11A.3 THE ESTIMATION OF X-BAND ATTENUATION DUE TO WET ICE IN THE MIXED PHASE REGION OF CONVECTIVE STORMS AND CORRECTION OF LDR AT X-BAND USING THE CP-2 RADAR

V.N. Bringi¹ and Gwo-Jong Huang¹ Peter May², Ken Glasson² and Thomas Keenan²

¹Colorado State University, Fort Collins, Colorado, USA ² Centre for Australian Weather and Climate Research, Melbourne, Australia

1. INTRODUCTION

It is well known that high frequency radar (Cband and above) signals suffer from significant attenuation when the propagation path intercepts convective rain cells. Subsequently, radar measurements which relate to received power such as the radar reflectivity factor $(Z_{h,v})$, differential reflectivity (Z_{dr}) as well as the linear depolarization ratio (LDR) must be corrected for rain attenuation. Two common methods to correct for rain attenuation are to relate the specific attenuation (A) to specific differential phase (K_{dp}) or Z_{h} in the power-law form (Bringi et al. 1990; Hitschfeld and Bordan 1954). However, in the mixed phase region which includes supercooled rain drops and wet graupel/hail in the temperature around $+5^{\circ}$ to -10° C, the K_{dp} is not sensitive to the nearly isotropic wet ice particles, and the coefficient of the A-Z relationship is strongly dependent on the unknown water fraction of the precipitation. Therefore, we need a method which can measure the attenuation directly.

One method used in the early '70s was the dualwavelength radar using the non-attenuated Sband radar (as a reference) along with an Xband radar, both radar beams being well matched and aligned (Eccles and Mueller 1971). The CP2 radar operated by NCAR along with the CHILL radar played important roles in hail detection by making use of the Mie scattering at X-band due to hail particles > 1 cm or so. Later in the early 1980s, the CP2 radar was modified for dual-polarization measurements in addition to dual-wavelength measurements. For a full description of the CP-2 radar circa 1990 see Bringi and Hendry (1990). The radar has subsequently been used in the same configuration in Florida during CaPE and SCMS during the early and mid '90s (Bringi et al 1997; Knight and Miller 1998).

Currently, the CP-2 radar is located SW of Brisbane, Australia (see Fig. 1), and has been operated by the Centre for Australian and Climate research since late 2007 in collaboration with NCAR. This unique radar, with its new signal processor developed at NCAR, can now, for the first time, measure the differential propagation phase (Φ_{dp}) and the copolar correlation coefficient (ρ_{hv}) at S-band. The original fields such as the *DWR*, *LDR* (at X-band), *Z*_{dr} (at S-band) and so on are still maintained. A report on the initial radar data quality was prepared by Bringi and Thurai (2008).

Fig. 1: The CP2 radar is located by the "red +" mark to the SW of Brisbane.

In this paper, we use the *DWR* to estimate the total specific attenuation (A_{total}) at X-band. In the mixed phase region of rapidly developing convective storms, the rain component of this attenuation (A_{rain}) can be derived from the S-band K_{dp} , and then, the specific attenuation due to the wet ice (A_{ice}) is the difference between the

^{*} Corresponding author address: V.N. Bringi, Dept. of ECE, Colorado State University, Fort Collins, CO 80523 e-mail: bringi@engr.colostate.edu

 A_{total} and the A_{rain} . As a further application, we propose a new scheme of using the A_{total} to correct the measured *LDR* which suffers from one-way differential attenuation (A_{dp}) between the H and V-polarizations which is apparent as a rapid increase in measured *LDR* along the beam in moderate-to-intense rain.

2. THEORETICAL BACKGROUND

2.1 Dual-wavelength reflectivity ratio

As mentioned earlier, the DWR has been used since the early '70s to detect hail larger than about 1 cm (Mie scattering at X-band) as well as to estimate the attenuation due to rain (e.g., Tuttle and Rinehart 1983). The DWR is defined defined as:

$$DWR = Z_s^m - Z_r^m \dots \dots \dots (1)$$

where Z_s^m and Z_x^m are the radar reflectivities measured at S/X-band in units of dBZ. The Z_s^m is proportional to $IS_{hh}^{s} f^{2}$ whereas Z_x^m is proportional to $IS_{hh}^{s} f^{2}$ less the 2-way path attenuation. It is easy to show that *DWR* can be expressed as:

$$DWR(r) = PIA_x(r) + HS(r) \dots (2)$$

where PIA_x is the two-way path-integrated attenuation at X-band:

$$PIA_{x}(r_{1}) = 2 \int_{r_{0}}^{r_{1}} A_{x}(r) dr$$
(3)

and *HS* is the hail signal due to the Mie scattering at X-band given as $10\log_{10}[IS_{hh}{}^{s}f \div IS_{hh}{}^{s}f]$.

To separate the PIA and HS from the DWR, we use an iterative FIR range filter technique proposed by Hubbert et al. (1995). This was originally technique developed for separating the differential propagation phase (Φ_{dp}) and differential scattering phase (δ) from measured differential phase (Ψ_{dp}). Since the mathematical form of $\Psi_{dp}(\Phi_{dp}, \delta)$ is the same as DWR(PIA,HS), the iterative FIR range filtering technique can also be used for DWR data (as was shown by Hubbert et al. 1995 using CP-2 data).

The upper panel of Fig. 2 shows a typical range profile of measured Z_h at two frequencies (Sand X-band). The *DWR* (the blue line in the bottom panel) is computed by subtracting Z_x from Z_s . After applying the iterative FIR range filter, we can get the smoothed *PIA* (red line in bottom panel) and *HS* (the difference between *DWR* and smoothed *PIA*). Since the strong *HS* appears near the end of filtering range (40 to 43km; note the magenta circle), it may be due to either the edge effect of the filter or large ice particles. Therefore, we computed the hail detection ratio (*HDR*; Aydin et al. 1986) to verify the results. The *HDR* values in this range interval are larger than 13 dB with peak of 20 dB at 41 km. It implies that it is a physically meaningful hail signal. Finally, the total specific attenuation can be computed as:

$$A_{total} = \frac{1}{2} \frac{d}{dr} PIA \quad \dots \qquad (4)$$

Fig. 2: A typical range profile of (top panel) Z_h at S (blue) and X-bands (red) where the latter is strongly attenuated by more than 50 dB. Case is from 26 March, 2008 in deep convection. Bottom panel shows *DWR* in 'blue' and the iteratively filtered version (in 'red'). Note that inside the magenta circle (40-43 km) a strong hail signal (*HS*), can be noted; the corresponding HDR there is larger than 13 dB (peak ~20 dB).

2.2 Correcting LDR

The X-band measured *LDR* will be significantly biased due to differential attenuation between the H and V polarized signals. In the case of CP-2, the transmitted polarization for the X-band channel is H only. There are two antennas, one receives the H and the other the V component of the back scattered signal. In this case the measured LDR will increase with increasing penetration into the rain medium (see Chapter 4 of Bringi and Chandrasekar 2001). Theoretically, there is a linear relation between A and A_{dp} as $A_{dp} = \gamma^* A$ in rain. Here A refers to the specific attenuation at H-polarization; the subscript 'H' is dropped for ease of notation. In practice, based on scattering simulations using a wide variety of DSDs, a 'fitted' value of γ can be estimated which could lead either to under or over correction of the measured LDR. Here, we seek to estimate γ from the data itself. The 'true' LDR at range r can be expressed as:

$$LDR(r) = LDR_m(r) - \int_0^r A_{dp}(s) ds$$
(5)

Therefore, the difference in *LDR* between r_2 and r_1 is given by:

$$\Delta LDR = \Delta LDR_m - \gamma \int_{r_1}^{r_2} A(s) ds \dots (6)$$

To estimate γ we have to make an assumption on the difference between the 'true' *LDR* at the begin and end ranges (r_1 and r_2). Our algorithm attempts to locate r_1 as the beginning of a rain cell, and r_2 as its end. If light rain exists at r_1 and r_2 , then ΔLDR should be close to 0 dB and γ can be estimated as:

$$\gamma = \frac{\Delta LDR_m}{\frac{1}{2}\Delta PIA} \dots \tag{7}$$

where $\frac{1}{2}(\Delta PIA)$ is the one-way path-integrated attenuation which can be computed from *DWR*. On the other hand, if part of the radar beam is in the mixed phase region and the rain component of the mixture is large, the A_{total} should be dominated by A_{rain} . Then our method of estimating γ would still be useful for attenuationcorrection. Using (7) as our estimate of γ , we now can perform the gate-by-gate correction of the measured *LDR* using (5).

Fig. 3 shows a example of *LDR* correction. The measured *LDR* (blue line) shows a significant increase versus range which should be corrected for to estimate the 'true' *LDR* values.

Fig. 3: The range profile of measured *LDR* (blue line) and the corrected *LDR* (red line). The measured *LDR* shows a dramatic increase vs. range which is due to the differential attenuation. Note that the locally enhanced values of *LDR* at around 40 km (around – 20 dB) most likely indicates rain mixed with wet ice hydrometeors.

The locally enhanced values of corrected LDR (-20 dB at 40 km range) likely indicates the presence of wet ice hydrometeors mixed with rain. Note that r_1 is decided by, (a) standard deviation of 10 consecutive Φ_{dp} values < 7.5°, (b) co-polar SNR at X-band > 3 dB, (c) cross-polar SNR at X-band > 3 dB, (d) $LDR(r_1)$ less than -25 dB, and (e) the standard deviation of 5 consecutive LDR values < 3 dB. The conditions (a) and (b) ensure the quality of S/X-band Z_h data which are used to compute DWR. The conditions (c) - (e) ensure the quality of the Xband LDR data. The r_2 is usually decided by where the X-band signal falls below noise level (mainly due mainly to strong attenuation). Note that the system LDR limit for the CP-2 radar is close to -31 dB (Bringi and Thurai 2008).

3. CASE STUDY

To demonstrate the techniques proposed in this paper, we show data from an intense thunderstorm which occurred on 26 March 2008. The upper panel of Fig. 4 shows S-band Z_h with overlay of contours of X-band total specific attenuation (in black) starting at 1 with steps of 1 dB/km. The bottom panel shows the X-band Z_h which is highly attenuated and losing signal [note 'V' shaped notch starting at around (-32,12 km)].

Fig. 5 shows the vertical sections of Z_{dr} (top) and K_{dp} (bottom) with the contours of S-band Z_{h} . Note the 'V' shaped notch of low Z_{dr} values (0-0.75 dB) within the 50-60 dB reflectivity levels indicating that the main precipitation shaft centered at 40 km is composed of hail mixed with intense rain rates (high K_{dp} near 4 °/km or 150 mm/h).

Fig. 4: Horizontal cut of S-band (upper panel) and Xband (bottom panel) Z_h at 2 km height. The thin black lines in the upper panel are the contours of A_{total} starting at 1 with steps of 1dB/km. The white-lined box is the area we have selected to show the averaged vertical profile of specific attenuation (see Figure 7). The grey dash line is the azimuth angle equal to 297° along which we show the vertical section later (see Figures 5 and 6).

The upper panel of Fig. 6 shows the vertical section of A_h derived from the DWR. The vertical column of enhanced A_h at range 40 km with the 0.5-1 dB/km contour extending well up to 6 km (-10° C) may be considered the mixed phase region extending through the height interval 3-6 km with the maximum value of 4 dB/km at 1 km height. The middle panel of Fig. 6 shows the 'raw' or measured LDR without any attenuation correction. Note loss of signal at ranges > 45 km. The bottom panel is the vertical section of corrected LDR using the technique discussed in Section 2.2. Note the enhanced values of corrected LDR (~ -17 dB) centered around range of 36 km at 5 km height; this is indicative of wet ice hydrometeors (Bringi and

Chandrasekar 2001). In (6) the assumption is made that $\Delta LDR = LDR(r_2)-LDR(r_1)$ is nearly 0 dB. This need not be the case if r_1 is in rain and r_2 in ice. If $\Delta LDR < 0$ then no attenuationcorrection is made. If $\Delta LDR > 0$ then the correction may be over-estimated and the γ parameter for the beam can then be interpreted as an 'apparent' γ that tends to remove the mean trend of the measured LDR range profile. Later in Fig. 7 we show that the LDR correction scheme gives plausible results below the freezing level (4 km height).

Fig. 5: The color-filled contours of Z_{dr} (upper panel), K_{dp} (bottom panel). The environmental 0° C height is at 4 km and the -10° C at 6 km. The black lines are the contours of S-band Z_h started from 10 dBZ with steps of 10 dBZ

The method of separately estimating the specific attenuation due to rain and wet ice in the mixed phase region involves using the A_{total} and A_{rain} where the latter is estimated from the K_{dp} while the former is estimated from the DWR. There is nearly a 1:1 relation between Arain at X-band and K_{dp} at S-band; however, here we use simulations based a wide variety of DSDs to establish the A_{rain} - K_{dp} relation. The wet ice attenuation (A_{ice}) is then the difference between A_{total} and A_{rain} . The previous radar simulations using the twomoment scheme of the Regional Atmospheric Modeling System (RAMS) of a supercell storm (Leon et al. 2007) showed that the procedure for estimating attenuation due to wet ice in the mixed phase zone could be accurately determined even in the presence of random measurement errors in the Z_e at S/X-bands and in the K_{dp} . However, data from the CP-2 radar shows that such simulated accuracy is difficult to achieve by differencing A_{total} and A_{rain} on a gateto-gate basis. Recall that Arain is directly related to K_{dp} , and that K_{dp} and A_{total} are, respectively, based on the smoothed ϕ_{dp} and DWR range profiles. The iterative FIR filter used is the same; however, because the DWR is from 2 separate radars while the ϕ_{dp} is from the same radar, it turns out that the while the range correlation between DWR and ϕ_{dp} is quite acceptable, the corresponding range correlation between the A_{total} and K_{dp} is less than ideal (because the latter are range derivatives). This is more evident in spatially smaller rain cells (<5-6 km) as opposed to larger more organized convection. This lack of high range correlation precludes the estimation of the wet ice attenuation based on gate-to-gate differencing of A_{total} and A_{rain}. Therefore, we use a spatial average over a 4x4 km area centered at the storm core (the whiteline box in the top panel of Figure 4) which reduces the error and gives a smoother vertical profile of the wet ice attenuation through the mixed phase region.

Fig. 6: (upper) The color-filled contours of total specific attenuation derived from *DWR*. The maximum value is 4 dB/km at 1 km height. (middle) 'raw' LDR, i.e., without any attenuation correction; note loss of signal beyond range of 45 km and (bottom) the LDR corrected by A_h . Note the high values (around -17 dB at 35 km range and 5 km height) indicative of wet ice hydrometeors.

Fig. 7: The averaged vertical profile of specific attenuation. The A_{total} is derived from *DWR*, the A_{rain} is derived from S-band K_{dp} , and the A_{ice} is the difference between A_{total} and A_{rain} .

Fig. 7 shows the vertical profile of specific attenuation after averaging over the 4X4 km box. It shows that the A_{total} has peak of 2.4 dB/km at 2 km height and the A_{rain} has peak of 1.9 dB/km at the same height. Basically, the total specific attenuation is dominated by the specific attenuation of rain. Also, the A_{ice} increases starting from ~ 2 km and reaches its peak (~ 0.5 dB/km) at 3 km height and continues to have significant values up to 5 km. Hence, in this case the mixed phase region extends from 2 to 5 km.

4. Conclusions

A method of separately estimating the specific attenuation at X-band due to wet ice and rain has been developed using the *DWR* and S-band ϕ_{dp} data. Moreover, we have also developed a new scheme of correcting *LDR* due to differential attenuation in rain by using the DWR-based estimate of the total attenuation. The addition of these new products, in addition to other measureables make the CP-2 radar a unique and powerful tool for the study of the spatial and temporal variability of the microphysics of convective storms.

ACKNOWLEDGEMENTS

The CP-2 radar is an operational research system under the Centre for Australian Weather and Climate Research in collaboration with NCAR. VNB and GJH acknowledge support from the NASA PMM science grants program. Partial travel support for VNB to Australia was provided by the Centre for Australian Weather and Climate Research, Melbourne, AU.

REFERENCES

Aydin, K., T.A. Seliga and V. Balaji, 1986: Remote Sensing of Hail with a Dual Linear Polarization Radar. *J Appl Meteor.* Vol. 25, pp 1475–1484

Bringi, V.N. and V. Chandrasekar, 2001: *Polarimetric Doppler Weather Radar: Principles and Applications*, Cambridge Univ. Press, pp. 636.

Bringi, V.N. and A. Hendry, 1990: Technology of polarization diversity radars for meteorology. In *Radar in Meteorology*, D. Atlas, Ed., AMS, Boston, MA, pp 1530190.

Bringi, V.N., V. Chandrasekar, N. Balakrishnan and D.S. Zrnic, 1990: An Examination of Propagation Effects in Rainfall on Radar Measurements at Microwave Frequencies. *J Atmos Oceanic Tech.* Vol. 7, pp. 829–840.

Bringi, V.N., K. Knupp, A. Detwiler, L. Liu, I.J. Caylor and R.A. Black, 1997: Evolution of a Florida Thunderstorm during the Convection and Precipitation/Electrification Experiment: The Case of 9 August 1991. *Mon. Wea. Rev.* Vol. 125, pp 2131–2160

Bringi, V.N. and M. Thurai, 2008: Preliminary assessment and analysis of the CP2 S&X band data, Internal report for the Centre for Australian and Climate research, Melbourne, AU.

Eccles, P.J. and E.A Mueller, 1972: X-Band Attenuation and Liquid Water Content Estimation by a Dual-Wavelength Radar. *J Appl. Meteor.* Vol. 10, pp 1252–1259.

Hitschfeld, W., and J. Bordan, 1954: Errors inherent in the radar measurement of rainfall at attenuating wavelengths., *J. Meteor.*, Vol. 11, 58-67.

Hubbert, J., and V.N. Bringi, 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements., *J. Atmos. Oceanic Technol.,* Vol. 12, 643-648

Knight, C.A. and L. Jay Miller, 1998: Early Radar Echoes from Small, Warm Cumulus: Bragg and Hydrometeor Scattering. *J Atmos Sci.*, Vol. 55, pp 2974–2992.

Leon, L., G.J. Huang, Y. Liu, V.N. Bringi and A.M. loftus, 2007: Rain and wet hail specific attenuation estimation for a 3D supercell case using RAMS model to simulate CASA X-band and WSR-88D S-band radar signals. *Proc.* 33rd *Conf. Radar Meteor.,* P11B.10, AMS, Cairns, 5-10 August.

Tuttle, J.D., and R.E. Rinehart, 1983: Attenuation correction in dual-wavelength analyses., *J. Climate Appl. Meteor.*, Vol. **22**, 1914-1921.