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1.  INTRODUCTION 

 
In the areas of climatology, hydrology, water 

resources, and agriculture, high resolution, both 
temporal and spatial, is required. Although both 
ground-based and rain gauge radar can provide 
very accurate readings with high temporal and 
spatial resolution, these types of radar cannot 
cover areas such as mountain ranges and tropical 
rain forests that take up large areas of the globe. 
For these areas, satellite precipitation estimation 
can be a solution. 

Many different methods and algorithms have 
been developed for precipitation satellite 
estimation. These methods can be categorized 
into groups in terms of the sensors used in the 
algorithms. These groups can be IR-based, (Arkin, 
et al. 1987) microwave-based (Ferraro 1995, 
Kummerow, et al. 2001), based on a combination 
of IR and radar (Huffman  2007,  Hsu 2000, Todd 
2001, Joyce 2004, Turk 2000, Sorooshian 2000, 
Ferraro 1995), or based on a combination of IR, 
lightning, and radar (Goodman 1988, Grecu 2000, 
Morales and 2003, and Chronis 2004).  

Rainfall estimation algorithms can also be 
classified into three groups depending on the level 
of information extracted from infrared cloud 
images. These groups are the cloud-pixel-based, 
cloud local-texture-based and cloud patch–based 
algorithms (Hong, et al. 2004). In cloud-pixel-
based algorithms, a rain rate (constant or variable) 
is assigned to every pixel of the cloud (Arkin, et al. 
1987). The cloud local-texture-based technique 
calculates pixel rain rates by considering a range 
of the neighborhood pixel coverage (Wu, et al. 
,1985) Cloud-patch-based techniques use cloud 
coverage under a specified temperature threshold. 
The PERSIANN-CCP algorithm (Hong, et al. 
2004) is an example of using this technique. 
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    For this paper, we developed a cloud-patch-
based algorithm to estimate rain rate using cloud 
classification. We call it Rainfall Estimation using 
Wavelet-Lightning Cloud Classification (REWLCC) 
algorithm. This technique combines IR and 
lightning data with radar calibration. The PMW, or 
passive microwave-based rainfall estimates, from 
TMI (TRMM microwave imager) are used for 
calibrating and assigning the rain rate map for 
every cluster.  

 
2.  DATA 

 
The study region covers an area of the United 

States extending between 30-38N and -95-85E. 
For this study, three days from each month of 
2007 (January to December) were used for 
training, and two days from every month of 2008 
were allocated for testing. The satellite data we 
used in this study include the IR brightness 
temperature from GOES 12 and the TRMM 
microwave imager (TMI) 2A12 product 
(Kummerow, et al., 2001). We used lightning from 
NLDN, The National Lightning Detection Network 
(www.vaisala.com). as our ground-based data for 
this study.  

The infrared data (IR) extracted from GOES 12 
(Channel 4) has 30-minute interval images that 
cover a whole area of study. The spatial resolution 
is 4km× 4km. 

Estimated rainfall from TMI (2A12 algorithm) is 
used for calibrating and training this algorithm. The 
TRMM 2A12 algorithm explores the application of 
profiling techniques (Kummerow, et al., 1996). 
Figure 1 depicts images of data for June 10, 2008. 
The cloud-top brightness temperature from the 
GOES-12 infrared is shown at the top left. 
Lightning flashes that occurred within a 15 minute 
window around the time of the nominal scan are 
shown in the top right panel. The TMI rain rate is 
displayed both at the bottom left and the right. 
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3.  METHODOLOGY 
 
     As mentioned above, this algorithm uses a 
cloud-patch technique to estimate rainfall. 
Therefore, the first step for this approach is cloud 
segmentation in order to delineate the cloud 
patches. Next, the features of each patch are 
extracted, and then the patches can be classified 
into groups. Finally, for each cluster, a 
corresponding rain rate curve is assigned. These 
four steps are described below. 
 

 
Figure 1. Cloud-top brightness temperature (Top Left), 
Lightning (Top Right), TMI rain rate (Bottom Left),TMI 
coverage (Bottom Right) for June 10, 2008 at 14:00 

 
3.1 Cloud Segmentation                            
                      
     Figure.2a (left) shows a cloud-top brightness 
temperature from the GOES-12 (using a fixed 
threshold 253K). The corresponding cloud patch 
segmentation is depicted in Figure 2b. To obtain 
this image, we used a simple segmentation 
method, the single threshold technique.  
 

 
Figure 2. (a-Left) Cloud-top brightness temperature, 

 (b-right) Corresponding patches and segmented clouds 

3.2 Feature Extraction  
       
     As it was shown by the PERSIANN algorithm, 
the coldness, geometry, and texture features of 
cloud patches can be used to differentiate cloud 
types. An important objective is to find effective 
features for classifying clouds. Cloud texture can 
be a crucial measurement to differentiate cloud 
types. Therefore, it is necessary to find effective 
and powerful texture features. Because wavelet 
features allow the use of different mother functions 
and multilevel decomposition, they are powerful 
texture features and can be used be useful to take 
lightning into account as a feature for classifying 
clouds.  
    In this study, all features in the PERSIANN 
algorithm are used, but our algorithms are 
enriched with lightning data and further enhanced 
with a wavelet-based technique for feature 
extraction. 
 
3.3 Cloud Classification  
  
      As in the PERSIANN algorithm, a self-
organizing map neural network (Kohonen 1982) is 
used in this study for cloud classification. SOM 
projects patterns of high dimensional space to 
lower dimensional space. The projection enables 
the input patterns of many variables to be 
classified into a number of clusters and to be 
arranged in a two dimensional coordinate. In this 
technique, the distances between the input pattern 
(features) and cluster weights are computed and 
the corresponding cluster with the minimum 
distance is selected.  
 
 3.4 Assigning the Cluster Rain Rate 
 
       In this section, a T-R (Temperature–Rain 
Rate) curve is assigned to each cluster. To obtain 
this curve, first T-R pixel pairs (obtained from 
Goes12 observation and TMI product) are 
redistributed by using the Probability Matching 
Method (PMM) (Atlas 1990).  
The T-R transformation that is the result of 
applying PMM is fitted with a non-linear 
exponential function. The non-linear least squares 
method is used to fit the T-R data with the 
following exponential function:            
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                  R=s1+s2 exp (-T/s3)                    (1) 
Where parameters s1, s2, and s3 are obtained by 
the non-linear least squares method, R is rain rate 
(mm /h) and T is cloud brightness temperature (k). 
 
4. RESULT and VALIDATION 
 
      Figure 3 shows a block diagram of an 
implementation of the REWLCC algorithm. Data 
from Goes 12 is calibrated and converted to an 
image. 
 

 
 
Figure3 – Model Structure for an implementation of the 

REWLCC algorithm 
 

 First, using the thresholding method, the clouds 
are segmented and divided into patches 

Then, along with each patch, the total flashes  
that occur within a 15 minute window of the time of 
the Goes observation are calculated. As displayed 
in the figure, the feature extraction is applied for 
every patch. The texture, lightning, coldness, and 
geometric features are extracted and put into a 
neural network classifier. Table 1 shows a list of 
the features used in this study.  
This algorithm uses a self-organizing map neural 
network, which is an unsupervised classifier. For 
easy computation and accuracy, a 10x10-size 
group is selected for the clusters.       
The classification technique is carried out in two 
modes: training and testing. In the training mode, 
some of the patches, in this case 400 patches  
 

Tabel1. The features extracted from each patch 

 
 pulled from 2007, are used as training data for 
creating 100 clusters.  
 
4.1 Evaluation and comparison of results 
 
In order to evaluate the features used in this 
algorithm (REWLCC), the following four scenarios 
we examined: 

1)  Wavelet, lightning and PERSIANN features    
(WLP) (Features for REWLCC algorithm).            
2) Wavelet and PERSIANN features (WNLP).             
3) Lightning and PERSIANN features (LP).            
4) The PERSIANN feature (P).  (Features for 
PERSIANN-CCS) 

     In Circumstance 1, for every patch, we took 
one level wavelet transform of each pixel in a 5x5 
window centered at the pixel. The local mean and 
standard deviation (STD) of the detail energies 
(horizontal, vertical and diagonal) are calculated.  
Along with the PERSIANN feature (23 features), 
we have 60 features in this scenario.           
     In Circumstance 2, we used wavelet and 
PERSIANN features (the lightning feature is not 
used), with 36 features for wavelet and 24 for 
PERSIANN, we have 59 features in total. 

Lightning: 
The number of flashes in a cloud patch 
Texture: 
STD of the cloud patch temperature (TSTD) 
Gradient of cloud-top brightness temperature (TOPG) 
Mean Value of local STD cloud temperature (MSTD) 
Standard dev of local STD of cloud patch (SSTD) 
Gray-image texture, Occurrence (ASM) 
 
Mean of local Mean Horizontal Detail Wavelet (MMH) 
Mean of local STD Horizontal Detail Wavelet (MSH) 
STD of local Mean Horizontal Detail Wavelet (SMH) 
STD of local STD Horizontal Detail Wavelet (SSH) 
Mean of local Mean Vertical Detail Wavelet (MMV) 
Mean of local STD Vertical Detail Wavelet (MSV) 
STD  of local Mean Vertical Detail Wavelet (SMV) 
STD of local STD Vertical Detail Wavelet (SSV) 
Mean of local Mean Diagonal Detail Wavelet (MMD) 
Mean of local STD Diagonal Detail Wavelet (MSD) 
STD  of local Mean Diagonal Detail Wavelet (SMD) 
STD  of local STD Diagonal Detail Wavelet (SSD) 
Geometric: 
Cloud-Patch area (PArea) 
Cloud-Patch Shape Index (PShape) 
Coldness: 
Min temperature of a cloud patch (Tmin) 
Mean temperature of a cloud patch (Tmean) 



     In Circumstance 3, just the lightning and 
PERSIANN features were used for the 
classification.  
                   

  
 

Figure 4 – Cloud-top brightness temperature (a), 
patches and Lightning (b), TMI rain rate (c), TMI 

coverage (d), on Dec 12, 2008 at 16:01 
 
 The wavelet features are not used in this section 
so we have 24 features in a patch.   
    In Circumstance 4, just PERSIANN features 
were considered. So the number of features for 
this scenario is 23. 
    Figure 4 shows a set of images based on data 
from Dec 09, 2008 at 16:01. The cloud-top 
brightness temperature from the GOES-12 
infrared is shown at the top left; the corresponding 
cloud patches are shown in the top-right panel 
with an overlay of lightning flashes that occurred in 
the 15-minute window around the time of the 
nominal scan. The TMI rain rate image (left) and 
its coverage (right) are shown in the bottom views. 
    Based on the scenarios explained above, 
Figure 5 depicts the estimate results of the 
scenarios (1, 2, 3, 4) for Dec 09, 2008 at 16:01 in  
the subplot a, b, c, and d, respectively. 
 
4-2 Validation 
 
      Several evaluation criteria were selected to 
validate the results.  The quantitative accuracy of 
the estimates was evaluated by using the bias and 
the correlation coefficient. The performance of 
rain/no-rain detection was evaluated by the 
probability of detection (POD), the false-alarm 
ratio (FAR), the Critical Success Index (CSI), and 
the Heidke skill score.  

 
 
Figure 5– Rainfall estimation by scenario 1 (a), 2 (b), 3 
(c), and 4 (d) 
 
Figure 6 and 7 show a validation of the estimates 
against the TMI data. All of these criteria use TMI 
estimates as reference data. 
 

 
      Figure 6– Statistic evaluation for the scenarios 
 
 In these figures, two quantity evaluations (Spatial 
correlation and Bias) and 4 rainy/no-rainy 
detecting evaluations (Heidke, POD, FAR, CSI)  
are shown. As it can be seen, the algorithm with 
wavelet and lightning features (WLP) has better 



spatial correlation in overall. In order to better 
compare the results, an average of each 
evaluation is shown in Table 2. 

Figure 7– Statistic evaluation for the scenarios 

   In this table, WLP has a better result than P in 
terms of CSI, HSS, POD, and FAR with 
approximately 5%, 7%, 8%, and 3% improvement, 
respectively.  With regard to quantity evaluation, 
WLP has a better result in the case of spatial 
correlation (CORR), approximately 6% 
enhancement, but it doesn’t have as good of a 
bias result, having close to a 2% increase. 
 

Table 2. Average statistic value 

 
 
  To see the performance of these scenarios with 
different rainfall thresholds, Figure 8 shows a 
comparison by depicting the average of the 
Heidke skill score for all scenarios. This figure 
demonstrates that the WLP has a better result, 
especially when the threshold is small. The P 
scenario has a lower HSS (Heidke skill score) 
result than others, especially for small thresholds. 

  As evaluation result showed above, it is can be 
said that using wavelet and lightning features can  
Improve the rainfall estimation based on cloud- 
patch classification. 
 

 
Figure 8–Average Heidke Skill Score versus rainfall 
threshold  
 
5. CONCLUSIONS 
 
  In this study, we developed a methodology 
(called Rainfall Estimation using Wavelet-Lightning 
Cloud Classification [REWLCC] algorithm) to 
enhance an infrared–based high resolution rainfall 
retrieval algorithm by carefully calibrating the 
rainfall estimates. Wavelet transform  was applied 
in our methodology to extract information from 
features of cloud texture.  Further, lightning 
information was used as a feature for the 
classification. 

This algorithm was performed through 4 steps.   

1) segmentation of infrared cloud images into 
patches; 

2) feature extraction using a wavelet-based 
method along with lightning 

3) clustering and classification of cloud 
patches 

4) dynamic application of brightness 
temperature (Tb) and rain rate 
relationships 

   To evaluate the wavelet and lightning features 
for the algorithm, four scenarios were examined.  
These included the following: 
1) Wavelet, lightning, and PERSIANN features 
(WLP), (Features for REWLCC algorithm)              
2) Wavelet and PERSIANN algorithm (WNLP) 
3) Lightning and PERSIANN features (LP)  
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WLP
WNLP
LP
P

Scenario CORR BIAS CSI HSS POD FAR 

WLP 0.368 2.205 0.316 0.377 0.692 0.642 

WNLP 0.364 1.827 0.303 0.360 0.647 0.644 

LP 0.323 2.309 0.297 0.355 0.655 0.621 

P 0.306 1.994 0.264 0.308 0.579 0.674 



4) The PERSIANN features (P) alone, which are 
used in PERSIANN-CCS 
   The evaluation result showed that using wavelet 
and lightning data can improve rainfall estimation. 
The results of quantity evaluation and rain/no-rain 
detecting evaluation show that using wavelet and 
lightning data can improve the spacial correlation 
and the Heidke Skille Score by approximately 6%, 
and 7% on average, respectively. 
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