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1) Introduction 
 

Forecasting severe thunderstorms and 
convective systems plays an important role in 
weather prediction. Severe thunderstorms can 
develop very quickly and can produce high winds, 
hail, and flash flooding, which are potentially life-
threatening and can cause substantial property 
damage in a short time. According to the U.S. 
Natural Hazard Statistics over 30 year average 
(1977-2006), “Flash floods/floods are the #1 cause 
of deaths associated with thunderstorms.” (Sky 
warn review by Phil Hysell). Also, NOAA’s annual 
compilations of flood loss statistics show that the 
damage scale of the flood tends to increase with 
time, possibly mostly due to urban spread. Fast and 
accurate nowcasting and short-term forecasting 
systems, including the prediction of timing, 
location, and intensity of the severe storm, are 
becoming more and more important in this regard.   

Mesoscale models together with advanced 
methods to incorporate radar and other real-time 
observations have become one increasingly popular 
research venue in this area.  Only radars allow for 
observing convective scale thunderstorms at high 
temporal and spatial resolution (Sun 2005). The 
rapid evolution of mesoscale systems as well as the 
non-linear relation between radar reflectivity and 
precipitation intensity makes the assimilation of 
radar data into models a challenging problem, both 
mathematically and physically.  

Specifically, problems include the non-
linearity of the observation operator (Evensen 
2003), non-Gaussian background errors (Harlim 
and Hunt 2007), filter divergence (Houtekamer and 
Mitchell 1998), as well as the flow-dependence of 
the background-error covariances (Houtekamer and 
Mitchell 1998; Houtekamer and Mitchell 2001; 
Houtekamer, Mitchell et al. 2005).  
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2) New Methods 
  
a) HA approximation  
 

The matrix HA can be interpreted as the 
deviation of the ensemble members from the 
ensemble mean state mapped into observation 
space. The crucial assumption underlying the 
matrix HA is that the observation operator can be 
approximated by a linear function around the mean 
state. This means that the ensemble spread 
response of the observation operator to the model 
variables is supposed to be linear. This requires the 
deviations between the individual ensemble 
members and the mean state to be small, an 
assumption which is frequently violated when 
dealing with, for example, intermittent phenomena 
such as clouds and precipitation. Furthermore, 
when dealing with strongly non-linear observation 
operators, the distribution of HA will most likely 
not be Gaussian, even if A is Gaussian. The impact 
of a non-linear observation operator is 
schematically depicted in Fig. 1. The strongly non-
linear observation operator in Fig.1-c will map all 
negative distributions of the model PDF onto zero 
in observation space and create a highly skewed 
PDF in observation space. This is a common 
problem with radar observations.  

 

 
 
 Fig. 1.  Schematic distribution types of 
observation operators perturbation simulated after 



perturbation of model states a) linear observation 
operator forming a Gaussian distribution b) weakly 
non-linear observation operator forming a skewed 
Gaussian distribution c) strongly non-linear 
observation operator forming a highly non-
Gaussian distribution 
 
The assimilation of intermittent observations might 
also lead to rank-deficiencies in B, for example, in 
cases where neither of the ensemble members 
produces precipitation. 

Assume an observable variable is linked to the 
state of the model via a strongly non-linear forward 
operator, such as precipitation rate. In this case HA 
represents the deviation of the individual ensemble 
members from the ensemble mean. Since the 
distribution of precipitation rate is typically highly 
skewed, the resulting distribution of HA will be 
highly skewed and not well suited for assimilation 
purposes. While precipitation rate is observed, the 
underlying process (e.g. ‘convection triggering 
precipitation’) might not be observed directly. 
However, various other model variables will be 
correlated with this process. For a typical 
convective precipitation situation, deviations in 
temperature in the boundary layer might be 
positively correlated with deviations in 
precipitation. In this paper, a new method is 
proposed to address this issue. The basic idea relies 
on the aforementioned correlative model variables 
and can be put into very simple terms:  
 
‘If the background error correlation in observation 
space cannot be used directly, it might be 
approximated by another variable, which is 
correlated with the observations and has better 
error characteristics.’ 
 

This method corresponds to a translation of the 
non-Gaussian PDF into a Gaussian form, 
maintaining its original physical units. In Fig.2, the 
process is schematically explained. Two variables 
are shown as observable variable y and observation 
proxy Y. The PDF of the observable variables y 
forms shows a non-Gaussian distribution (blue 
curve) whereas the observation proxy Y (red curve) 
has a Gaussian distribution and the positive part of 
the distribution is well correlated to observable y. 
 

 
 
Fig. 2.  New method in general from : Modulation 
of Probability Density Function (PDF) between 
different physical variables by normalization 
process with rescaling factors 
 

The proxy background error covariance in 
observation space can now be derived via a 
rescaling. The ratio of the traces of the original 
background error covariance and the proxy are 
used to renormalize the total variance of the 
approximated background error covariance to 
match the physical units of R in the subsequent 
EnKF calculations. Note that the ratio of the traces 
of these matrices is only a scalar factor and other, 
more sophisticated methods might be devised in 
addition.  

Another issue related to ensemble assimilation is 
the triggering of clouds or precipitation in cases 
where initially none of the ensemble members 
produce any cloud or precipitation. In such cases 
HA collapses to identical zero and no assimilation 
can be performed. Replacing HA with a proxy 
variable will yield a well-defined background error 
covariance and potentially will allow conditions 
favorable to clouds or precipitation in the 
assimilation. This is highlighted in Fig. 2, middle 
panel. Assume the PDF of precipitation (blue 
curve) to be approximated by an ensemble with all 
identical zeros. Then the background error 
covariance will collapse.  Assume the red curve to 
be the distribution of potential temperature in the 
boundary layer. Areas with high potential 
temperature will correspond to high precipitation 
and areas with lower potential temperature to zero 
precipitation. By replacing the black with the red 
curve, a better proxy of the true error covariance 
will be obtained. 

Using the variable Ao to denominate the proxy 
for HA, this leads to the following approximation 
for HA in the Kalman gain:  
 

HA ≈ Ao ⋅ t              (1) 
 
The revised Kalman gain can now be expressed as: 
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The rescaling factor t allows us to translate HA into 
Ao maintaining the units of the observation space. 
The next step is to find a suitable proxy for HA. 
This proxy can for example be part of the ensemble 
itself as long as certain criteria are fulfilled. A 
variable needs to be picked, which is well 
correlated with the model simulation HA. In the 
present study, we use potential temperature 
deviations in the boundary layer, which are well 
correlated with the initiation of convective 
precipitation. The Kalman gain can be slightly 
reformulated to gain insight into the data 
assimilation process. When we extract the 
background error covariance matrix from the 
background error influence term by placing an 
imaginary HBHT ·(HBHT)-1 between the two terms 
in brackets in Eq. (2) we can rewrite the Kalman 
gain as: 
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This reformulation allows us to clearly see the 
response information and the error information 
between the background state and the observation. 
The possible situations in the data assimilation 
study are presented in Table 1. 
 
Table 1 : The influence of the background and the 
observation errors on the observation assimilation  

C Error Norms 
Error 

Information 
N in K  

Observation 
Update 

( )-K D HX

1 2
oR B t<<  I  Large-update 

2 2
oR B t≈  2 I⋅  

Intermediate-
update 

3 2
oR B t>  Large Small-update 

4 2
oR B t>>  Very Large Non-update 

 
 
b) Background Error renormalization 
 

Due to the different temporal error evolution, the 
magnitude of the background error can be 
underestimated compared to the observation error 
in the data assimilation. This problem is 
schematically illustrated in the Fig. 3. 
 

 
 
Fig. 3.  Background error underestimation 
problem a) absolute error simulation, b) relative 
error simulation (interval indication in blue curves - 
BG error in the convective initiation stage, in red 
curves - OB error in developing stage) 
 

Due to the non-linear relationship in the 
perturbation process, the range interval of the blue 
lines, HA, in Fig. 3 would be intensified 
nonlinearly with time, even though the perturbation 
A maintains the constant interval over the whole 
cycle. The observation error R is also not constant 
as a relative error which is proportional to the true 
state variation. Therefore, the constant absolute 
error shown in Fig. 3-a is an unrealistic error 
simulation regardless of not having the 
underestimation problem of the BG error. On the 
other hand, with the realistic error modeling (Fig. 
3-b), the underestimation of the BG error is an 
inevitable problem in the data assimilation. For 
example, in the Madison flood case study, it is 
found that the model simulation produced the 
initial precipitation approximately 1 hour later than 
the KMKX radar measurement. This time 
difference causes the Kalman filter consistently to 
ignore the well quality-controlled and highly 
resolved radar observation during assimilation 
cycles. Consequently the radar data assimilation by 
EnKF couldn’t improve the forecast results. 
Therefore, the next step of the new method is the 
weighting technique to take into account this 
temporal evolution of the different error sources in 
the data assimilation.  
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The weighting factor f linearly modulates the 
magnitude of observation and background errors 
(See Eq.(4) and (5)).  
 

 
Fig. 4.  Weighting factor for the OB error and the 
underestimated BG error to improve the update 
process in the data assimilation cycles 
 
In the assimilation cycles the observation error is 
the more evolved state than the background model 
error in this study. Therefore, the f in Fig. 4 is 
chosen as less than 1 to reduce the difference 
between OB and BG errors. It means that by the 
weighting technique the C.4 in the Table. 1 can 
change into C.3 allowing the effective update 
through the multiple assimilation cycles without an 
abrupt model imbalance which can happen in C.1 
and C.2. The weighting term can be simplified in 
EnKF formulation as following expression. 
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This expression tells us that the introduced 
weighting technique adjusts only the relative error 
ratio (R·B-1t-2) in the error normalization term, 
maintaining the ensemble sizes of A and HA (Aot in 
the new method) in the observation influence term. 
It means that this modification only renormalizes 
the observation increment. This method basically 
resolves all kinds of inactive update problems due 
to the BG error underestimation caused by the 
insufficiently perturbed ensemble spread, the filter 
divergence and the time lag between the BG and 
OB errors in the data assimilation process. 
     In the expression of Sherman–Morrison–
Woodbury formula to reduce computational 
expense when dealing with a large number of data 
points (Mandel 2006), the final Kalman gain in 

EnKF with weighting factor and rescaling factor is 
derived as,  
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This newly expressed Kalman gain K%  is non-
dimensional. Also, all factors in K%  are 
incorporated into just one constant, κ .  
     After applying the new method, the full 
expression of approximate EnKF for the highly 
non-linear case is 
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3) Results and Analysis 
 
a) Filter Stabilization and Forecast 

Correlation by the HA approximation  
 
The HA approximation includes two important 
considerations: the Gaussian form in HA for the 
stable recursive filter assimilation and the proper 
forecast correlation information for the forecast 
improvement. Firstly, the EnKF with the non-linear 
observation operator suffers from the unstable filter 
update process. For instance, the non-Gaussian HA 
(Fig. 5-a in EXP.1) due to the non-linearity 
between HA-A creates the skewed spread update at 
1630 UTC (Fig. 5-b in EXP.1). By the recursive 
filter process, the spread update term at 1645UTC 
produces unrealistically significant θ indicating 
over 100 Kelvin (□- profile in Fig. 5 -c). Also, the 
K loses the consistent filter controllability showing 
different spread update patterns at 1630 and 1645 
UTC (compare the □- profile in Fig. 5 b and c). On 
the other hand, when we look at the EXP.2 in the 
Fig. 5, the data assimilation by EnKF with the 
approximate HA consistently maintains the 
Gaussian distribution at 1630UTC and 1645UTC; 
during the recursive filter updates the data 
assimilation is 
 



  
Fig. 5. Filter Stabilization test: EXP.1 (without HA 
approximation): a) Original HA (radar reflectivity, 
Z), b) Non-Gaussian spread update at 1630UTC 
(potential temperature, Kelvin), c) Non-Gaussian 
spread update at 1645UTC, EXP.2 (with HA 
approximation): a) Approximate HA , b) Gaussian 
spread update at 1630UTC, c) Gaussian spread 
update at 1645UTC 
 

The second problem is the inappropriate forecast 
correlation between HA and A. The cause of the 
Madison flood is the potential instability. It means 
that the positively perturbed ensemble member in 
the current A(θ) (high potential instability) will 
create the positive ensemble member in the future 
HA(Qr) (high convective precipitation). Therefore, 
in this study the negative instant correlation 
(condensation tendency) of the original K is 
replaced with the positive forecast correlation 
(convective tendency), by selecting the HA proxy 
which is positively correlated with A. Based on this 
HA-A relationship, the positive input innovation 
(D-HX) is assimilated to increase θ in the current 
model state (reds curves after spin-up in Fig. 6-b) 
and produces the large Qr forecast improvements 
(reds curves after spin-up in Fig. 6-c).  

 

 
Fig. 6. Forecast Correlation test : a) Positive 
Innovation based on higher observation and lower 
current model state, b) Inversed Innovation 
controlled by correlation and error information of 
K, c) Improved forecast by input innovation, 
(EXP.1 : blue – no approximation with f=1.999, 
EXP.3 : red - approximation with f=0.1) 
 
b) Renormalization of the error information 

by the Weighting technique 
 
Another important feature of the new method is the 
error renormalization by the weighting technique. 
The results of the weighting experiments are 
examined on three temporal stages. The forecast 
model modification by radar observations 
communicates the potential instability. For instance, 
from 1600UTC to 1700UTC the observation 
innovations renormalized by the various weighting 
factors are assimilated into the WRF model as the 



different ensemble mean increases in the θ field at 
the surface layer (Fig.7-a). According to the 
perturbation method, the ensemble member with 
increased θ contains the greater potential instability. 
  

 
Fig. 7.  Error weighting test: a) the updated model 
stated by the inversed innovation b) the mean 
reflectivity intensity improvements according to 
various weighting factors, c) Storm Coverage 
distribution improvement with the threshold value 
10 dBZ for the meaningful storm scale 
precipitation excluding unrealistic bubble feature.) 
 
Therefore, the overall θ growth by the radar data 
assimilation (the mean θ increase in Fig.7-a) 
represent that ensemble forecast model is improved 
with an increased potential instability. Then the 
enhanced potential instability initiates deep 
convections after spin-up cycles. Though, the spin-
up cycles from 1700UTC to 1730UTC might be 
also informative durations for monitoring the 

possibility whether or not the newly initialized 
model state develops into severe thunderstorms.  
 
c) Forecast improvement by the radar 

reflectivity assimilation 
 

 
 
Fig. 8. Observation assimilation effect in the 
forecast system (Control vs. EXP.3): WRF (control 
without the radar assimilation), ENKF(EXP.3 with 
the radar assimilation based on the new method), 
RADAR (base radar reflectivity observation); 
16:30UTC (assimilation), 17:30UTC (spin-up), 
19:00UTC & 21:00UTC (forecasts) 
 
After applying the approximate HA and the 
weighting technique introduced in the new method 
we can truly examine how the forecasting 
capability is improved by the radar reflectivity 
assimilation. The EXP. 3 (ENKF in Fig. 8) shows 
the radar data assimilation at 16:30UTC. In the 
Madison flood case study, 1600~1700 UTC is the 
most effective time for the quality control of the 
radar reflectivity. Because precipitation in these 
cycles is still distributed far from the ground cluster 
of the radar reflectivity around the center of the 
radar, the non-precipitation feature can be easily 
removed from the precipitation distribution. Also, 
if precipitation doesn’t appear on the model 
simulation, the link between observation and model 
state (rescaling factor t) is absent in EnKF 
implementation. Therefore, at 1600UTC, the radar 
reflectivity observation starts being assimilated in 
WRF.  
After assimilating the radar reflectivity, the spin-up 
time (1700 ~1730UTC in this study) is needed for 



hydrological balance due to the disparity between 
the present background feature and newly 
introduced observational feature on model states. 
This process is well displayed at 1730UTC (See 
Fig. 8-ENKF).  
The main difference between assimilation (ENKF) 
and non-assimilation (WRF) is most clear at 
1900UTC. In this stage, the control run simulates 
only weak frontal precipitation (WRF in Fig. 8). 
Contrarily, instead of the weak and scattered 
convections, the ENKF forecast shows the well 
organized deep convection popping-up simulated 
high radar reflectivity. During 1900~2200 UTC, 
the model domain includes a whole convective cell. 
Therefore, the forecast results in these cycles are 
well matched to the real radar observation. 
However, after 2200 UTC the forecast results do 
not well correspond quantitatively to the compared 
radar observation, because the convective cell in 
the forecast model disappears crossing the 
boundary of the model domain earlier than radar 
measurement. 
 
4) Summary and discussion 

 
In this study it was determined that in order to 

utilize highly non-linear observation operator and 
intermittent physical properties for the data 
assimilation, the following conditions are necessary 
for the background error covariance matrix: the 
initial perturbation which is associated with the 
future targeted observation, the appropriate forecast 
correlation in the Kalman gain, the Gaussian 

distribution maintenance during sequential updates 
and the error renormalization for underestimated 
background error. All these considerations aim to 
design the well-conditioned and effective 
background error covariance matrix for the data 
assimilation.  

We presented the following experiments 
systemically to solve each problem. In summary, 
for the fast but accurate forecast of severe 
convective precipitation, the radar observation and 
EnKF are utilized in this study, but it is quite a 
challenge to apply them together because of the 
“non-linearity” of the observation operator and the 
"Gaussian assumption" of EnKF. Therefore, the 
new method proposed in this paper, the 
approximation of the background error covariance 
matrix, is developed to linearize the Kalman gain 
(relative information) with the Gaussian proxy 
variable and, in addition, to renormalize the 
nonlinear and/or discontinuous observation 
increment (absolute information) with the 
weighting factor. It means that new method 
optimizes the linear response among the ensemble 
spread of the various model variables and 
conserves the non-linear response of the ensemble 
mean of the model variables to the observation 
increment variance. 

The EnKF with the well conditioned background 
error covariance matrix remarkably improves the 
short-term forecast performance for the mesoscale 
convective precipitation. This result is the good 
initial forecast for Madison flood case in July 27 
2006.

 
Table 2 : The summary of the problems, solutions and results on each experiment 

 Control EXP.1 EXP.2 EXP.3 

HA in K - Original Approximate Approximate 
HA–A correlation - Instant corr. Forecast corr. Forecast corr. 
HA response to A  - Non-linear Linear Linear 

HA PDF - Non-Gaussian Gaussian Gaussian 
Filter behavior - Unstable Stable Stable 

B in K - Ill- conditioned Well-conditioned Well-conditioned 
Weighting factor - f = 1.0 f = 1.0 f = 0.1 

BG error in N - Unrealistic Underestimated Enhanced 
OB error in N - Original scale Largely developed Diminished 

Update by Obs. - Problematic Insufficient Significant 

Forecast No 
convection 

Scattered weak 
convection Shallow convection Severe deep 

convection 
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