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1. INTRODUCTION 
 

Accurate historical precipitation analysis is needed 
for various hydrologic, hydrometeorological, 
hydroclimatological applications.  Increasingly, many of 
these applications require analysis at high spatio-
temporal resolutions. Since the implementation in the 
early to mid-1990’s the network of Weather Surveillance 
Radar – 1988 Doppler (WSR-88D), commonly known as 
the Next Generation Weather Radar (NEXRAD), real-
time precipitation analysis in the U.S. has been heavily 
relying on radar data for high-resolution precipitation 
information. In the continental U.S., the WSR-88D 
network consists of approximately 140 sites, most of 
which have been operational for well over a decade 
now. The WSR-88Ds provide  radar reflectivity 
estimates for the NEXRAD Precipitation Processing 
Subsystem (PPS, Fulton et al. 1998) which produces 
radar-derived precipitation products in real time in 
support of the National Weather Service’s mission and 
external users. Quantitative precipitation estimates 
(QPE) from radar, however, are subject to various 
sources of error (Wilson and Brandes 1979, Vasiloff et 
al. 2007) and, by themselves, are generally not suitable 
for quantitative hydroclimatological applications. To 
produce precipitation estimates that  are more accuate 
than those obtainable from radar or rain gauges alone, 
multisensor estimation is necessary, consisting usually 
of bias correction of radar QPE and multivariate 
analysis, or merging, of bias-corrected radar QPE and 
rain gauge data. In NWS, such multisensor precipitation 
estimation applications produce precipitation estimates 
at different spatial scales and in stages (Hudlow 1988, 
Vasiloff et al. 2007). For example, the so-called Stage III 
products are generated at the River Forecast Centers 
(RFC), which are nationally mosaicked at the National 
Centers for Environmental Prediction (NCEP) to 
produce the Stage IV products (Fulton et al, 1998, 
Vasiloff et al. 2007). In the early 2000’s, the Multisensor  
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Precipitation Estimation (MPE) algorithm replaced the 
Stage III algorithm at most RFCs (Breidenbach et al. 
1998, 2001b, 2002). At the Arkansas-Red Basin River 
Forecast Center (ABRFC) and in the Western Region, 
the P1 algorithm (see Appendix A of Seo and 
Breidenbach 2002) and the Mountain Mapper (see 
Section 2 of Schaake et al. 2004) are used, 
respectively, Instead of the MPE. 

Since they were first implemented, both the radar 
and multisensor QPE algorithms in PPS and MPE, 
respectively, have undergone a number of significant 
changes for improvement, resulting in significant 
changes in the error characteristics of the respective 
precipiation products. Being a real-time operation, Stage 
III analysis can only make use of the real-time data that 
are available by the time of the analysis. The objective 
of this work is to produce temporally-consistent high-
quality high-resolution multisensor precipitation 
reanalysis products for a wide range of climatological 
and hydroclimatological applications. Development of 
such products should capitalize on the additional data 
that may not be available in real time, and the 
retrospective nature of the analysis that allows 
identification, correction and quantification of the errors, 
which are generally not possible in real time due to 
insufficient data and computing power. Toward that end, 
the National Climatic Data Center (NCDC) in 
collaboration with the National Weather Service (NWS) 
has redeveloped the MPE algorithm (Seo and 
Breidenbach 2002) into the  Multisensor Precipitation 
Reanalysis (MPR) algorithm over the pilot domain 
(Figure 1). MPR inputs the historical Digital Precipitation 
Array (DPA) products from the WSR-88D network and 
the rain gauge data from the the Cooperative Observers 
Program (COOP) and the Hydrometeorological 
Automated Data System (HADS) networks and outputs 
a suite of reanalysis products similar to that of MPE 
products (see Figure 2). As a pilot project, the 
reanalysis is set up for the regional domain over North 
and South Carolinas which includes six WSR-88D sites 
(see Figure 1). The goal of the pilot project is to 
demonstrate improvement of experimental MPR 
products over the operational QPE products. The main 
sources of improvement include additional rain gauge 



data, systematic quality control of rain gauge data, 
correction of systematic biases in radar QPE and 
parameter optimization for radar-gauge merging. In this 
paper, we describe the data and the reanalysis 
procedure used for the pilot project, and summarize the 
results, including comparative evaluation with the Stage 
IV products. 
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Figure 1: Study location including radar range rings of 
230km and rain gauge locations used in the study. 
 
2. DATA AND QUALITY CONTROL  
 

The radar data source is the WSR-88D Digital 
Precipitation array (DPA) and the rain gauge data 
sources are the HADS and COOP data.  In this section 
we provide an overview of the data used and the quality 
control steps taken to screen out bad data and gauges. 
 

 
Figure 2: Workflow of the multi-sensor precipitation 
reanalysis. 

 
2.1 Digital Precipitation Array (DPA) 
 

The DPA is one of approximately 20 products in the 
WSR-88D Level III data suite that are derived from the 
Level II data (Klazura and Imy, 1993). The DPA product 
is an hourly running precipitation total on the HRAP grid 
(approximately 4x4 km2) out to a range of 230 km from 
the radar. The estimates are produced by the WSR-88D 
Precipitation Processing Subsystem (PPS, Fulton et al. 
1998) by combining radar reflectivity estimates from 
multiple elevation angles using a hybrid scan strategy, 
converting reflectivity (Z) to rainfall (R) using the Z-R 
relation and then mapping them onto the HRAP grid.  
Currently, five sets of parameters are used operationally 
for the Z-R relation for five different precipitation 
regimes, a=300,b=1.4; a=200,b=1.6; a=250,b=1.2; 
a=130,b=2.5; a=75,b=2.5, for convective, stratiform, 
tropical, stratiform-east, and stratiform-west precipitation 
events, respectively. The major sources of errors in the 
DPA include, but are not limited to, radar calibration 
(Ulbrich and Lee 1999, Smith et al. 1996), anomalous 
propagation (Krajewski and Vignal 2001), bright band 
enhancement (Smith et al. 1996), radar beam blockage 
(Young et al. 1999), nonuniform vertical profile of 
reflectivity (Seo et al. 2000), uncertain microphysical 
parameters such as the Z-R coefficients (Smith et al. 
1996, Vasiloff et al. 2007). These errors vary in space 
and time and accumulate nonlinearly in time. As such, it 
is extremely difficult, if not practically impossible, to 
isolate individual errors from the DPA products and 
correct them a posteriori. In this work, we make no 
attempt to improve the intrinsic quality of the DPA 
products as, in our view, such an effort is more cost-
effective by reprocessing the Level II data. As such, we 
rely solely on the operationally produced DPA products 
for radar QPE in this work. 

To screen out obviously bad DPA data from the 
reanalysis process, we developed an ad hoc procedure.  
It consisted of first calculating the fractional coverage 
and conditional mean of radar precipitation for each of 
the hourly rainfall maps associated with each of the six 
radars in the pilot domain. Next we defined a subjective 
threshold value for each of the statistics and identified 
the hours for which the statistics exceeded this 
threshold.  We then created an animation of these hours 
and visually identified the obviously bad DPA 
precipitation maps that could be attributed to ground 
returns from AP, bright band, or other non-precipitating 
events like birds and insects.  These hours were then 
added to a list which was used as a database for 
exclusion during the follow-on processing of the MPR 
algorithm. 

 
 



2.2 Hydrometeorological Automated Data System 
(HADS) 

The primary source of hourly rain gauge data is the 
reprocessed Hydrometeorological Automated Data 
System (HADS) data of Kim et al. (2009), which are 
based on the historical archive of the real-time data 
collected and distributed by the HADS Program in the 
NWS Office of Hydrologic Development (OHD). The 
period of record of the reprocessed data is 2002 – 
present. To the best of the authors’ knowledge, the 
HADS data are the only hourly precipitation data set 
available for the entire U.S. as a single product. Kim et 
al. (2009) have investigated data loss and quality issues 
with the HADS, including possible biases with respect to 
neighboring COOP gauges. Through reprocessing, they 
addressed a number of these issues, which resulted in 
an increase in the number of hourly HADS precipitation 
data (particularly those ending at the top of the hour) 
and improved quality. In many instances the 
reprocessed data resulted in the recovery of storm 
events and other hourly observations that may be 
critical to MPR. For further details, the reader is referred 
to Kim et al. (2009). 

In addition to the rain gauge data-based quality 
control steps used in reprocessing the HADS data (see 
Kim et al. 2009 for details), we have implemented a 
simple procedure to identify bad rain gauges using radar 
data. We screened out bad gauges by comparing 
seasonal accumulations of rain gauge precipitation and 
the corresponding radar pixel values in the DPA 
products. We removed suspect rain gages by visual 
inspection as well as examining a set of summary 
statistics for individual gauges for the given season. The 
statistics include the indicator and conditional correlation 
coefficients to check the strength of association in 
precipitation detection and estimation of precipitation 
amount given detection, respectively, between the rain 
gauge observation and the collocated radar estimate 
within the effective coverage of the radar (Breidenbach 
et al. 1999, 2001a), and conditional coefficient of 
variation of precipitation amount to check the 
reasonableness of its seasonal statistics against 
climatology. For visual inspection we also examined the 
scatter plots of rain gauge values versus the 
corresponding radar pixel values of hourly precipitation 
at the seasonal scale. This additional quality control 
results in screening out about an additional 20 percent 
of the reprocessed HADS data. 

 
2.3 Cooperative Observers Program 

The Cooperative Observers Program provides 
thousands of meteorological and hydrometeorological 
observations daily in the U.S. (NCDC 2000). These data 
include both hourly and daily gauge precipitation 

observations that can be used in MPR. The spatial 
density of the daily stations is much larger than that of 
the hourly stations. As such, it is important that MPR 
utilize the daily COOP observations to the maximum 
possible extent. Because the analysis in MPR is 
currently carried out only at the hourly scale, it is 
necessary to disaggregate the daily gauge observations 
into hourly estimates of gauge precipitation. Subsection 
3.3 describes the disaggregation procedure used in 
MPR. 

We have applied the DPA-based quality-control 
procedure described in section 2.2 to identify suspect 
gauges that may have survived the gauge data-based 
quality control steps. As with the HADS data, the 
procedure was carried out for each season of the 
analysis period. This additional quality control screens 
out about 10 percent of the COOP data. Table 2 
summarizes the availability of the HADS and COOP rain 
gauge data in the pilot domain. 
 
3. REANALYSIS PROCEDURE 
 

Here we give a brief overview of the MPR 
procedure. 

1. Mosaicking of radar QPE.  The procedure used 
is the same as that in MPE (Breidenbach et al. 
1999, 2001a), which involves identifying the 
effective coverage of the radar based on the 
long-term seasonal radar climatology and 
knowing the height of the radar beam. The 
mosaicking process consists of the following 
steps. For each HRAP bin in the analysis 
domain, determine if the bin falls within the 
effective coverage of any radar. If it does not, 
radar QPE is not available for that bin. If it falls 
within the effective coverage of two or more 
radars, identify the bin with the lowest 
unobstructed sampling height and assign the 
radar precipitation estimate from that radar to 
that bin. For further details, the reader is 
referred to Breidenbach et al. (1999, 2001a). 

2. Mean field bias correction. We correct for inter-
radar calibration differences by comparing, 
radar site by radar site, DPA estimates to rain 
gauge observations in the long term. This 
correction is conceptually similar to the mean 
field bias correction in MPE at a large time 
scale (Seo et al. 1999). We define the mean 
field bias as the ratio of the long term 
accumulation between the COOP data within 
the effective coverage of the radar 
(Breidenbach et al. 1999, 2001a) and the 
collocating DPA estimates from that radar. 



3. Time disaggregation of daily COOP data. To 
utilize all available rain gauge data in the pilot 
domain in hourly analysis, we disaggregate 
daily rain gauge observations to hourly rain 
gauge estimates. The procedure used in this 
work is based on a similar procedure used for 
MPE in NWS operations (NWS 2005).  The 
procedure involves pairing daily rain gauge 
observations with collocated DPA estimates. 
Then the daily rain gauge estimates are time-
distributed proportionally according to the 
hourly DPA estimates over that 24-hr period, 
which produces hourly estimates of rain gauge 
precipitation at the COOP locations. Our 
experience is that using radar precipitation 
estimates to distribute the COOP data works 
better for the warm season than the cool 
season due likely to larger errors in radar QPE 
in the cool season. For this reason, we 
extended the time disaggregation procedure to 
use the gauge-only analysis using hourly 
HADS gauge data to time-distribute the daily 
COOP observations in the cool season. 

4. Local bias correction. The Bmosaic field, which 
is obtained from mosaicking the mean field 
bias-corrected DPA products from multiple 
sites as described above may have spatially-
varying biases that may be correctable by rain 
gauges, depending on the quality of the radar 
QPE and the density of the available rain 
gauges. The sources of such “local” biases 
include partial beam blockages due to 
structures and terrain (Young et al. 1999), 
returns from anomalous propagation (AP) of 
the radar beam, and non-uniform vertical 
profile of reflectivity including bright band 
enhancement (Baeck and Smith 1998, Smith et 
al. 1996, Young et al. 1999). The local bias 
correction procedure used in MPR is 
conceptually similar to that used in MPE (Seo 
and Breidenbach 2002) applied at a seasonal 

time scale. 
5. Radar-gauge merging. The bias correction 

steps described above are intended to reduce 
mean error but not necessarily error variance. 
The primary purpose of radar-gauge merging is 
to reduce error variance. The merging 
algorithm used for MPR is a variant of the 
operational procedure used in MPE by the 
NWS referred to as single optimal estimation 
(SOE, Seo 1998). The algorithm has many 
adaptable parameters. For MPR, we have 
identified the following 4 parameters to be 
optimized for each month: the multiplicative 

bias factor, the indicator and conditional 
correlation coefficients between radar and rain 
gauge precipitation, and the coefficient of 
variation of precipitation.  Optimization consists 
of four steps: find the a priori parameters; 
evaluate the hour-by-hour, via cross validation, 
the merged estimate at each gauge location 
using the variant of SOE; Evaluate the gradient 
of the objective function with respect to the four 
parameters to be optimized. Then repeat steps 
2-4 until convergence. 
 

 
4. EVALUATION 
 
Fig 3 and 4 show the cross validation results for warm 
and cool seasons, respectively, in the form of scatter 
and quantile-quantile (QQ) plots. The figures show the 
verifying gauge observation vs. the estimate (Gmosaic, 
Mmosaic, or Stage IV) for daily amounts for warm or 
cool seasons from 2002 through 2007.  The QQ plots 
show how closely the marginal distribution of the 
estimated precipitation matches that of the observed. 
The figures show that Mmosaic has somewhat smaller 
scatters than Stage IV for both warm and cool seasons, 
but slightly larger scatter than Gmosaic for the cool 
season. The QQ plots show that Mmosaic most closely 
follows the marginal distribution of observed 
precipitation for larger precipitation amounts. The small 
number of highly overestimated Stage IV values in the 
cool season is probably due to bad HADS data that 
could not be quality-controlled in real time. 
 



 
Figure 3: Scatter plots of the rain gauge estimates 
versus the product estimates (a) MPR product,  (b) 
stage IV product, (c) gauge-only product and the  
corresponding quantile-quantile plots, (d),(e),(f) for all 
warm season daily scale estimates from 2002 – 2007. 
 

 
Figure 4: Scatter plots of the rain gauge estimates 
versus the product estimates (a) MPR product,  (b) 
stage IV product, (c) gauge-only product and the 

corresponding quantile-quantile plots, (d),(e),(f) for all 
cool season daily scale estimates from 2002 – 2007. 
 
Figure 5 shows the bar graph of the bias (Gauge-to-
Radar ratio) for each MPR product alongside that of the 
Stage IV product.  In the figure, the Gmosaic is the 
gauge-only estimate (see Fig 2). Fig 5 shows that the 
biases are reduced in each step of the MPR process, 
from Bmosaic to Lmosaic to Mmosaic. The Stage IV 
product has little bias in the warm season in the pilot 
domain, but has a significant bias in the cool season. 
This cool-season bias is due to the large low bias (i.e. 
underestimation) in Rmosaic, and reflects the difficulty 
of completely correcting it in real time using limited rain 
gauge data. Mmosaic, on the other hand, is essentially 
bias-free for both warm and cool seasons. 

 
Figure 5: Long term bias between the rain gauge 

values and the algorithm products gmosaic (gauge-only 
product), mmosaic (MPR product), Stage IV (stage IV 
product), lmosaic (local bias adjustment), bmosaic 
(inter-radar bias adjustment), and rmosaic (radar-only 
product). 
 
5. CONCLUSIONS 

The major findings from the experiments are: 
 Using both the hourly HADS gauge data 

and the hourly estimates of time-
distributed daily COOP data provides very 
significant improvement in radar-gauge 
and gauge-only analysis of daily 
precipitation over using only either one of 
the two networks. 

 In the warm season, the radar-gauge 
merged estimate from MPR, Mmosaic, is 
consistently superior to Stage IV, and 
Stage IV is consistently superior to the 
gauge-only estimate from MPR, Gmosaic. 
For daily amounts greater than 25.4 mm, 



the marginal improvement of Mmosaic 
over Gmosaic is much greater. 

 In the cool season, Gmosaic is 
consistently superior to both Mmosaic and 
Stage IV, and both Gmosaic and Mmosaic 
very significantly outperform Stage IV. 
That Mmosaic is inferior to Gmosaic is an 
indication that the quality of cool-season 
radar QPE (i.e. the DPA products) needs 
to be improved significantly in order to 
provide value to radar-gauge estimation. 
That Mmosaic very significantly improves 
over Stage IV reflects the value of utilizing 
all available rain gauge data and the 
benefits of reanalysis for more effective 
bias correction and multisensor estimation. 
 

The MPR pilot project described in this paper 
provides a first step toward reanalysis over the U.S. 
While the value of MPR has been demonstrated for the 
pilot domain, reanalysis at the national scale faces a 
number of large challenges, many of which are shared 
also by real-time analysis. To foster a community-wide 
effort for MPR and to develop and capitalize on the 
synergism with real-time analysis, we have formed the 
MPR Working Group. We welcome any comments or 
suggestions toward realizing MPR at the national scale 
and participation in the Working Group. 
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