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1. INTRODUCTION 

Raindrop Size Distribution (RSD) variability is one of 
the main factors affecting quantitative precipitation 
estimation from radar measurements. Dual-polarized 
radar systems enable the use of multi-parametric 
algorithms that generally improve the rainfall retrieval. 
Regression-based procedures are largely preferred by 
the operational community, simplicity being often 
considered synonymous of robustness. Despite the 
neural network (NN) capability to represent complex 
functions is well recognized in the estimation theory, its 
dissemination to the operational radar community is 
obstructed by an accompanying mystic halo. Rainfall 
retrieval problem is an ill-posed strongly non-linear 
problem. This means that the related inverse problem 
can be addressed only by resorting to the statistical 
analysis and by adding a priori information. Within this 
framework, the NN technique represents a powerful 
approach to design a retrieval algorithm in a more 
flexible and robust way than conventional methods such 
as linearized multivariate regression. Indeed, the 
selection of a NN topology, very often thought to be a 
“black box”, is theoretically equivalent to the choice of 
either a regression analytical model or a Bayesian 
probability model (Haykin, 1995), whereas the NN 
training and test resembles the optimization step within 
the parameter estimation of statistical parametric 
relations.  

An attempt to outline the potential benefit derived 
from the use of such NN approaches in radar rainfall 
estimation is carried out in the present work. A large 
radar data and surface gauge observation dataset 
collected in central Oklahoma during the multiyear Joint 
POlarization Experiment (JPOLE) field campaign is 
used to validate two neural network techniques: a) an 
‘indirect' NN methodology based on the RSD retrieval 
and rainfall calculation; b) a ‘direct' NN methodology 
based on the rainfall retrieval. Both NN-based rainfall 
retrieval techniques are trained by a randomly-
generated RSD dataset where independent RSD 
parameters are assumed within a climatological 
variability range.  

____________________________________________ 

* Corresponding author address:  Gianfranco Vulpiani, 
Department of Civil Protection, Prime Ministry, Rome, Italy;  
email:  gianfranco.vulpiani@protezionecivile.it 

These assumptions ensure a broad applicability 
including the local expected correlation between the 
drop number concentration and mean diameter. Rainfall 
temporal accumulations from RSD retrieval-based 
methods are shown to be sensitive to the choice of a 
raindrop fall speed model. To minimize the impact of 
this choice, a further ‘direct' NN approach is tested. 
Proposed NN-based techniques exhibit bias and root 
mean square error characteristics comparable with 
those obtained from parametric relations, specifically 
optimized for the JPOLE dataset, indicating an 
appealing generalization capability with respect to the 
climatological context.  

 
2. NEURAL-NETWORK RADAR RAINFALL ESTIMA-

TION TECHNIQUES 
 
Two neural network techniques for rainfall estimation 

from polarimetric radar measurements are evaluated in 
this work. They both assume that the raindrop size 
distribution N(D) can be approximated by a normalized 
Gamma function of the form (Bringi and Chandrasekar, 
2001) 
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where D is the volume-equivalent drop diameter, 
ƒ(µ) is a function of µ only, the parameter D0 is the 
median volume drop diameter, µ is the shape of the 
drop spectrum, and Nw [mm-1 m-3] is a normalized drop 
concentration that can be calculated as function of liquid 
water content W and D0 (e.g., Bringi and Chandrasekar, 
2001).  

The first suggested neural network algorithm (RRSD) 
is based on the use of polarimetric radar observables for 
the estimation of the Raindrop Size Distribution (RSD). 
Indeed, radar reflectivity factor at horizontal polarization 
Zhh and differential reflectivity Zdr are commonly used in 
RSD retrieval (Gorgucci et al., 2002; Brandes et al., 
2002). Specific differential phase shift Kdp is another 
potential predictor for RSD retrieval. However, Kdp 
computations are often noisy and/or negative, which 
may perturb the results. Consequently, Kdp 



computations may be considered most reliable after 
applying a lower threshold of 0.2 deg km-1 (e.g., 
Gorgucci et al. 2002). Notwithstanding, Vulpiani et al. 
(2006) found that the proposed algorithm may perform 
well even for very low values of Kdp. Moreover, in the 
case of unreliable or unavailable measurements of Kdp 
(i.e., radars which do not measure differential phase), a 
2-input neural-network algorithm can also be 
successfully applied. Figure 1 shows the block diagram 
of RRSD. 

The median volume drop diameter D0 and the 
intercept parameter Nw are independently estimated 
using distinct NNs with 3 (i.e., Zhh, Zdr, Kdp) or 2 inputs 
(i.e., Zhh, Zdr), according to the availability and reliability 
of Kdp (Vulpiani et al., 2006). The shape parameter µ is 
estimated from Zdr and the retrieved values of D0 (as 
suggested in Brandes, 2002) using a 2-input NN (i.e., 
Zdr, D0). Thus, the estimate of the shape parameter is 
indirectly dependent on Kdp through D0. 

 

 

Figure 1   Block Diagram representing the RSD-retrieval based 
neural network rainfall algorithm. 

 
Once the RSD is retrieved, the rain rate can be simply 
estimated as (e.g., Bringi et al., 2004; Vulpiani et al., 
2006) 
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To minimize the importance of the choice of v(D), a 

new “direct” (without passing through the RSD estimate) 
neural network rainfall algorithm RNN is also evaluated. 
Formally, we can write this algorithm as: 

 
{ }dpdrhhRNN KZZNNR ,,=                                             (3) 

 
During training, the known neural network output, i.e. 
D0, Nw and µ for RRSD and R for RNN, have been 
randomly generated assuming, for the latter, the Atlas 
and Ulbrich (1977) terminal velocity relationship. This 
indicates that both RRSD and RNN are trained without any 
a priori knowledge of the specific climatology and/or 
radar measurements of the considered site. It is worth 
noting that for the ‘indirect’ NN-based RRSD, the choice 
of the fall speed model only affects the retrieval phase 
(e.g., rainfall rate estimates following RSD retrievals), 
with the NN training dealing only with RSD parameter 
estimation. In contrast, the training of the ‘direct’ NN-
based RNN could potentially be sensitive to the assumed 
raindrop terminal velocity. Nevertheless, as briefly 
discussed later in the text, RNN was found largely 
insensitive to that assumption used for training. 
 
 
3. EXPERIMENTAL RESULTS 

Validation of the NN methods outlined in the 
previous section is accomplished using the JPOLE 
polarimetric radar dataset collected in central Oklahoma 
(e.g., Ryzhkov et al., 2005a). A total of 42 events 
observed by the KOUN radar between the years of 2002 
and 2005 have been selected for analysis (as in 
Giangrande and Ryzhkov 2008, Table 1). Concurrent 
gauge observations were available from the densely-
spaced ARS network stations located at ranges of 50-
115 km from the KOUN radar. For this study, the ARS 
Little Washita watershed is the primary location for rain 
gauges, a basin of about 611 km2. 

For the validation study, we compare hourly gauge 
and radar rainfall accumulations over gauge locations. 
In agreement with previous JPOLE studies, hourly radar 
accumulations are defined as an hourly rainfall estimate 
centered on a gauge. Radar measurements are 
averaged using 5 gates centered over the gauge 
location and two closest azimuths separated by 1 
degree. Such averaging produces a radial resolution of 
1.0 km and transverse resolution that varies with range. 
To establish the quality of the radar rainfall algorithms 
and NN-based methods, absolute differences between 
radar and gauge estimates (expressed in mm) are 
examined rather than standard fractional errors, which 
are heavily weighted towards small accumulations. 
Rainfall estimates are characterized by the bias B = 
<�T>, standard deviation STD = <|�T - B|2>1/2 and the 
rms error RMSE = <|�T|2>1/2, where �T = TR – TG is 



the difference between radar hourly rain-rate totals TR 
and gauge hourly rain-rate totals TG for any given 
radar-gauge pair and brackets imply averaging over all 
such pairs. 

3.1 RRSD SENTITIVITY TO FALL SPEED MODEL AND NUMBER 
OF INPUTS 

 
As it can be argued from (1), any RSD-retrieval based 
rainfall algorithm is sensitive to the choice of the 
assumed fall speed. A sensitivity study with respect to 
the assumed terminal velocity is here performed by 
considering the following relationships: 
 
 

• Atlas et al. (1973), here referred as A73; 

• Atlas and Ulbrich (1977), here referred as A77; 

• Brandes et al. (2002), here referred as B02. 

The results obtained by comparing hourly 
accumulations from ARS rain gauges and NN-based 
rainfall methods for the raindrop fall speed models are 
summarized in Table 1 in terms of error Bias, error STD 
and RMSE. It can be noticed that the assumption of a 
fall speed relationship plays a non-negligible role for 
estimating hourly rainfall accumulations from the 
retrieved RSD. Among the considered relationships, 
A77 is best matched (Bias= -0.17 mm, STD=3.44 mm, 
RMSE=3.45 mm) to the observed rainfall 
accumulations, although we caution this result may be 
fortuitous for minimizing errors in rainfall estimation and 
does not necessarily imply that A77 is the best fall-
velocity model. The performance of RRSD is similar 
when considering A73 and B02.  

Regarding the performance of the NN-based 
algorithm with respect to the neural network input 
configuration, the sensitivity analysis on the observed 
radar dataset confirms the findings from the simulation 
environment by Vulpiani et al. (2006); there is a non 
negligible benefit for using Kdp jointly with Zhh and Zdr in 
estimating rainfall rate. For example, with the A77 fall 
speed model the performance of the 2-input neural 
network is inferior compared to the 3-input configuration 
in terms of standard errors (STD=3.98 mm, RMSE=3.98 
mm), with the impact on the bias found negligible (Bias= 
-0.09 mm). 

3.2 COMPARISONS WITH OPTIMAL JPOLE RAINFALL 
RELATIONS  

The following parametric retrieval algorithms, based 
on empirical regression of measured gauge/disdrometer 
and radar data, have been chosen for comparison with 
the proposed neural-network methodology 
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where Zhh and Zdr are expressed in linear units. 
Relation (13) is the inversion of the standard NEXRAD 
rainfall formula for continental (nontropical) application 
(e.g., Fulton et al. 1998), whereas (14) and (15) are 
selected because of their optimal performance in rain in 
central Oklahoma during the JPOLE field campaign 
(e.g., Ryzhkov et al. 2005b; Giangrande and Ryzhkov 
2008).   

 

Figure 2 Comparison between gage and radar rainfall estimated 
through the proposed neural network techniques. The upper panel 
shows the performance of RRSD assuming the A77 speed model and 
the three input configuration. The performance of “direct” neural 
network algorithm RNN is shown on the lower panel. 



Rain retrieval using RRSD 
 2-inputs 3-inputs 
 A73 A77 B02 A73 A77 B02 

Bias 0.24 -0.09 0.25 0.14 -0.17 0.15 
STD 4.26 3.98 4.27 3.66 3.44 3.68 

RMSE 4.26 3.98 4.28 3.67 3.45 3.68 
 
Tab. 1. Performance of the RSD-retrieval-based neural network 
rainfall algorithm (RRSD) with respect to the assumed fall velocity and 
network configuration (see Vulpiani et al. 2006 for details) relatively 
to the 42 events observed from 2002 to 2005. 

Furthermore, as proposed in Ryzhkov et al. (2005b), we 
have applied a synthetic algorithm (RSYN). According to 
the “synthetic algorithm”, the choice between various 
polarimetric rainfall relations is determined solely by the 
radar reflectivity Zhh or R(Zhh).  Such a selection criteria 
may act as a proxy in the rain medium for rainfall 
relations contingent on the results polarimetric echo 
classification, as outlined in Giangrande and Ryzhkov 
(2008).  

We emphasize that the polarimetric algorithms (4), 
(5) and the ‘synthetic’ algorithm have been optimized for 
Oklahoma climatology and the JPOLE dataset. It is 
noted that JPOLE-‘matched’ conventional relations have 
also been tested (e.g., as in Ryzhkov et al. 2005b), but 
have not shown to offer a significant improvement over 
optimal polarimetric relations. As recently outlined in 
Schuur et al. (2008), relationships (4)-(6) may still not be 
sufficient estimators if “tropical-like” events hit the 
region. It is worth noting that both RRSD and RNN have 
been constructed in a simulated framework through a 
general a priori microphysical parameterization. The 
consequence is that the estimators RRSD and RNN are 
potentially robust and may be equally suitable in other 
precipitation regimes.  

An advantage for all polarimetric rainfall methods is 
confirmed for this study, wherein all of the polarimetric 
algorithms are found to outperform the single-parameter 
conventional NEXRAD R(Zhh) relation. Results obtained 
by applying the neural network based algorithms are 
depicted in Figure 2. Similarly, Figure 3 shows the 
performance of the parametric techniques. As 
summarized in Table 2, the conventional NEXRAD 
R(Zhh) relation is characterized by a large bias and the 
highest standard deviation and rms error when 
compared with NN-based and JPOLE polarimetric 
relations. The R(Kdp) relation slightly outperforms the 
R(Zhh,Zdr) and the RRSD NN-method. Contingent on the 
choice for raindrop fall speed relation (i.e., A77), the 
RSD-retrieval-based neural network RRSD may perform 
slightly better than R(Zhh,Zdr) in terms of STD 
(STD=3.44, RMSE=3.45) and comparable with R(Kdp) 
for this dataset. The JPOLE optimal synthetic algorithm 
RSYN ostensibly outperformed R(Zhh,Zdr), R(Kdp) and the 
RRSD method in terms of bias and rms error. Results 
obtained by applying the “direct” neural network RNN are 
improved compared to previous RRSD NN-based 
approach in all configurations.  

 R(Zhh) R(Kdp) R(Zhh,Zdr) RSYN RRSD RNN 

Bias 1.57 -0.59 -0.18 -0.6 -0.17 -0.23 

STD 5.45 3.38 3.59 3.02 3.44 2.92 

RMSE 5.67 3.43 3.60 3.08 3.45 2.93 

 
Tab. 2. Comparison between the neural-network based rainfall 
algorithms (RRSD, RNN) and the parametric ones relatively to the 42 
events observed from 2002 to 2005. 

For the best-matched fall speed relation (as based 
on ‘indirect’ method testing) and 3-input configuration, 
bias and standard errors are comparable to the 
published synthetic methodology that we emphasize 
was optimized for the JPOLE dataset (Bias=-0.23, 
STD=2.92, RMSE=2.93). During sensitivity testing for 
various fall speed models in the ‘direct’ method training, 
it was determined that the results do not significantly 
change and even improve slightly, for example, when 
using the B02 model instead of A77.  

 
 

Figure 3 Radar rainfall estimates following a) the NEXRAD 
conventional Z-R relationship, b) the R(Zhh,Zdr) relationship shown in 
(5), c) the R(Kdp) relationship shown in (6) and d) the synthetic 
parametric algorithm RSYN proposed by Ryzhkov et al. (2005b). 
 
 
4. CONCLUSIONS 
 

The variability of the raindrop size distribution 
represents one of the main physical factors affecting 
radar-based estimation of rainfall. The use of 
polarimetric methodologies has been previously found 
to reduce the impact of such variability. This study 
evaluates one such polarimetric rainfall technique that 
uses a neural network algorithm for raindrop size 
distribution and rainfall retrieval. This technique was 



only tested previously using simulations as in Vulpiani et 
al. (2006). For the JPOLE dataset, the ‘indirect’ NN-
based RRSD methodology, based on RSD estimation, 
has shown a non-negligible sensitivity to the assumed 
fall speed velocity. To reduce this sensitivity, a new 
‘direct’ (without passing through the RSD retrieval) NN-
based algorithm RNN is also evaluated. 

Polarimetric techniques have all outperformed the 
single-parameter R(Zhh) in terms of bias, rms error and 
standard deviation. Among the polarimetric algorithms, 
RRSD has shown a performance slightly better than 
R(Zhh,Zdr) and comparable with R(Kdp) over the entire 
JPOLE dataset. The best results as compared with 
gauge accumulations were obtained through use of the 
‘direct’ NN-based RNN algorithm and JPOLE-optimal 
RSYN method with a slightly lower bias provided by the 
former. It is again worth noting that both NN-based RRSD 
and RNN have been constructed in a simulated 
framework without any climatologically-driven 
optimization.  
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