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The engineering specifications of such a radar are 
mainly driven by climate, Earth’s radiation budget, 
and cloud initiation studies. 

Scanning or vertically-pointing, ground-based 
millimeter wavelength radars have been used to study 
stratocumulus fair-weather cumulus (e.g., Kollias et 
al., 2001) and fog properties. Airborne millimeter 
wavelength radar systems, such as the University of 
Wyoming King Air Cloud Radar (WCR) and the NASA 
ER-2 Cloud Profiling System (CRS), have added 
mobility to observe clouds in remote regions and over 
the oceans. 

The Earth Observing Laboratory (EOL) of NCAR is in 
the process of building the first phase of a three 
phase dual wavelength W/Ka-band airborne cloud 
radar to be called the HIAPER Cloud Radar (HCR), 
Farquharson et al., 2007) This phase is a pod-based 
W-band radar system with scanning capability (Fig. 
3). The second phase will add pulse compression and 
polarimetric capability to the W-band system, while 
the third phase will add a complementary Ka-band 
radar. The pod-based radar is primarily designed to 
fly on NSF/NCAR’s Gulfstream V (GV) and possibly 
C-130 aircraft. It is a part of the HIAPER (High-
performance Instrumented Airborne Platform) Aircraft 
Instrumentation Solicitation (HAIS). 

 
Figure 3. Layout of W-band cloud radar in NCAR pod. 
The pod will be mounted on NCAR’s GV wing. 
 
The majority of the radar system will be housed in 
GV’s 20” wing pod, designated the NCAR pod. The 
HIAPER instrumentation philosophy dictates that only 
power and a high-speed network connection will be 
available to equipment located in the wing pods. For 
this reason it is necessary that nearly the entire radar 
system be located within the pod; the exception being 
the radar control and data display/archive 
computer(s). The pod will be attached to the mid-wing 
hardpoint. The instrument will be flight tested on 
board GV in Summer 2010. 
 
 

5. HIGH-SPECTRAL RESOLUTION LIDAR (HSRL) 

One of the largest remaining uncertainties in 
assessing the future trajectory of the earth’s climate is 
the proper treatment of cloud processes and, in 
particular, the interactions between aerosols and 
clouds in models (Houghton et al., 2001).  Aerosols 
affect cloud formation and evolution and hence have 
strong indirect effects on the radiative forcing of 
clouds, and even on the timing and magnitude of 
precipitation. 

Cloud properties are available from several recent 
instruments, including the Moderate Resolution 
Imaging Spectoradiometer (MODIS) and GOES-R.  
However, there are large uncertainties in retrieving 
optical properties such as the sizes of cloud particles. 
This is particularly true for ice clouds  because 
variations in crystal habit result in an ill-constrained 
retrieval problem. 

The envisioned capability of a millimeter wave radar 
system on GV in characterizing cloud properties is 
enhanced by coordination with microwave radiometer, 
in situ probes, and especially with the NCAR GV 
High-Spectral Resolution Lidar (HSRL) (Razenkov et 
al., 2008). The lidar, designed and built by the 
University of Wisconsin, provides unique 
measurements of optical depth of clear air, clouds 
and precipitation (Fig. 4). At present the ground-
based version of the HSRL is operational at the 
University of   Wisconsin and it is being upgraded for 
airborne deployment.  The instrument will be flight 
tested on board GV in late 2010. When it is not 
deployed for airborne measurements, it will be 
operational in a ground-based mode. In a ground-
based configuration, HSRL and HCR will be housed 
in a common seatainer. This setup would enable 
collocated observations of lidar and cloud radar. 

 

 
4. Configuration of  high spectral resolution lidar 
(HSRL). It is an aircraft cabin based system and a 
lidar beam can be pointed either zenith or nadir 
through 45-cm optical port. 
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One of the challenges in lidar observation is 
independent estimation of  scattering and optical 
depth, i.e., extinction. Despite backscattered signals 
from aerosol and air molecules being  superimposed, 
the HSRL separates the scattering from air molecules 
from aerosol with an ultra-narrow spectral filter. This 
separation is possible because the Doppler spectrum 
of air molecules is considerably broadened by thermal 
motion compared to the Doppler spectrum of 
aerosols.  

Since atmospheric density is linearly proportional to 
concentration of air molecules, the return from 
molecular scattering is used as a reference calibration 
target. The backscatter from air molecules is used for 
calibrating the scattering signals from aerosol at all 
ranges. Also, the reference aerosol scattering is used 
for retrieving extinction profile and optical depth.  

The combination of the lidar and cloud radar will be 
used for estimating cloud fraction, particle size, 
precipitation rate, and scattering cross sections 
(Donovan and van Lammeren: 2001).  Furthermore, 
estimates of particle size coupled with Doppler 
velocity provide information on particle shape and 
density. 

6. SUMMARY 
 
The combination of scientific measurement 
requirements and engineering specifications of key 
components in an instrument dictate sensitivity, 
spatial and temporal resolutions of observations.  
Table 1 summarizes sensitivity and temporal and 
spatial resolution characteristics for each of the 
instruments  presented in this paper.  As expected 
lidar is the most sensitive and collects the highest 
spatial resolution measurement but its range and 
penetration into cloud is limited. HCR has superior 
ground clutter rejection than S-Pol since the Rayleigh 
scattering cross-section of a cloud particle at W-band 
is larger than the corresponding value at S-band while 
the sensitivity to  ground clutter is the same at S and 
W-bands. The sensitivity of the ELDORA is limited by 
antenna gain and peak transmit power.  
 
Reflectivity and radial wind measurements are 
calibrated using various techniques. In the case of S-
Pol reflectivity and differential reflectivity, 
measurements are calibrated within 1.0 dB and 0.1 
dB, respectively. Radial wind measurements of S-Pol 
and ELDORA are calibrated to within 1 m sec-1. 
Reflectivity measurements from HCR and HSRL will 
be calibrated to better than 1.0 dB and wind 
measurements from HCR will be calibrated to better 
than 1 m sec-1. 
 
 
 

Table 1. Resolution and sensitivity of radars and lidar 
Instrument t Temporal 

resolution 
Spatial 
resolution 
 (m) 

Sensitivity at 
10 km 
 (dBZ) 

S-Pol 3 minutes 200 m -32 

ELDORA 1 minute 350 m -12 

HCR 0.5 sec 120 m -22 

HSRL 0.5 sec 100 m 
(horizontal) 
15 m 
(vertical) 

-36  

 
 
 
Numerical prediction models have evolved from single 
discipline (e.g., weather, cloud, chemistry and 
biogeosciences) into multi-disciplinary models that 
require simultaneous measurement of the 
atmosphere for initialization and validation.    
Simultaneous and collocated observations from 
aircraft as well as ground-based platforms are 
valuable not only for process studies to improve 
parameterization schemes but also to improve the 
accuracy and reliability of data for assimilation and 
refinement of numerical models.  For example, 
simultaneous observations of clouds and aerosol are 
used for parameterization schemes of cloud droplet 

distributions as a function of aerosol concentrations. 
  
Instruments described in this paper provide a range of  
measurements and derived microphysical and 
dynamical products. At present, simultaneous 
measurements using the above described 
instruments can only be achieved by combining 
observations from aircraft and ground-based 
instruments and by assuming simultaneity in time and 
collocation in space. 
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