
clearly distinguished in the center (D0) plot at 
r=4.5 km: starting from the lower-most curve, the 
light solid line corresponds to D0(r=4.5 km) = 1 
mm, the light dotted line to D0(r=4.5 km) = 1.2 
mm, etc.  The retrieval corresponding to the 

D0(r=4.5 km)= 1.8 mm assumption is hidden by 
the true value result since it corresponds to the 
true or input D0 value.    Several features of the 
results are worth noting.  As the solutions are 
tracked up to the storm top, the majority of them 
tend to converge to the same set of results and 
that these results are close to the input profiles 
of D0, Nt and R.  Secondly, of the ten candidate 
solutions generated, the solution with the 
smoothest behavior (i.e., smallest second 
derivative with respect to range) near the 
surface or end point of the interval, is the true 
solution – i.e., that solution that is in best 
agreement with the input PSD profile.   

For the results in Fig. 1, the number of 
independent samples, N, is assumed to be 
1000.  If this is reduced to N=100, the results 
shown in Fig. 2 are obtained.  This leads to a 
degradation of the retrievals in several respects.  
The D0-solution curves do not converge as well 
as in the previous case.  Moreover, the Nt 
curves show divergence rather than 
convergence as the solutions are tracked toward 
the rain top.  Note also that the Nt curve that 
corresponds to the true D0 input (the dash-dot-
dot curve), while starting at the near-surface 
gate close to the true value, exhibits an 
increasingly positive bias toward the storm top.  
Despite these errors, the rain rate solutions 
remain fairly good in that the errors in D0 and Nt 
tend to compensate because the solutions must 
be consistent with the input Zm data.  As a 
consequence of this, the retrievals tend to be 
consistent with higher moments of the PSD, 
including rain rate.   

As the attenuation increases, the convergence 
properties of the solutions generally improve.  
This is shown in Fig. 3.  In this case, the input D0 
profile is assumed to increase from 1.7 mm 
(storm top) to 2.1 mm (near-surface) while the 
Nt, as before, is assumed to decrease from 500 
m-3 to 450 m-3.  In this case, there is a more 
rapid convergence of the curves as the solutions 
proceed toward the storm top.  Despite this 



   

Fig. 1. Black heavy lines represent input values 
of R, D0 and Nt.  Colored lines represent the 
weakly-constrained retrieved profiles for values 
of D0(rs) from 1 to 2.8 mm.  

 

Fig. 2.  Same as Fig. 1 but for number of 
independent samples of 100 rather than 1000. 

feature, the curves tend toward D0 values that 
are slightly negatively biased and Nt that are 
positively biased despite unbiased rain rate 
estimates.  The reason for this behavior can be 
traced to the coefficient in the k-δk relation.  A 
slight increase in the slope improves the 
behavior of solutions at high D0 values but 
degrades the behavior at lower D0 values.  In 
fact, using disdrometer-measured raindrop size 
distributions, it is straightforward to obtain 
coefficients of the k-δk fit that are functions of 
D0.  Even though the fits are generally good, 
with small standard errors, even small errors will 
affect the retrieval in high attenuation cases.  It 
should be kept in mind that while the PSDs in 
the simulation are based on typical values of D0, 
Nt, µ, the k-δk fits obtained from disdrometer-
measured DSDs may not be appropriate for the 
simulated data.      

 

Fig. 3.  Same as Fig. 1 but for higher rain rate. 



A final example of the approach is shown in Fig. 
4.  This is a light rain rate case where D0 is 
assumed to decrease linearly from 1.4 mm at 
r=0 km to 1.1 mm at r=4.5 km while Nt increases 
from 500 m-3 to 550 m-3 over this interval.  As in 
the previous case, the set of assumed D0’s do 
not equal the true value at the final gate since 
D0, true(4.5 km) = 1.1 mm whereas the assumed 
values of D0 closest to this are at 1 mm and 1.2 
mm.  Despite this, the two profiles 
corresponding to these initial assumptions 
(shown by the light solid and dotted curves in 
each of the panels) begin and remain close to 
the true profiles.  One other feature of the results 
worth noting is that the 10 solution curves in this 
case are not distinct: profiles corresponding to 
the initial D0 values of (2.2, 2.4, 2.6, 2.8) mm 
become the same because in this case because 
for D0(4.5 km)> 2.2 mm,  DFR(rs

-)>δZm(rs
-) (see 

eq. (4)) which leads to negative path-integrated 
attenuations.  Because this is not physically 
possible, the path attenuations are set to zero 
and all profiles with a final value of D0(4.5 km) > 
2.2 mm are identical.  Although the final-values 
of D0 that are approximately correct in this case 
lead to accurate range-profiles of D0, Nt, and R, 
most of the solution curves are nearly straight 
lines and the convergence of the solutions, 
particularly in the Nt and R spaces, is weak.  On 
the other hand, the Nt plots show that all but 
three solutions tend to values that are nearly 0 
near the endpoint of the interval.  If we reject all 
but the three solutions that provide reasonable 
Nt values we are left with this three-fold 
ambiguity.  Although the solution corresponding 
to D0(4.5 km)=1 mm can be rejected because of 
the instability in Nt near the surface, it is clear 
that for light rain rate cases, the choice of 
solution is not obvious and ambiguities remain. 

 

5.   EXPERIMENTAL RESULTS 

The JPL APR2 airborne dual-wavelength radar 
[Im et al., 2000; Tanelli et al., 2006] operates at 
13.4 and 35.6 GHz, and serves as a simulator 
for the DPR, the dual-wavelength spaceborne  

 

Fig. 4.  Light rain rate case with similar 
conventions as other figures.  

 

Precipitation Radar being built by JAXA of Japan 
for the Global Precipitation Mission.  The APR2 
has Doppler and HH and HV polarization 
capabilities at both channels and provides cross-
track data ±250 of nadir using approximately 
matched beamwidths of about 40.  The data 
investigated here were acquired on 1 September 
2006 during the NAMMA (NASA African 
Monsoon Multi-disciplinary Analysis) field 
campaign experiment.  Measurements of Zm(Ku) 
and Zm(Ka) at nadir are shown in Fig. 5 over a 
120 km flight leg over an ocean background.  
Note the presence of a melting layer at a height 
of about 4.3 km and a strong surface return 
terminating the path.  Because the radar 
employs a pulse compression technique, and 
because of the presence of strong surface 



clutter at nadir, the surface clutter masks the 
lowest ∼0.5 km of the rain just above the 
surface.   

 In investigating the retrieval methods for these 
data, it is convenient to consider small, 
intermediate and large values of δZm(rs

-) since 
this magnitude determines the general behavior 
of the solutions.  As noted in the simulation 
example, for small values of δZm(rs

-), the values 
of D0(rs) are restricted.  This can be understood 
by noting that large D0 will produce a large 
δZm(rs

-) and that the differential path attenuation 
will further add to the observed δZm.  
Conversely, a small observed δZm(rs

-) places an 
upper limit on D0.  Since δA>0, then a upper 
bound for D0 is that value for which DFR(D0(rs

-)) 
= δZm(rs

-).   A more stringent upper bound on D0 
can be obtained by using a lower bound in a δk-
Z(Ku) power law relationship and by using the 
fact that Zm(Ku)<Z(Ku).  Using this δk-Zm(Ku) 
power law provides a lower bound on δA, δALB  

 Fig. 5.  JPL APR2 measured radar reflectivity 
factors at nadir for 13.4 GHz (top) and 35.5 GHz 
(bottom) for ∼120 km flight leg taken on 1 
September 2006.  

so that an upper bound on D0 is given by the 
solution to the equation: DFR(D0(rs

-)) = δZm(rs
-) - 

δALB(rs
-).   An example of a small δZm(rs

-) is 
shown in Fig.  6 where zero range is taken to be 
the storm top and the melting layer maxima 
occur at about 2.8 km. The corresponding 
retrievals for D0 and Nt are shown in Fig. 7.  In 
this case, most of the retrievals are co-aligned 
and it is difficult to distinguish them.  Note that 
the red curve corresponds to the forward 
recursion result while the black curve, partially 
hidden, corresponds to the backward recursion 
using the SRT.  The maximum D0 assumption, 
corresponding to the green curve, is 1.4 mm; 
values larger than this correspond to non-
physical solutions where the differential path 
attenuation is negative.  Lower values of D0(rs

-)  
are possible, however, and lead to lower D0 
values and higher Nt values along the full profile.   

Fig. 6.  Measured reflectivity factors, Zm, at Ku-
band (solid) and Ka-band (dotted) at 73.3 km 
measured along flight leg shown in Fig. 5. 



 

Fig. 7.  Retrieved range profiles of D0 (top) and 
Nt for case shown in Fig. 6.  Note that the D0 is 
the melted median diameter at all ranges. 

The measured radar reflectivities for a moderate 
stratiform case are shown in Fig. 8.  The 
corresponding retrievals for D0 and Nt are given 
in Fig. 9.  For the profiles shown, the values of 
D0(rs

-)  range from 1.2 mm to 1.8 mm with step 
size 0.2 mm, all of which yield allowable 
solutions to the dual-wavelength equations.  By 
‘allowable’ we mean that the measured Zm 
profiles at both frequencies can be recovered by 
using the derived (and assumed) parameters of 
the PSD if an account is made for any 
differences between the input and output PIAs.    
As in the previous example, the forward and 
backward recursion (using the SRT) results are 
given by the red and black curves, respectively.  
As in the simulation results of Figs. 1 and 3, all 
the backward solutions, including the weakly-
constrained and the SRT, converge to a single 
D0 and Nt profile as the solutions progress 
toward the storm top.  However, unlike the 
previous example, the solutions do not closely 
match the forward solution in the snow layer 
from 0 to about 2.6 km.  But since the forward 
solution is more ‘accurate’ in this region,  in the 
sense that little or no attenuation correction is 
needed, we conclude that the attenuation from 

the melting layer region, that affects the 
backward solutions but not the forward solution 
in this region, is the most probable cause of the 
discrepancy.   

 

 

Fig. 8.  Measured reflectivity factors, Zm, at Ku-
band (solid) and Ka-band (dotted) at 105.1 km.  

 

Fig. 9:  Retrieved range profiles of D0 (top) and 
Nt for case shown in Fig. 8.  

In the final example, we show an intermediate 
case, similar to the simulation result given in Fig. 
4, where only partial convergence of the weakly 
constrained solutions occur but where the 
forward and backward recursion results are in 
good agreement in the snow region.  The 



profiles of Zm and the corresponding retrievals 
are shown below in Figs. 10 and 11.  

 

Fig. 10.  Measured reflectivity factors, Zm, at Ku-
band (solid) and Ka-band (dotted) at 91.8 km. 

 

Fig. 11. Retrieved range profiles of D0 (top) and 
Nt for case shown in Fig. 8.  

As in the simulated case, unless additional 
information is known or assumed about the 
behavior of D0 or Nt near the surface, it is 
difficult to chose a ‘best’ solution and while the 
weakly constrained solutions show the 
sensitivity of the D0, Nt profiles to changes in δA, 
or equivalently, to changes in D0 near the 
surface, they do not reduce the ambiguity of the 
solutions.   

6.   CONCLUSIONS 

The dual-wavelength equations are designed to 
convert profiles of Zm at two frequencies into 
profiles of D0, Nt, and, ultimately into profiles of 
rain rate and liquid water content.  However, the 
forward solutions tend to become unstable as 
the attenuation increases.  Backward solutions, 
while more robust, require accurate estimates of 
the path-integrated attenuation at both 
frequencies.  However, these are often not 
available from the surface reference technique.  
In this paper, the apparent or measured DFR 
near the surface, denoted by δZm(rs

-), was seen 
to be closely related to the differential path 
attenuation and the D0 at rs

-.  These 
relationships can be used to generate multiple 
(or weakly-constrained) solutions of the 
backward recursion equations for D0 and Nt.  For 
light rain rates, using the fact that δA must be 
positive, the constraint is effective in excluding 
solutions that are  inconsistent with      the 
δZm(rs

-) measurement.  For large values of 
δZm(rs

-), the simulated and experimental results 
show that the solutions usually converge to 
single profiles of D0 and Nt as the solutions 
progress towards the storm top.  Whether a 
single ‘best’ solution can be chosen on a 
consistent basis depends on a knowledge of the 
behavior of these parameters in moving toward 
the surface.  In some cases, a number of the 
solutions that show strong changes in D0 or Nt 
with range can be ruled out; unfortunately, this 
can still leave a large variance in the allowable 
set of solutions, especially near the surface.  
The forward solution holds some promise of 
reducing the uncertainties in the light rain rate 
cases and in the snow layer but is usually  
unstable at higher rain rates.       
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