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1. INTRODUCTION 
The National Weather Radar Testbed (NWRT) is a 
facility used to test and evaluate phased array 
technology. The phased array radar could replace the 
current network of WSR-88D radars. The NWRT 
includes a AN/SPY-1A antenna and beamsteering 
controller and a WSR-88D transmitter. The 
transmitter is modified with a new Klystron tube that 
can transmit at 3.2 GHz (Forsyth et al., [2005]). The 
NWRT can simultaneously measure crossbeam wind 
and monitor the weather. Longer dwell times for radar 
interferometry can be interlaced with shorter ones for 
normal weather surveillance. The installation of the 
NWRT in NSSL, Norman, OK can be seen from the 
following picture: 

 

Figure 1: Installation of the phased array antenna 
during construction of the NWRT (Courtesy of NSSL). 
L denotes virtual left side; R denotes virtual right side, 
they are overlapped. The left side is defined to be the 

left side of an observer looking outward along a 
direction perpendicular to the array. 

 
The antenna of the NWRT is an early model for one 

face of the four-face antenna used for the AN/SPY-1A 
radar of the Aegis system. Signals from each face of 
the antenna originate from a pair of two halves (i.e., 
left and right, lower and upper halves) of the array 
elements. The electronically steered beam for one face 
can cover 90° sector in azimuth and to 55° in 
elevation angles. This single face phased array 
antenna is mounted on a rotatable pedestal, thus a full 
hemisphere can be scanned. Putting phased array 
antenna on a turn-table allows us to determine the 
azimuth shape of a electronically steered beam and its 
sidelobes by rotating the turn-table while the 
electronically steered beam is fixed in azimuth and 
elevation. 
 
There are 68 receive sub arrays and 68 weights, which 
means for each sub-array there is a single weight and 
weights will vary from sub-array to sub-array. In each 
receive sub-array, there are 64 array elements (horns). 
There are 32 array elements in each of two modules 
that comprise the sub-array. We use different 
weightings for sum and difference signal and the 
purpose is to provide an aperture distribution function 
that provides the narrowest sum beam width for a 
designed sidelobe level, and the maximum slope of 
the received difference signal across the principal null 
of the pattern. Thus Taylor aperture distribution for 
sum signal and Bayliss aperture distribution for 
difference signal have been used. 
 
There are no ports on the NWRT where signals from 
left and right halves of the array are available to 
directly implement SAI using existing formulations 
based on spaced receiving antennas. For the NWRT, 
there are three channels: sum, azimuth difference, and * Corresponding author address: Yinguang Li; 120 David L. 
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elevation difference channel. In the following section 
we will discuss how to relate sum and difference 
signals to the signals received by virtual spaced 
receiving antennas. 
 
2. Relating sum and difference signals to the 
virtual signals from the left and right sides of the 
array 
 
Throughout this paper, we do not consider differential 
phase shift and loss between the sum and difference 
channels.  Because existing SAI theory deals with 
processing signals from spaced receivers, we derive 
apparent signals received from the left- and 
right-sides (or top- and bottom-sides) of the antenna 
using the sum and difference signals. In this paper, we 
only consider azimuth SAI. First we need to 
distinguish the signals from left and right halves of 
the array from those from apparent left and right sides 
of the array. The apparent left or right side signal of 
the array is not entirely from the left or right half 
signal of the array. This is because the magnitudes of 
the Taylor and bayliss aperture distributions are not 
identical, thus the apparent left and right sides signals 
of the array come from both halves of the array. 
Although the left side signal is mainly from the left 
half of the array, some of the left side signal is from 
right half of the array. Thus, the apparent left and 
right side apertures are overlapped. In terms of the 
virtual signals from the left and right sides of the 
antenna, we have: 

∑ =
vl + vr
2

 (1a) (3.1a) 

Δa =
vl − vr
2

 (1b)  

Where vl  and vr  are voltages of the virtual 

overlapped apertures on the left and right sides of the 

array. ∑  is the sum signal, Δa  is the azimuth 

difference signal. In order to have the sum power of 
the left and right sides of the array equal to the sum 
power of the sum and azimuth difference channels, 

we choose the coefficient 2 . From Eqs. (1a) and 
(1b), we can obtain apparent left- and right-side 
signals of the array using the sum and difference 
signals: 

vl =
Σ + Δa

2
 (2a)  

vr =
Σ − Δa

2
 (2b)  

According to the definition of correlation function, we 
have: 

Css (τ ) =< s(t + τ )s
*(t) >  (3a)  

Csd (τ ) =< s(t + τ )d
*(t) >  (3b)  

Cds (τ ) =< d(t + τ )s
*(t) >  (3c)  

Cdd (τ ) =< d(t + τ )d
*(t) >  (3d)  

If we substitute Eqs. (1a) and (1b) into Eqs. (3a), (3b), 
(3c), and (3d), we have: 

Css (τ ) =
1
2
(Cll (τ ) + Crr (τ ) + Clr (τ ) + Crl (τ ))  (4a)  

Cdd (τ ) =
1
2
(Cll (τ ) + Crr (τ ) − Clr (τ ) − Crl (τ ))  (4b)  

Csd (τ ) =
1
2
(Cll (τ ) − Crr (τ ) − Clr (τ ) + Crl (τ )) (4c) (3.3c) 

Cds (τ ) =
1
2
(Cll (τ ) − Crr (τ ) + Clr (τ ) − Crl (τ )) (4d) (3.3d) 

Similar formulas of Eqs. (4a)-(4d) have already been 
derived by Doviak and Zhang [2006]. In that paper, 1 
and 2 are used instead of L and R to denote spaced 
receiving antennas. Given that the power patterns are 
symmetrical and matched, we have Cll (τ ) = Crr (τ )  
and Csd (τ ) + Cds (τ ) = 0 . From Eqs. (4a)-(4d), we 



can obtain the auto- and cross-correlations of apparent 
left- and right-side signals from the auto- and 
cross-correlations of sum and difference signals: 

Cll (τ ) =
Css (τ ) + Cdd (τ )

2
  (5a)  

Crr (τ ) =
Css (τ ) + Cdd (τ )

2
  (5b)  

Crl (τ ) =
Css (τ ) − Cdd (τ )

2
+ Csd (τ )  (5c)  

Clr (τ ) =
Css (τ ) − Cdd (τ )

2
+ Cds (τ )  (5d)  

Current SAI techniques are all based on spaced 
receiving antennas. Using Eqs. (5a)-(5d), the auto- 
and cross-correlations of apparent left- and right-side 
signals can be obtained, then FCA (Full Correlation 
Analysis, Briggs [1984]), CCR (Cross-Correlation 
Ratio, Zhang et al. [2003]), SZL (Slope at Zero Lag, 
Lataitis et al. [1995]), and INT (Intersection Method, 
Holloway et al. [1997]) methods can be applied. Or 
we can directly use the auto- and cross-correlations of 
sum and difference signals to estimate apparent 
baseline wind which will be discussed in details in the 
next section. 
 

3. Use cdd (τ ) and csd (τ )  to estimate apparent 

baseline wind 
 
Since Zhang and Doviak [2007] have already derived 
the analytical expression for c12 (τ )  ( crl (τ )  if 

expressed in left and right instead of 1 and 2), and 
given the solutions of how to derive c22 (τ ) and 

c11(τ ) , we can use Eqs. (4a-4b) to derive the 

analytical expressions of the auto- and 
cross-correlations of sum and difference signals. If the 
power patterns of the array are matched and 

symmetrical, cll (τ ) = crr (τ ) . The analytical expression 
of cll (τ )  is shown below: 

cll (τ ) = crr (τ ) = exp(−2 jkvx ' (0)τ − 2k
2 (σ R

2Sx '
2 +σ tx '

2 )τ 2

−2k2σ eφ
2 vay '

2 τ 2 − 2k2σ eθ
2 vaz '

2 τ 2 )
 (6) 

 
Eq. (6) is normalized by the receiving power of 
virtual left- or right-side signal. vx ' (0)  is the radial 

mean wind velocity. σ R
2  is the second central 

moment of the range weighting function. Sx '  is the 

radial wind shear in the radial direction. σ tx '  is the 

standard deviation of turbulence velocity in the radial 

x '  direction. σ eφ  is the azimuth effective 

beamwidth, the definition of it can be seen in Zhang 

et al. [2007]. vay '  is the apparent baseline wind 

velocity, which is equal to r0Sy ' + vy ' (0) . Sy '  is 

the radial wind shear in the baseline wind direction, 

r0  is the distance between the transmitter and the 

center of resolution volume. σ eθ  is the elevation 

effective beamwidth. vaz '  is the apparent 

cross-baseline wind velocity, which is equal to 

r0Sz ' + vz ' (0) . Sz '  is the radial wind shear on 

cross-baseline wind direction. x '  is along the beam 
axis direction; the y ' , z '  plane is parallel to the 

array plane containing the transmitting and receiving 
antennas with y '  parallel to the baseline and z '

parallel to the cross-baseline. Δy12
'  is the distance 

between two phase centers alone the baseline 

direction. If we only consider azimuth SAI, σ eθ  is 

 



equal to 0.0085radian assuming transmitting 3-dB one 
way elevation beamwidth 1.53° and sum pattern 
receiving 3-dB one way elevation beamwidth 1.72°. 

σ eφ  is equal to 0.0097radian assuming transmitting 

3-dB one way azimuth beamwidth 1.53° and virtual 
left (or right) side receiving 3-dB one way azimuth 

beamwidth 2.50°. Δy12
'  is equal to 1.22m. 

 
The auto-correlation of difference signal can be 
derived according to Eq. (4b). The analytical 

expression of cdd (τ )  can be written as: 

 

cdd (τ ) = exp(−2 jkvx ' (0)τ − 2k
2 (σ R

2Sx '
2 +σ tx '

2 )τ 2

−2k2σ eθ
2 vaz '

2 τ 2 − 2k2σ eφ
2 vay '

2 τ 2 )i

(1− exp(−
k2σ eφ

2 Δy12
' 2

2
)cosh(2k2σ eφ

2 vay 'τΔy12
' ))

 (7)   

Because the hyperbolic cosine function is symmetric 
about zero lag, and because the square of lag appears 
in the exponential functions, it is concluded that the 
magnitude of cdd (τ )  is symmetrical. The amplitude 

of cdd (τ ) is shown in the following figure: 

 
Figure 2: Theoretical results of the normalized 

amplitude of cdd (τ ) ., vay ' = 20m / s,vaz ' = 0 , sx '

=0, vx ' (0) =0,and σ tx ' =1m/s. λ =0.09375m, Ts

=800µs, Δy12
' =1.22m, σ eθ =0.0085rad and σ eφ

=0.0097rad. 

The way to calculate csd (τ )  has already been 

introduced in Eq. (4c). If the power patterns of the 
antenna array are matched, we have 

csd (τ ) =
1
2
(crl (τ ) − clr (τ ))  (8)  

In Eq. (8), crl (τ )  and clr (τ )  are normalized by 

the signal power received by the virtual left (or right) 
side of the array, thus the cross-correlation function of 

sum and difference signals csd (τ ) is normalized by it 

too. The analytical expression for crl (τ )  ( c12 (τ ) ) 

has already been introduced in Zhang et al. [2007], 
and according to the properties of correlation 

functions, we can obtain clr (τ ) , thus the 

cross-correlation coefficient of sum and difference 
signals can be written as: 

csd (τ ) =
1
2
[exp(−2 jkvx ' (0)τ − 2k2 (σ R

2Sx '
2 +σ tx '

2 )τ 2

−2k2σ eθ
2 vaz '

2 τ 2 )(exp(−2k2σ eφ
2 (vay 'τ − 0.5Δy12

' )2 )

− exp(−2k2σ eφ
2 (vay 'τ + 0.5Δy12

' )2 ))]

 (9)  

The amplitude of csd (τ ) is shown in the following 

figure: 



 
 
Figure 3: Theoretical results of the normalized 

amplitude of csd (τ ) . vay ' = 20m / s,vaz ' = 0 , sx '

=0, vx ' (0) =0,and σ tx ' =1m/s. λ =0.09375m, Ts

=800µs, Δy12
' =1.22m, σ eθ =0.0085rad and σ eφ

=0.0097rad. 
 
 

When the magnitude of csd (τ )  is equal to the 

magnitude of cdd (τ ) , we have: 

exp(2k2σ eφ
2 vay 'τ iΔy12

' ) = exp(
k2σ eφ

2 Δy12
' 2

2
)  (10)  

In Eq. (10), there is only one variable: the apparent 
baseline wind velocity. Thus we have: 

vay ' =
Δy12

'

4τ i
 (11)  

Eq. (11) has the same form with the Intersection 
Method (INT) introduced by Holloway et al. [1997]. 
The apparent baseline wind velocity is proportional to 
the separation of two virtual receiving antennas and 
inversely proportional to the intersection lag. Because 

csd (τ ) and cdd (τ )  are symmetrical, we can’t decide 

the apparent baseline wind direction from the 
magnitude. However we can decide the wind 

direction from the amplitude of c sd (τ ) which is 

shown in Fig. 3. We would expect there are two 

intersections of csd (τ ) and cdd (τ ) . Due to the effect 

of turbulence, c
^
sd (τ )  might not be symmetrical 

about zero lag, thus the two intersections might not 
have the same distance from zero lag. In order to 
minimize the estimating error, we assume: 

τ i
^
=
τ
^

r− τ
^

l

2
. τ

^

r  is the right intersection lag which 

is bigger than zero, τ
^

l  is the left intersection lag 

which is less than zero. However, this method would 
have poor performance when the intersections locate 

at which the magnitudes of cdd (τ )  and Csd (τ )  are 

small and when the apparent baseline wind velocity is 
small. The analytical expression of the variance of 
apparent baseline wind measured by the INT method 
using csd (τ )  and cdd (τ )  is given below: 

var[v
^
ay '( INT ) ] = (

Δy12 '
4τ i

2 )
2 var[τ

^

i ]  (12a)

 
var[τ

^

i ] =
Ts
2

2(Δ1 − Δ2 )
2 (var[ c

^
dd (τ r ) ]+ var[ c

^
sd (τ r ) )

−2cov[ c
^
dd (τ r ) , ] c

^
sd (τ r ) ])

 (12b)  

While 

Δ1 = cdd (τ1) − csd (τ1)  (13a)  

Δ2 = cdd (τ 2 ) − csd (τ 2 )  (13b)  

var[ c
^
dd (τ r ) ] =

1
2MI

[1+
ρ12
2 (τ p )
2

(1+ exp(−
τ p
2

4τ c
2 )) −

2ρ12 (τ p )exp(−
τ p
2

4τ c
2 ) + cdd (τ r )

2 ]

 (14)  



var[ c
^
sd (τ r ) =

1−
ρ12
2 (τ p )
2

(1+ exp(−
τ p
2

τ c
2 )) + csd (τ r )

2

2MI

 (15)  

 

cov[ c
^
dd (τ r ) , ] c

^
sd (τ r ) =

cdd (τ r ) csd (τ r )
2MI

i

exp(−
τ p
2

4τ c
2 ) − ρ12 (τ p )exp(−

τ p
2

τ c
2 )cosh(

τ rτ p

τ c
2 )

exp(−
τ p
2

2τ c
2 ) − ρ12 (τ p )exp(−

τ p
2

τ c
2 )cosh(

τ rτ p

τ c
2 )

 (16)  

In Eqs. (13a) and (13b), we assume τ1 < τ r < τ 2  

and τ 2 − τ1 = Ts . 

 
4. SA radar simulator based on the configuration 
of the NWRT 

We use the Monte Carlo method to simulate the sum 
and difference signals received by the NWRT. In 
Monte Carlo simulation, lots of randomly located 
particles are placed in a scattering volume, and each 
particle is moving with the three-dimensional wind 
field. After every pulse repetition time (PRT), their 
locations are updated corresponding to the 
3-dimension wind field and radar collects 
backscattering wave of each scatter and sums them 
together.  The Monte Carlo method was first used by 
Holdsworth et al. [1995] to simulate atmospheric 
radar signals. This method was used by Zhang et al. 
[1998] to study target detection with the presence of 
clutter. Capsonni et al. [1998] simulated the radar 
signal by summing all the backscattered waves of 
randomly generated scatterers. 
 
The details of the SA radar simulator are as follows: 
1. Radar Parameters and Meteorological Parameters 
Antenna Diameter: 3.65 m. 
Transmitting Frequency: 3.2 GHz. 

PRT: 800 µs. 
Transmitting one-way 3-dB beamwidth: 1.53°. 
Transmitting pulse width (τ): 1.57µs. 
Receiving one-way 3-dB azimuth beamwidth (left or 
right side): 2.50°. 
Receiving one-way 3-dB azimuth beamwidth (sum 
pattern): 1.72°. 
Position of the center of the resolution volume: y '  = 

0, z '  = 0, x '  = 60 km. x '  is the radial direction, 
y '  is the baseline wind direction, z '  is the 

cross-baseline wind direction. 
Position of the transmitter aperture: x '  = 0, y '  = 0, 

z '  = 0. 
Position of the sum pattern receiver aperture: the 
same as above. 
Position of the virtual left side receiver aperture: y '  
= 0.61 m, x '  = 0, z '  = 0.  
Position of the virtual right side receiver aperture: y '  
= -0.61 m, x '  = 0, z '  = 0. 

3-dimensional mean wind velocities: vz ' (0) = 0 , 

vx ' (0)  and vy ' (0)  are tunable .  

Size of the scattering volume: Ly ' = 2φ6
(2)r0 =3865m, 

Lz ' = Ly ' / 100 =38.65m, Lx ' = 7Lz ' =270.55m. 

φ6
(2)  is the 6-dB two way azimuth beamwidth in 

radians (sum pattern 3-dB one way transmitting 
azimuth beamwidth is 1.53°, virtual left (or right) side 
3-dB one way receiving azimuth beamwidth is 2.50°), 
r0 is the distance between the center of the resolution 
volume and the transmitting aperture which is equal 
to 60km. Because in the simulation we only study the 
SA in y '  direction, thus a smaller size on z '  
direction is chosen. This is based on the premise that 
the mean wind velocity on the z '  direction is equal 
to zero. 
Number of Scatters in the scattering volume: 1600.  
Number of pulses: 12500 (Td=10s). 



Standard Deviation of Turbulence (Turbulence 
Intensity): It is tunable. Usually it will fall between 
0~3 m/s. In the simulation, the turbulence velocity is 
assumed to be Gaussian distributed. 
Position of Particles: Particles are initially randomly 
uniformly distributed in the scattering volume and 
moved by mean wind and random turbulence. 
 
2. The motion of scatterers 
The positions of scatterers are updated with the mean 
wind velocity plus the turbulence velocity. After each 
PRT, the locations of scatterers are updated. If some 
scatterers move out of the scattering volume, which is 
quite possible when the mean wind velocity is fast 
while the scattering volume is small, we put in new 
scatterers. 
For example, if a scatterer moves out +5m from the 
+X bound of the scattering volume, we put it to +5m 
plus the coordinate of –X bound of the scattering 
volume.  Thus, the total number of scatterers in the 
scattering volume maintains the same during the 
whole dwell time. 
 
3. Gaussian Beams 
For the formation of beams that are directly 
determining the receiving signals, we assume they are 
Gaussian shaped. The angular weighting function are 
assumed to be in the following form: 

A = exp[− z ' 2 (t)
4r0

2σθT
2 −

(z ' (t) − zr
' )2

4r0
2σθR

2 −

y' 2 (t)
4r0

2σφT
2 −

(y' (t) − yr
' )2

4r0
2σφR

2 ]

 (17)  

The range weighting function is in the following 
form: 

W = exp[− (x '− x0
' )2

4σ R
2 ]  (18)  

σθT  is the transmitting characteristic one-way 3-dB 

elevation beamwidth, σφT  is the transmitting 

characteristic one-way 3-dB azimuth beamwidth. 

σθT = σφT =0.0114radian if we assume the array is 

circular shape. σθR  is the receiving characteristic 

one-way 3-dB elevation beamwidth, it is equal to 

0.0128 radian; σφR  is the receiving characteristic 

one-way 3-dB azimuth beamwidth, it is equal to 
0.0186 radian when considering  apparent left or 
right side receiving antenna and 0.0128 when 

considering sum receiving pattern ; σ R
2  is the 

second central moment of the weighting function, it is 
equal to (0.35cτ/2)2 (Doviak and Zrnic 2006, section 

5.3);  x0 '  is the projection of the center of the 

resolution volume on the beam direction; ( x '(t)
y '(t) z '(t) ) is the position of a scatterer; (0,0,0) is 

the position of the transmitter; (0, yr ' , zr ' ) is the 

position of the receiver. For the left side virtual 

receiver, yr '  =0.61m, zr ' =0; for the right side 

virtual receiver, yr '  =-0.61m, zr ' =0; for the sum 

pattern receiver, yr '  =0, zr ' =0. The received 

signal is composed of the elemental signals from all 
the scatterers:  

S = Ai
i
∑ Wi exp[− j(rti + rri )]  (19)  

In the above equation i denotes the ith scatterer. rti  

is the distance from the transmitter to the ith scatterer, 

rri  is the distance from the receiver to the ith 

scatterer. 
 
In this simulation, the radar data is generated for 
signals from a single resolution volume at range r0. 



The I and Q channels are checked, and their 
distributions are shown below (sum channel): 

 
Figure 4: The distribution of I channel data from 
simulation 

 
Figure 5: The distribution of Q channel data from 
simulation 
 
From the two figures above, we can see that the I and 
Q data are perfectly Gaussian distributed. 

5. Results 

In this section, the standard deviations of the apparent 
baseline wind retrieved using G-FCA, G-CCR, and 

INT( Σ,Δa ) method with the simulation will be 

validated by the theory derived by Doviak et al.[2004] 
and Eqs. (12a)-(16) in this paper. The meteorological 

parameters are: vx ' (0) =0, sx ' =0, σ tx ' =0~2m/s, 

vay ' =20m/s, and vaz ' =0. The radar parameters are: 

λ=0.09375m, Ts=800µs, Td=10s, and Δy12 '=1.22m, 

σ eθ =0.0085rad, σ eφ =0.0097rad. The number of 

experiment is 100. For the INT method, we use the 

intersection of csd (τ )  and cdd (τ ) . The results are 

shown below: 

 

Figure 6: Standard deviations of vay '  obtained from 

simulation compare with theory.  
 
From Fig. 5, we can see that the simulation results 
match the theory very well, which means that after we 
correct the differential phase and attenuations of the 
NWRT, we can retrieve the apparent baseline wind 
with the same accuracy as the conventional SA. 
However, when the turbulence intensity is very small, 

the simulation results of INT ( Σ,Δa ) method are 

smaller than the theoretical value. The reason for that 
is because in deriving the analytical expression for the 

variance of τ
^

i  we ignore the covariance term of τ
^

l  

and τ
^

r . The covariance term cannot be ignored when 

the turbulence is small. The G-FCA and G-CCR have 
comparable performance when the turbulence 



intensity is bigger than 0.3m/s. INT (Σ,Δa ) method 

has very poor performance when the turbulence is 
larger than 0.5m/s and will bring big estimating error. 

Thus, INT (Σ,Δa ) method is only useful when the 

turbulence is small. 
 

Reference 

Briggs, B. H. (1984), The analysis of spaced sensor 
data by correlation techniques, in Handbook for MAP, 
vol. 13, pp. 166-186, Sci. Comm. On Sol.-Terr. Phys. 
Secr., Univ. of Ill., Urbana. 
 
Capsoni, C., and M. D’Amico, and R. Nebuloni 
(2001), A multiparameter polarimetric radar simulator, 
J. Atmos. Oceanic Technol., 18, 1799-1809. 
 

Doviak, R. J., G. Zhang, S. A. Cohn, and W. O. J. 
Brown (2004), Comparison of spaced-antena wind 
estimators: Theoretical and simulation results, Radio 
Sci., 39, 1006, doi: 10.1029/2003RS002931. 
 

Doviak, R. J., and G. Zhang (2006), Crossbeam wind 
measurements with phased-array Doppler weather 
radar, ERAD’06, Barcelona, 18-23 September. 
 
Doviak, R. J., and D. S. Zrnic (2006), Doppler Radar 
and Weather Observations. Dover, 562pp. 
 
Forsyth, D. E., and Coauthors (2005): The national 
weather radar testbed (phased-array), Preprints, 32nd 
Conf. on Radar Meteorology, Aluquerque, Amer. 
Meteor. Soc., 12R.3 
 
 
Holdsworth, D. A., and I. M. Reid (1995), A simple 
model of atmospheric radar backscatter: Description 

and application to the full correlation analysis of 
spaced antenna data, Radio Sci., 30(4), 1263-1280. 
 
Holloway, C. L., R. J. Doviak, S. A. Cohn, R. J. 
Lataitis, and J. S. Van Baelen (1997), 
Cross-correlation and cross-spectra in spaced-antenna 
wind profilers: 2. Algorithms to estimate wind and 
turbulence, Radio Sci., 32(3), 967-982. 
 
Papoulis, A. (1965), Random variables, and 
stochastic processes, 583 pp., McGraw-Hill, New 
York, 1965.   
 
Zhang, G., L. Tsang, and Y. Kuga (1998), Numerical 
studies of the detection of targets in clutter by using 
angular correlation function and angular correlation 
imaging, Microwave and Optical Technology Letters, 
17, 82-86. 
 
Zhang, G., R. J. Doviak, J. Vivekanandan, W. O. J. 
Brown, and S. Cohn (2003), Cross-correlation ratio 
method to estimate cross-beam wind and comparison 
with a full correlation analysis, Radio Sci., 38(3), 
8052, doi: 10.1029/2002RS002682. 
 
Zhang, G. and R. J. Doviak (2007), Spaced-antenna 
interferometry to measure crossbeam wind, shear, and 
turbulence: Theory and formulation, J. Atmos. 
Oceanic Technol., 24(5), 791-805. 
 
 
 
 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 
 
 

 
 

 
 
 

 
 

 
 


