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1. INTRODUCTION

The hook shape reflectivity feature has been docu-
mented as an indicator of tornadoes [Fujita, 1958], how-
ever more than half of the tornadoes have been reported
not associated with apparent hook signature. Tornado
vortex signature (TVS) defined as the azimuthal velocity
difference at a constant range is a parameter to quantify
the tornado feature based on pulsed Doppler radar ob-
servation [Burgess et al., 1975]. The basic idea of the
current tornado detection algorithm (TDA) is to search
for strong and localized azimuthal shear in the field of
mean radial velocities [e.g., Crum and Alberty, 1993;
Mitchell et al., 1998]. However, because of the smooth-
ing effect caused by the radar resolution volume, the
shear signature can be significantly degraded if the size
of tornado is small and/or the tornado is located at far
ranges [Brown and Lemon, 1976]. Recently, a neuro-
fuzzy tornado detection algorithm (NFTDA) has been
developed by Wang et al. [2008] within atmospheric
radar research center (ARRC) of the university of Ok-
lahoma. Tornado shear signature and tornado spectral
signatures (TSS) are combined in this algorithm, and
the performance shows significant improvement. Con-
ventionally, Weather Surveillance Radar-1988 Doppler
(WSR-88D) provides legacy resolution with reflectivity
data on a 1 km-by-1 o polar grid and Doppler data (radial
velocity and spectrum width) on a 250 m-by-1 o grid. Su-
per resolution proposed to be adopted by the WSR-88D
can provide reflectivity data and Doppler data on a 250
m-by-0.5o grid[e.g., Torres and Curtis, 2007]. The bene-
fit of super resolution data can be fully realized through
finer range and azimuthal sampling in conjunction with
a narrower effective antenna pattern (i.e.,a smaller ef-
fective beamwidth) [Brown et al., 2002; Torres and Cur-
tis, 2007]. Brown et al. [2002] have shown that tornado
hook and vortex signatures can be more pronounced
from super-resolution data. Tornado debris signatures
(TDS) defined as high reflectivity (Z), anomalously low
cross-correlation coefficient (ρhv) and very low (or neg-
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ative) differential reflectivity (ZDR) were first observed
by Ryzhkov et al. [2005] using a S-band research polari-
metric radar. Kumjian and Ryzhkov [2008] and Bluestein
et al. [2006] further identified TDS during tornadic super-
cell storms using a S-band and a mobile X-band dual-
polarization Doppler radar. The polarimetric upgrade
of the WSR-88D network, supported by the National
Weather Service (NWS), the Federal Aviation Adminis-
tration (FAA) and Air Force Weather Agency is undergo-
ing. With the polarimetric capability, the TDS can be in-
corporated into WSR-88D developing tornado detection
algorithm. In this work, an advanced tornado detection
algorithm using super-resolution and polarimetric data
is proposed. The neuro-fuzzy framework is adopted by
this advanced tornado detection algorithm, and the in-
puts parameters and rule inference are further modi-
fied. The performance of proposed algorithm is demon-
strated using abundant real tornado cases. This paper
is organized as follows. An overview of the upgraded
NFTDA in section 2. The performance of the advanced
NFTDA using legacy-, super-resolution and polarimetric
data are evaluated in section 3. Finally, a summary and
conclusions are given in section 4.

2. UPGRADED NEURO-FUZZY TORNADO DETEC-
TION ALGORITHM

2.1. Review of NFTDA

In the NFTDA developed by Wang et al. [2008], five
parameters of velocity difference (∆v) spectrum width
(σv), spectral flatness (σs), phase of the radially inte-
grated bispectrum (P ), and eigenratio (χR) are inte-
grated by a fuzzy logic framework. Initially, the S-shape
and Z-shape membership functions were used to con-
vert the five crisp inputs into fuzzy membership degrees.
Subsequently, a rule strength was set by the maximum
of the product of the input fuzzy variables. The mem-
bership functions were initialized based on the results
of statistical analysis, and fine-tuned through a train-
ing process with a neural network. The performance of
NFTDA was demonstrated using Level I data collected
by the research WSR-88D (KOUN) operated by the Na-
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tional Severe Storms Laboratory (NSSL) during two tor-
nadic events. These results show the performance of
conventional TDA can be improved significantly using
NFTDA in term of probability of detection (POD), false
alarm ratio (FAR), critical success index (CSI), and max-
imum detection range.

2.2. Doppler moment based NFTDA (D-NFTDA) and
polarimetric moment based NFTDA (P-NFTDA)

Although the original NFTDA has shown enhanced de-
tection, three input parameters of σs, P and χR are de-
rived from level I time series data which are not avail-
able for operational WSR-88D radar. In order to engage
with operational products with the provision of polarimet-
ric upgrade, the NFTDA has been modified to take in
only Doppler moment data or polarimetric with Doppler
moment data. Doppler moment data, specified as σv

and ∆v in this work, are the parameters incorporated
into the Doppler moment based NFTDA (D-NFTDA).
σv defined as second moments of a Doppler spectrum
[Doviak and Zrnić, 1993], can be estimated using the
periodogram method [Bringi and Chandrasekar, 2001],
or autocovariance method [Doviak and Zrnić, 1993]. ∆v
is defined as velocity difference between two adjacent
azimuthal gates. Since 99 % tornadoes in the northern
hemisphere are cyclonic direction [Davies-jones, 1984],
∆v is calculated using the radial velocity on higher az-
imuthal angle minus the lower one in this work. The
TDS continently observed within tornadic storm can be a
tornado indicator, especially when velocity and spectral
signature is not obvious. The polarimetric with Doppler
moment based NFTDA (P-NFTDA) which incorporates
both TDS, σv and ∆v, has potential in decreasing the
FAR caused by velocity aliasing or nonvortex shear such
as squall line.

2.3. Architecture of upgraded NFTDA

A schematic diagram is shown in Fig. 1 to demon-
strate the working procedure of the upgraded NFTDA
(including D-NFTDA and P-NFTDA). Three components
of fuzzification, rule inference and defuzzification consist
the fuzzy logic system. In fuzzification, S shape and Z
shape membership functions are applied to the input pa-
rameters as in [Wang et al., 2008]. Input xi can be spec-
ified as two ( σv and ∆V ) or four ( σv, ∆V , ZDR and
ρhv ) depending on the availability. Moreover, the input
parameters can be in either Legacy or super resolution.
Unlike the previous NFTDA, the rule inference has been
modified to use weighted average instead of multiplica-
tion. The weighted average and multiplication can be

thought of as “OR” and “AND” operation on those fuzzy
inputs. Therefore when TDS or Doppler signatures are
not existing simultaneously, using weighted average rule
inference can still provide robust detection results, but
multiplication is likely failed under this situation.

The output of NFTDA is a cluster of radar gates. Qual-
ity control (QC) procedure is implemented to eliminate
the cluster associated with nonvortex azimuthal shear,
such as gust fronts. If the aspect ratio, defined as the
cluster’s radial extent over azimuthal extent, exceeds a
predefined threshold ( set as four in this work ), this clus-
ter is discarded as an nonvortex cluster. The remained
clusters are assumed associated with tornadic vortex,
and the center of cluster which is designated to be the
tornado center needs to be determined. In this work,
the subtractive clustering method (SCM), an extension
of the mountain clustering method proposed by Yager
and Filev [1994] is used to finalize the vortex center.
Unlike other clustering method such as fuzzy c-means
(FCM) technique, which finds the cluster center with pre-
defined cluster number, SCM can estimate the number
of clusters and determine the clusters centers simulta-
neously. This advantage of SCM is especially important
when more than one tornado presents in a given data
set. In SCM, each data point is initially assumed to be
a potential cluster center. Then a measurement of the
likelihood that each data point would define the cluster
center is calculated based on the density of surrounding
data points. The data with highest potential is set as the
first cluster center, and all the data points in the vicinity
(as determined by a predefined radii) of the first cluster
are removed. Iterating of this process until all of the data
is within radii of a cluster center.

3. PERFORMANCE EVALUATIONS

In order to evaluate the performance of D-NFTDA,
a library of tornado events with both radar data
and tornado locations was established. 49 tor-
nado events occurred during 1993 to 1999 for legacy
resolution and 13 events during March 11th 2008
to September 30th 2008 for super resolution are
currently included in this tornado library. The
number and time period of tornadoes are based
on the NCDC record (http://www4.ncdc.noaa.gov/cgi-
win/wwcgi.dll?wwEvent Storms). All these tornadoes
events are associated with: (1) the tornado’s life time
is more than 3 minutes, (2) the quality of radar data
is sufficient and (3) all the tornadoes located within
150 km from the radar as suggested by Mitchell
et al. [1998]. The corresponding WSR-88D Level
II data were also obtained from the NCDC website
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Figure 1: The schematic diagram of upgraded NFTDA. The framework is flexible enough to take in 2 or 4 parameters.
n = 2 represents D-NFTDA, where spectrum width (σv) and velocity difference (∆V ) are two input parameters; n =
4 represents P-NFTDA, together with σv and ∆V , differential reflectivity (ZDR), and cross correlation coefficient
(ρhv) are the four inputs. A neural network is used to adjust the fuzzy logic membership functions, and the output of
the neuro-fuzzy system is cluster of radar gates. Those gates associated with non-vortex are eliminated by quality
control (QC), and the tornado center is determined using a subtractive clustering method (SCM).

(http://www.ncdc.noaa.gov/nexradinv/). Some of these
cases were also used for the evaluation of the opera-
tional WSR-88D Tornadic Vortex Signature Detection al-
gorithm (TDA) developed by NSSL [Mitchell et al., 1998].
In this work, the NSSL’s Warning Decision Support
System- Integrated Information (WDSSII) was used to
produce TDA results [Lakshmanan et al., 2007], which
will be used to compare with NFTDA detection.

3.1. D-NFTDA for legacy-resolution data

The 49 tornado events are divided into two groups for
training and testing. The training groups is used to train
the membership functions and the testing group is used
to assess the performance. Parameters implemented
in membership functions are initialized from statistical
analysis, and further tuned with a neural network. Level
II moments data from 9 tornado events associated with
21 volume scans are used in training the fuzzy logic
membership functions. Various Fujita scales (F0 ∼ F3)
tornadoes from close range (0 ∼ 50 km), median range
(50 ∼ 100 km) and far range (100 ∼ 150 km) are in-
cluded In the training data set, and listed in Table 1.

The location of a tornado associated with each radar
volume scan was determined from the ground damage
path when it is available. Otherwise, the tornado’s start-
ing, ending locations and the width of ground damage
obtained from the storm report are used in helping de-

termining the locations. These locations were further
adjusted by carefully examining the location of hook-
signature, strong azimuthal shear, and large spectrum
width. Similar methodology of adjustment in time and/or
location is also adopted by Mitchell et al. [1998] and Witt
et al. [1998]. For each volume scan, a right detection
defined as ”hit” is obtained when the detection is within
the close vicinity (< 1 km) of the tornado right location.
Other detections are defined as ”false”. In addition, a
missed detection is obtained if the tornado is present
but the algorithm produces no detection. To quantify
the performance, the time window scoring method de-
scribed in [Witt et al., 1998] was applied. Algorithms
run within the time windows which starts from 15 min-
utes prior to the beginning time of the tornado to 5 min-
utes after the ending time of each tornado [Witt et al.,
1998]. The time, location, radar, volume number, hit,
miss, and false detection of each tornado events are
itemized in Table 2. The POD, FAR, are defined by
POD = a/(a + c), FAR = b/(a + b), , where a, b and c
represent hit, false and miss, respectively.

The POD and FAR for D-NFTDA and NSSL’s TDA are
shown in Fig. 2 for different Fujita scales. It is evi-
dent that for weak tornadoes of F0-scale the D-NFTDA
shows significant improvement from conventional TDA
with much higher POD (from 6.7% to 47%) and lower
FAR (from 91% to 30%). Moreover, the D-NFTDA can
extend the detection range of F0 tornadoes from 36 km
to approximately 60 km. For stronger tornadoes (F1-
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Figure 2: Statistical performance of POD (left) and FAR (right). The results are from 49 tornado events. The detection
results of D-NFTDA are indicated by red bars, and the detections results of TDA generated by WDSSII are indicated
by blue bars. The abscissa is the intensity of tornado in Fujita Scale.

Figure 3: Similar as Fig. 2, but the abscissa is the distance from tornadoes to radars in very close range (0 ∼ 30
km), close range (30 ∼ 60 km), median range (60 ∼ 90 km), far range (90 ∼ 120 km) and very far range (120 ∼ 150
km).
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Date Radar County, State #Volume Range (km) Maximum EF-
Scale

04/15/94 KLSX St.Louis, MO 2 0–50 F0
10/07/96 KTBW Tampa Bay Area, FL 2 50–100 F0
03/24/98 KHNX Hanford, CA 5 100–150 F0
01/21/90 KLZK Little Rock, AR 4 0–50 F2
07/03/90 KAPX Gaylord, MI 1 50–100 F2
02/23/98 KMLB Melbourne, FL 1 100–150 F2
05/31/96 KABR Aberdeen, SD 1 0–50 F3
05/17/95 KDDC Dodge City, KS 2 50–100 F3
02/23/98 KMLB Melbourne, FL 3 100-150 F3

Table 1: Tornado events used in the training of D-NFTDA parameters for legacy-resolution data.

F5), the D-NFTDA offers comparable or slightly higher
PODs compared to TDA. It is worth of noting that D-
NFTDA has significantly lower FAR. For example, for F4
and F5 tornadoes, both algorithms produce comparable
PODs of higher than 95%, but the NFTDA can more ef-
fectively suppress false detection to produce of FAR of
23%, while the FAR of TDA is 42%. The performance
of D-NFTDA and TDA are also compared for different
ranges, and the results are presented in Fig. 3.

Within the range of 150 km, D-NFTDA shows higher (or
comparable) POD (83% vs. 72% at 0∼30 km, 74% vs.
62% at 30∼60 km, 85% vs. 78% at 60∼90 km, 50%
vs. 50% at 90∼120 km and 75% vs. 63% at 120∼150
km) and lower FAR than TDA (11% vs. 38% at 0∼30
km, 37% vs. 55% at 30∼60 km, 18% vs. 33% at 60∼90
km, 36% vs. 55% at 90∼120 km and 36% vs. 49% at
120∼150 km).

3.2. D-NFTDA for super-resolution data

In this work, the membership functions are retrained
using super-resolution data, and the performance of
super-resolution version D-NFTDA is evaluated. For the
purpose of evaluation, 13 tornado cases associated with
Fujita scale from EF0 to EF3 with super-resolution mo-
ments were initially identified out of 1470 tornado cases
achieved in the NCDC record from 11 March 2008 to
30 September 2008. Tornado life duration(longer than 3
minutes), distance to an available WSR-88D radar(less
than 150 km) and data quality are the three criteria used
in the data selection. Radar data from two volume scans
on a F0 tornado case recorded by KFTG, and three vol-
ume scans on a F1 tornado case recorded by KDVN are
used in the training procedure. Tornado cases used in
testing are listed in Table 3.

Due to the limitation of available cases, tornadoes with
Fujita scale of F0 and F1 are referred as week tornadoes
and others are categorized as strong tornadoes. More-
over, the NSSL’s WDSSII was used to simulate/convert
Doppler moments from super resolution to the legacy
resolution, which were then fed to the D-NFTDA and
conventional TDA. The POD and FAR from the three ap-
proaches are presented in Fig. 4 For the legacy resolu-
tion, the D-NFTDA exhibits higher POD and lower FAR
than TDA, which is consistent with previous results. It is
interesting to note that for weak tornadoes the super-
resolution D-NFTDA has enhanced POD of 75% and
slightly decrease FAR of 33%, compared to the legacy
D-NFTDA with POD of 60% and FAR of 28.3%.

3.3. P-NFTDA for legacy-resolution

An example is used to demonstrate the debris signa-
tures within a tornado in Fig. 5. A tornado is indicated
with a while circle, where apparent shear signatures,
high value of σv, low value of ZDR and ρhv can be ob-
served. Similar values of σv and ∆V can also be found
at approximately 4 km northeast of the circle. How-
ever, at the same location ZDR and ρhv show apparent
different value from the place associated with tornado.
TDS becomes particularly important when a radar’s am-
biguous velocity is low, using C-band radar for example,
which can not provide obvious tornado velocity and/or
spectral signatures. Since current WSR-88D radars are
upgrading into polarimetric model, even the P-NFTDA is
only tested on research prototype radar, it has the po-
tential to be implemented in future.

To demonstrate the capability of TDS in facilitating tor-
nado detection especially in eliminating false detection,
detection results from D-NFTDA and P-NFTDA on three
tornadic events are compared, and the results are pre-
sented in Fig. 6.
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Number Detection (NFTDA / TDA)
Date Radar County, State #Tornado #Volume Hit Miss False

05/31/96 KABR Aberdeen, SD 1 29 7/5 3/5 4/7
05/22/95 KAMA Amarillo, TX 1 10 1/2 0/1 0/1
07/03/99 KAPX Gaylord, MI 1 13 4/4 0/0 0/0
05/21/98 KCYS Cheyenne,WY 1 85 0/0 5/5 0/0
05/16/95 KDDC Dodge City, KS 1 71 3/3 0/0 3/3
05/27/97 KEWX Austin, TX 9 81 17/11 9/15 3/1
03/29/98 KFSD Sioux Falls, SD 2 87 25/9 0/16 1/4
05/07/95 KFWS Dallas/Fort, TX 2 41 12/8 5/9 3/1
05/12/95 KGLD Goodland, KS 3 72 12/12 0/0 1/2
11/16/93 KHGX Houston, TX 5 67 4/2 6/8 2/2
04/07/98 KILX Lincoln, IL 4 137 6/6 5/5 2/3
01/02/99 KLCH Lake Charles, LA 9 74 12/12 5/5 17/22
04/15/94 KLSX St. Louis, MO 2 49 3/2 6/7 3/9
05/28/96 KLVX Louisville, KY 2 33 13/13 1/1 4/10
03/29/98 KMPX Minneapolis, MN 2 36 15/15 3/3 9/20
01/29/98 KNKX San Diego, CA 1 12 0/0 5/5 0/0
04/03/99 KSHV Shreveport, LA 1 32 12/11 9/10 7/17
09/02/98 KTBW Tampa Bay, FL 2 45 5/4 8/9 1/0

Table 2: Tornado events used in the testing of D-NFTDA parameters for legacy-resolution data.

Number Detection (NFTDA / TDA)
Date Radar County, State #Tornado #Volume Hit Miss False

07/02/08 KDMX Des Moines, IA 1 25 3/3 6/6 3/3
07/10/08 KDVN Davenport, IA 2 14 7/0 7/14 8/2
08/24/08 KFTG Denver, CO 1 9 0/0 6/6 0/0
06/04/08 KIND Indianapolis, IN 2 14 8/6 2/4 6/10
07/14/08 KLNX North Platte, NE 2 14 4/0 8/12 0/0
08/02/08 KLWX Sterling, VA 2 14 4/0 8/12 0/0
05/08/03 KOUN Norman, OK 1 6 2/0 0/2 2/3
05/10/03 KOUN Norman, OK 3 12 9/5 0/4 2/3

Table 3: Tornado events used in the testing of D-NFTDA parameters for super-resolution data.

These three events occurred on center Oklahoma on 10
May 2003, and radar data are recorded using research
prototype polarimetric radar WSR-88D KOUN. Detail
damage path from ground survey is available which in-
serted in Fig. 6 as one reference. Both D-NFTDA and
P-NFTDA can detect the tornado all the time, except
two false detections at 03:41 and 03:47 from D-NFTDA
existing on the north of the damage path. The veloc-
ity at these two moments are presented in Fig. 6, from
where obvious velocity aliasing can be observed. False
detections come out if they are not/incorrectly dealias-
ing. However, ρhv and ZDR does not show obvious low
value at these two locations, and no TDS can be identi-
fied. Therefore, even large velocity difference and spec-
trum width can be observed, they still can be eliminated.

4. SUMMARY AND CONCLUSIONS

The enhanced detection capability of original NFTDA
has been shown through simulation results and real
cases analysis. However, three parameters σs, P and
χR defined as tornado spectral signature (TSS), are de-
rived from level I time series data, which are not avail-
able for current operational WSR-88D radar. In order
to engage with operational products and increase the
commercial value of the algorithm, the NFTDA needs
to be modified to take in parameters available currently
or in future. Advanced neuro-fuzzy tornado detection
algorithm is developed in this work. Through the eval-
uation on the real tornado events, the performance of
this Advance tornado detection algorithm shows signif-
icant improvement. Even more, the performance using
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Figure 4: Similar as Fig. 2, but for super resolution data.

super-resolution data shows further improvement than
legacy resolution data. With the incorporation of polari-
metric data, false detections caused by nonvortex shear,
such as velocity aliasing can be eliminated.
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Figure 5: The Doppler velocity (top left), σv (top right), ZDR (bottom left) and ρhv (bottom right). Tornado location is
indicated by a white circle, and reflectivity with 30 dB is indicated using white contour.
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Figure 6: Comparisons of the detection results from D-NFTDA and P-NFTDA, which are denoted by blue triangles
and red circles respectively, for tornadoes on 10 May 2003.The detection of ”hit” from each approach is connected
by a solid line to show the time continuity. Ground damage path with Fujita scales are depicted by color-shaded
contours. The Doppler velocity plot at 03:41 and 03:47 are inserted. False detection at these two moments are 3, 4
km away from the damage path, respectively.
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