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1. INTRODUCTION

In conventional autocovariance processing-the pulse
pair processor (PPP), lag zero of auto-correlation function
(ACF) and cross-correlation function (CCF) are used to
estimate  reflectivity, differential reflectivity and
correlation coefficient; lag zero and one (or lag one and
two) of ACF are used to estimate spectrum width.
However, when signal-to-noise ratio (SNR) decreases, the
quality of the polarimetric radar data degrades. To
improve radar performance and data quality, a multi-lag
correlation estimator is developed and examined in terms
of moment estimation, where lag zero of the ACF is
excluded to minimize noise effects. All useful lags of the
ACF/CCF are used to estimate radar variables. This is
based on the understanding that noise contributes mainly
to lag zero of the auto-correlation function and noise
effects can be minimized by fitting over other non-zero
lags as used in wind estimation (Zhang et al., 2004).

A multi-lag technique is presented to estimate radar
reflectivity, spectrum width, differential reflectivity, and
correlation coefficient. Biases and standard deviations of
the multi-lag estimates are calculated and compared with
those of the conventional PPP. Theoretical analysis of the
estimation errors are provided and verified by numerical
simulations.

2. MULTI-LAG ESTIMATORS

The conventional estimator calculates power from the
lag zero of the ACF. However, lag zero of ACF contains
noise power. To minimize noise effects, a multi-lag
estimator derives radar moments using correlation

estimates at other lags: C(T,) , C(ZTS) , (3(3Ts) ,
C(4T,) ...etc. (C is the ACF).
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Figure 1: An example of multi-lag estimations. Lag 1&2
(green), lag 1&2&3 (blue) and lag 1&2&3&4 (red)
estimates of ACF data (black) are used to fit a Gaussian
function estimate of the expected ACF.

Figure 1 shows an example of multi-lag estimations
for ACF. The black line denotes the absolute value of the
ACF data, where the impulse at zero lag is caused by
noise. The multi-lag estimator uses the ACF estimates to
fit a Gaussian function at multi-lags: two-lags (green line),
three-lags (blue line), and four-lags (red line). The fitted
Gaussian function(s) is then used to calculate radar
moments instead of the noise-contaminated ACF datum at
zero lag.

The expected ACF and CCF have the Gaussian form.
jzrnv,
C, (MT,) =S, p(MT)ep(- 220 N6, ()

Civ (NTy) = \/SH Sy P p(NT)

jzznv .
-exp(—‘v—“V+ i2s)

a

O]

where, S, , S, are the signal powers from the H or V

2
channel, respectively. p(nT,) =exp(—T—2) , T, = 4
2t 4ro,

c v




v, is the Nyquist velocity. N, is the expected value of
white noise power from the H channel, and v, is radial
velocity associated with hydrometeors backscattering
signals to the H channel. We assumev,,, =v,, =\, . ¢, is
differential phase, p,, is correlation coefficient, T, is pulse
repetition time,

The ACF and CCF are estimated from time-series data
by
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where, M s the number of samples: ESY is voltage
of horizontal channel. E is voltage of vertical channel.

2.1 Lag 1-2 estimator

Using ACF estimates at lag 1 and lag 2: (f(TS) and

C(ZTS) power and CCF estimate at lag zero, radar

variables of spectrum width, differential reflectivity and
correlation coefficient are estimated as
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where éHVﬁfit (0) is fitted value of CCF estimates over

lag 0, lag 1, and lag =2 because its absolute value is not
symmetric.
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2.2 Lag 1-3 estimator

The lag 1-3 estimator is to estimate radar variables
using ACF and CCF estimates at lag 1, lag 2, and lag 3.

The correlation estimaes C(TS) é(2TS) and (f(3TS) are
least square-fitted to the Gaussian function.

Taking the natural logarithm of both sides of Eq. (1),
the true value of ACF is expressed by:
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where: —2—12 =a, In(S,)=b,
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and rewrite these compactly: In( éH T)D=y,,
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Using Eqg. (9) to form the least square function
F(a,b).
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When the Eq. (10) reaches its smallest value, we have
equations:
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and solve them for a and b. Hence, arrive at:
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Further, we obtain differential reflectivity and
correlation coefficient using the result of Eq. (11) as
follows:
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2.3 Lag 1-4 estimator

In the same approach to derive the lag 1-3 estimator,
the lag 1-4 estimators can be developed as:
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3. PERFORMANCE OF THE ESTIMATORS

In this section, performance of the multi-lag estimators
are examined through error analysis and compared with
that of the conventional estimators. The detailed error
analysis can be found in Lei (2009). Theoretical biases
and standard deviations of power, spectrum width,
differential reflectivity estimates are calculated and
verified by simulations.

3.1 Signal power

For the conventional estimator Eq. (13), bias comes
from accuracy of noise level estimation. The noise level
estimation depends on the noise types (Fang et al. 2004).
Due to the changes of the expected noise power or
because the estimated noise power deviates from true
noise power, the conventional estimator does not perform
well at low SNR. A multi-lag estimator is an efficient way
to resolve this problem.

Four power estimators of conventional, lag 1, lag 1-2,
and lag 1-4 are expressed as:
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We ignore lag 1-3 estimator because its performance is
between that of lag 1-2 and that of lag 1-4. Biases of
power estimates using different estimators are shown in
Figure 2. The calculations can be found in Lei (2009).
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Figure 2: Bias of power estimation, M = 128, T, =0.001s :

Green is SNR=0 dB, blue is SNR=5dB, red is SNR=10dB.
For the lag 1, three lines are overlapped.

The bias is the function of SNR, M (number of
samples) and spectrum width. Increasing of M and SNR
will decrease the bias. As expected, the biases increase as
SNR decreases. Lag 1 estimator is a biased estimator and
has the largest bias among these estimators. Lag 1-4
estimator has less bias than lag 1-2 estimator at spectrum
width less than 3.5 m/s and if the SNR is less than 10 dB.

Theory: lag 1

009| —.—. “Theory: lag 1&2
— T T Theory: lagl &2&3&4 i

£ Simulation: lag 1 *
0.07 +  Simulation: lag 1&2
*  Simulation: lag 1828384 *

0.08

0.06

BIAS(SH)'SH

i} 05 1 S 2 2.5 3 3.5 4 4.5
SPECTRUM WIDTH o, (m shy
Figure 3: Comparison between theory and simulations of

power biases. SNR=5 dB, M=128, T, =0.001s
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Figure 4: Comparison between theory and simulations of
power biases. Only change T, to half of the value in the

previous Figure 3. SNR=5 dB, M = 128 , T, = 0.0005s

The theoretical analysis is verified with simulations
where dual-polarzation radar signals are generated using a
spectrum method (Zrnic, 1975; Galati et al, 1995). The
results are shown in Figure 3 and 4. For the lags 1-4
estimator, the analytical results and simulations differ
when the spectrum width is larger than 3.5 m/s. This is
caused by the under sampling rate at larger spectrum
width. By decreasing the PRT, as shown in Figure 4, the
difference between theory and simulation diminished
significantly. In the calculation of bias and standard
deviation, we use the Taylor expansion which is only valid
when the estimated value is very near the true value. So
the theory results will be true only when the bias and
standard deviation is not large (within 10% of the true
value). When the pulse number or SNR is increasing to
reduce the bias and standard deviation, the theory will
match simulation better.

Standard deviation of power is shown in Figure 5 and
Figure 6.
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Figure 5: Standard deviation of signal power, M = 128,
T, =0.001s , Green is SNR=0 dB, blue is SNR=5dB, red is

SNR=10dB.
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Figure 6: Comparison between theory and simulations of

power standard deviations. SNR=5dB, M=128,

T, =0.001s

The conventional estimator calculated here assumes
the noise level is accurately estimated. If not, the bias of
conventional estimator will be larger than the results
shown in the figures. Taking both bias and variance into
consideration, lag 1-4 estimator is the best estimator when
the SNR is under 10 dB and the spectrum width is less
than 3.5m/s with the given radar parameters. However,
multi-lag estimator is not performing well on large
spectrum width. Lag 1-2 estimator has large standard
deviation when SNR is low as we expected from the Eq.
(15).

3.2 Spectrum width

Four spectrum width estimators: conventional (lag 0
and 1), lag 1- 2, lag 1-3, lags
1-4, are expressed, respectively, by
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Figure 7: Bias of spectrum width, M = 128, T, =0.001s .
Green is SNR=0 dB; Blue is SNR=5dB; Red is SNR=10dB.

The biases of spectrum width of the estimators are
compared in Figure 7. When the SNR is small, the bias
becomes larger. Under certain SNR and radar parameters,
the more lags used to fit, the less the bias of the spectrum

width.
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Figure 8: Standard deviation of spectrum width. SNR = -5dB,
M =64, T, =0.001s . Lag 0&1, lag 1-2, lag 1-3, lag 1-4 are
compared.
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Figure 9: Standard deviation of spectrum width. SNR = 0dB,
other parameters are the same as the previous Figure 8.
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Figure 10: Standard deviation of spectrum width, SNR=5dB,
other parameters are the same as the previous Figure 9.
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Figure 11: Comparison between theory and simulations of
spectrum width standard deviations.SNR=5 dB, M = 128,
T, =0.001s
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Figure 12: Standard deviation of spectrum width. M = 128 ,
T, =0.001s . Green is SNR=0 dB, blue is SNR=5dB, red is
SNR=10dB.

From Figure 7 to Figure 12, the more lags we use,

the better results are shown in bias and standard deviation
when the spectrum width is small. However as the



spectrum width is large, the multi-lag fitting method has
poorer performance than the conventional estimator in
standard deviation.

3.3 Differential reflectivity

The differential reflectivity is a ratio of the
reflected horizontal and vertical power returns. Four
estimators: conventional (lag 0), lag 1, lag 1-2, and lag 1-4
are examined.
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Figure 13: Bias of differential reflectivity, M = 128,
w =0.97,Z, =1dB, T, =0.001s Green is SNR=0 dB,
blue is SNR=5dB, red is SNR=10dB.
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compared.
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Figure 15: Comparison between theory and simulations of
differential reflectivity standard deviations.SNR=5 dB,

M=128, p,, =0.97,Z,, =1dB, T, =0.001s

The conventional estimator calculated here is
assuming that the noise level is accurately estimated. If
not, the bias of conventional estimator will be larger than
the results shown in the figures. From Figure 13 and
Figure 14, multi-lag method outperforms conventional
method in both bias and standard deviation with small
spectrum width. Comparing lag 1-4 estimator with lag 1
estimator, the former one is better than latter one in bias
for the whole region, however it only performs better at
small spectrum width region for standard deviation.

3.4 Correlation coefficient

Correlation Coefficient is the statistical correlation
between the reflected horizontal and vertical power
returns. We use both auto ACF and CCF to estimate
correlation coefficient. For the auto correlation function,
lag 1,2,3,4... are used to estimate; for the cross



correlation,...-3, -2, -1, 0, 1, 2, 3... are used to estimate.

Here are the lists of four types of estimators:
conventional (lag 0), lag 1, lag 1-2, lag 1-4, respectively.
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Ibhv = éHV_ fit (0) .

Where, éHv_fi[ (0) canuse ... -3-2-10123... lagsto

fit. Because the cross-correlation is not symmetric and lag
zero is not affected by noise. So more lags can be used to

estimate CHV (0) compared to auto correlation function.

4. SUMMARY

A multi-lag estimator has been developed to improve
the estimation of polarimetric radar data in the presence of
noise. It is possible to produce meaningful polarimetric
radar measurements of weak echoes such as clouds and
drizzle using the multi-lag estimator. The multi-lag
estimator produces moment estimates with smaller bias
and standard deviation than conventional estimators when
the spectrum width is small.

In this study, equal weights have been used in
Gaussian fitting to derive the multi-lag estimator. In
practice, weights should be dependent on the merit and
reliability of the estimates. It is expected that variable
weights and adjustable number of lags would produce
even more accurate estimates. Hence, an adaptive
estimator will be developed, which can automatically
choose how many lags to use and how to weight them
according to the spectrum width and SNR.
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