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1. WHY ANOTHER GROUND TARGET ID METHOD 

Ground targets present a particular challenge at the 
McGill Radar Observatory. First, we have quite a lot of 
them, not only because of our towering view over a 
sedimental plain and a large city, but also because of 
the sidelobes from our 1960s vintage 9-m antenna. To 
complicate matters, we scan rapidly (6 RPM), and our 
radar system has a fair bit of phase noise. The net result 
is that ground targets have an unusually wide spectrum 
width and can spill over all Fourier components (Fig. 1). 
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FIG. 1. Power spectrum vs. range of echo intensity (in dB 
units above noise) computed over 32 pulses collected 
while scanning over 1° in azimuth. Though the peak 
contribution from ground targets is centered around zero 
velocity, ground target echoes can extend to other 
velocities and exceed weather echoes if they are strong 
as is the case around 25 km range.  

 
Traditional ground echo identification and filtering 

try to eliminate (abnormally high) contributions to the 
echo coming from zero velocity. But in the example 
shown in Fig. 1, notching velocities near zero would 
both miss important ground returns and eat much of the 
weather echoes. Such an approach would hence bias 
the resulting reflectivity and velocity. And feeding such 
data to algorithms that do not tolerate biased data or 
such as those based on data assimilation (e.g., 
Zawadzki et al. 2009) will lead to the breakdown of 
those algorithms. 
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We therefore felt the necessity to revisit the issue of 
identifying, correcting, and/or censoring echoes that are 
contaminated by ground targets. 

 
2. AT FIRST TRYING TO BE CLEVER AND FAILING 

We initially attempted to take advantage of the 
predictability of the ground target signature on the raw 
complex time series of echo returns. Indeed, as you 
scan over a point ground target, its contribution should 
follow in power the weighting function of the radar 
antenna and should be constant in phase (Fig. 2). One 
should therefore be a lot more selective identifying and 
suppressing ground targets than simply eliminating all 
returns with a low velocity. We hence tried to identify 
Gaussian-shaped elements of constant phase in the raw 
time series and to eliminate them. 

 

 
FIG. 2. Time series of power (top, in relative dB units) 
and phase (bottom, in deg.) of the returns at one range 
as the radar scans over a reflective ground target over 
150 pulses (about 5° in azimuth). The dashed line 
represents the expected Gaussian beam shape of the 
radar antenna. 
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What we did not fully appreciate is the difficulty of 
properly identifying the Gaussian-shaped elements that 
belonged to fixed targets but more importantly the fact 
that the shape of ground echo returns on the time series 
did not always correspond to a perfect bell curve. For 
example, when the radar scans at 1° elevation or more, 
the ground echo that contaminates the returns does not 
come from the nicely shaped main lobe but from 
complex sidelobes that do not always resemble the 
expected Gaussian curve (Fig. 3). A proper removal of 
these echoes would then require the use of complicated 
elevation-dependent beam patterns. And even if that 
were to be done, we did not completely prevent the 
elimination of weather echoes moving at near-zero 
velocities. That approach was hence abandoned. 
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FIG. 3. Our radar antenna beam pattern as a function of 
elevation and azimuth from axis determined by 
observing the sun. Brighter regions correspond to 
stronger antenna gain. The nicely shaped main lobe and 
the complex sidelobes can be observed easily. The 
dashed line illustrates the location of ground targets in 
flat terrain if the radar scans at 0.8° elevation; those 
targets will be observed both via the bottom side of the 
main lobe as well as the first bottom-left sidelobe (note 
the secondary maximum in power near pulse #50 in Fig. 
2). 

 
3. MOISSEEV+CHANDRASEKAR TO THE RESCUE 

Given this situation, a more general approach was 
then called for. We decided to explore the information 
available from dual-polarization returns. We were 
inspired by the work of Moisseev and Chandrasekar 
(2009) that used the standard deviation of the spectrum 
decomposition of ZDR and of φDP to identify ground 
targets. The technique is based on the idea that in 
weather echoes, ZDR and φDP tend to be consistent from 
one range gate to the next because of the consistent 
nature of the target (small targets of near-spheroidal 

shape), and so should their spectral decomposition 
ZDR(k) and φDP(k) as a function of the wavenumber k. 
On the other hand, ground targets are large and 
complex, and their ZDR and φDP change from one target 
to the next. Note that all these ideas should work as well 
using the raw parameters and their spectral 
decomposition; the advantage of using their spectral 
decomposition is that we could isolate on the same bin 
the contribution coming from ground targets from the 
one coming from weather. 

But to achieve their feat, Moisseev and 
Chandrasekar (2009), from now on referred to as MC09, 
went through considerable efforts to use clean spectral 
estimates (smoothing of spectra over five range bins, 
spectral windowing using 128 samples, limited 
sidelobes and phase noise of the CSU-CHILL radar, 
etc). Could their technique or a variation it work with our 
noisy data collected at fast operational radar scanning 
velocity? 

Figure 4 shows the spectral decomposition of some 
of the dual polarization data collected over the same 1° 
scan seen in Fig. 1. Even on our data, weather targets 
have ZDR(k) and φDP(k) that are very consistent in both 
range and k. Ground targets have more varied ZDR and 
φDP in range, but that tend to be moderately consistent 
in k. Finally, noise is… noisy in ZDR(k) and φDP(k). So 
this first inspection suggests that a reliable spectral-
based target identification system is possible. 

 
4. OUR MODIFICATIONS TO MC09 

Physically, there is no reason why ground targets 
should be fluctuating in ZDR(k) and not in φDP(k) or vice 
versa. Similarly, there is no reason why ZDR(k) and 
φDP(k) should not be smooth in precipitation targets. As 
a result, we chose to combine the two standard 
deviation calculations into one by looking instead at the 
standard deviation of the complex ratio of the H & V 
Fourier terms. Given the Fourier terms H(k) and V(k) 
computed from the raw time series at horizontal and 
vertical polarization respectively, one can compute 
DP(k) such that: 

          kjkVkHkDP DP
kZDR exp10 20/ , (1) 

where j is the square root of −1. The normalized 
standard deviation of DP(k),  
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was computed over five points only (m=4) and not on a 
3x3 area like in MC09. This change was done on the 
basis that ZDR(k) and φDP(k) did not vary significantly in k 
for ground targets while it did in r; hence, computing the 
standard deviation only in range increased the contrast 
between ground and weather targets. Even though five 
points is not much, the standard deviation shows 
dramatically different results for precipitation than for 
ground targets or noise (bottom right of Fig. 4).  



 
PH

0

20

40

60

80

SNR (dB)

φDP

-180

-90

0

90

180

(deg)

ZDR

-10

-5

0

5

10

(dB)

Normalized standard deviation of H/V complex signal

0

.5

1

1.5

2

 
FIG. 4. Power spectrum vs. range of echo intensity (top left), differential phase (top right), and differential reflectivity 
(bottom left) computed over 32 pulses collected while scanning over 1° in azimuth. On the bottom right is shown the 
norm of the standard deviation of the ratio of the raw complex time series at H and V polarization which combines the 
effect of the fluctuations in both ZDR and φDP. 
 

With different parameters to choose from, we also 
modified the fuzzy logic approach to combine the 
information compared with MC09. Figure 5 shows the 
distribution of NSD[DP(k)] for precipitation, ground 
targets, and noise. As expected, its value is small in 
precipitation because of the high coherence in ZDR(k) 
and in φDP(k), and much larger from ground targets and 
noise. The use of NSD[DP(k)] for discriminating 
precipitation and unwanted echoes is hence indicated. 
While noise and ground targets have similar values in 
NSD[DP(k)], they will have different SNR and can be 
easily distinguished. 

We hence devise new formulas to assign a score 
for each spectrum component describing the likelihood 

that they are fitting the characteristics of precipitation 
(Spre), ground targets (Sgnd), or noise (Snoi). We used the 
following: 
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FIG. 5. Histogram of occurrence of NSD[DP(k)] for 
precipitation (SNR > 15 dB, solid blue line), ground 
targets (SNR > 15 dB, dashed red line), and noise 
(dotted green line). The last column represents the 
occurrence of values larger than 4. 
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Got it?  
Let us go over the formulas. For precipitation, we 

give a light weight (10%) for a proper ZDR value 
(between -3 and +5 dB), ensure that the SNR is strong 
enough (30% weight), but primarily use the normalized 
standard deviation of the H/V complex signal (60%). 
The formulas for the individual score roughly mimic the 
likelihood of occurrence histograms such as the one 
shown in Fig. 5. For the ground and noise score, we use 
the SNR and a score based on NSD[DP(k)] only. The 
formulas appear much more complicated because of the 
use of two twists: 1) We use the combination between 
an additive score (e.g., .3SSNR+.7SNSDgnd) that tends to 
overestimate the fitness into a category and a 
multiplicative score (e.g., SSNRSNSDgnd) that is generally 
too restrictive. This was important when trying to 
distinguish ground targets from noise since the only 
characteristic that differentiated the two was the SNR.  
2) For the ground target characterization, we have a 
different score for the zero velocity and other velocities; 
at zero velocity, we use the intrinsic properties of the 

Fourier term to derive a score; at non-zero velocity, we 
combine the intrinsic properties of the Fourier term with 
the score at velocity=0 on the grounds that if no ground 
echo is observed at zero velocity, we are unlikely to see 
it at other velocities and vice versa. Most of the weights 
for each term were chosen by trial and error. 

A final difference with MC09 is how we determined 
the different target categories. We chose to have not 
only the three basic categories (clear precipitation, 
clearly ground targets, clearly noise) but also “not sure” 
categories (either precipitation or ground, either 
precipitation or noise, either ground or noise, 
undetermined). Answers were deemed “clear” if the top 
score reached at least 0.5 and exceeded the second 
score by at least 0.15. When no score reached 0.5 or if 
all three scores were within 0.15, the “undetermined” 
category was selected. 

 
5. ID RESULTS AND WHAT NEXT 

 
FIG. 6. Classification of targets for the data presented in 
Figs. 1 and 4. 
 

Figure 6 shows the results of the target ID at the 
spectrum level. The system was able to detect the 
echoes contaminated by ground targets not only at zero 
velocity but also elsewhere. A few precipitation pixels 
were mistakenly identified as ground targets (e.g., 
around 55 km near +8 m/s); this occurs when, because 
of destructive interference, weather echoes at H and V 
have an unexpected phase difference, resulting in high 
standard deviations of the H/V ratio as seen by the 
weak the long tail in the histograms for precipitation in 
Fig. 5. 

If one considers the classification of spectrum data, 
one can identify “good” targets (precipitation, noise, and 
either one or the other), and “contaminated” targets (the 
others). At a given range, one may have either all 
“good” targets, or all “contaminated” targets, or a 
mixture. When all targets are “good”, the data can be 
used as is. When all targets are “contaminated”, one 



might as well have “no data” (different from “no echo”!). 
For partially contaminated ranges, one can try to fit a 
Gaussian-shaped spectrum through the “good” data 
points and fill the “bad” data with the values obtained 
from the fit. The fraction of the power at a given range 
obtained through this interpolation process can then be 
used as a quality index: if less than, say, 20% of the 
power has been inferred from the interpolation, the 
information coming from that range bin is likely to still be 
of high quality; as that fraction increases towards 100%, 
data quality becomes increasingly poor. This fraction is 
an important number to keep, as some radar products 
may be a lot more tolerant than others to errors caused 
by a bad data correction process. It also has the 
advantage over “quality indices” to have a rigorous 
definition. 
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