
1. INTRODUCTION

Drop-counting rain gauges (model: Ogawa
7182R) are used at the Hong Kong International
Airport (HKIA) by the Hong Kong Observatory (HKO)
f or operational rainf all reporting. Three identical
gauges are set up at the meteorological garden at
HKIA. They f ulfill the exposure requirements f or
rainf all measurement as laid down in World
Meteorological Organization (WMO), No. 8 – “Guide
to Meteorological Instruments and Methods of
Observ ation”. Regular maintenance and calibration
of the gauges are carried out. In particular,
calibration is performed with a generally constant flow
of water at different flow rates, andthe WMO accuracy
requirement of 5% was f ound to be f ulf illed up to a
rainf all rate of about 100 mm/hour for the dataset
under study in the present paper.

With data collected by three gauges at thesame
time, the local random error of the ty pe of
drop-counting gauge in use has been analy zed in a
preliminary study by Chan and Li (2009). There are
two major limitations with this previous study:

(a) The rainf all data hav e gone through minimal
quality control procedure only. As such, it
may not be concluded f rom the prev ious
dataset whether the analytical model f or
standard error (Equation (5) in Chan and Li
(2009)) could be employed f or the type of
rain gauge under consideration;

(b) The v alue of the parameter a in the
Nadaray a-Watson kernel regression
estimator for the standard error is taken to
be 0.2 following Ciach (2003). It is not
certain if another, more suitable value of the
parameter should be chosen.

The abov e two issues are studied in the present
paper.

2. QUALITY CONTROL OF THE RAINFALL
DATA

An iterativ e procedure has been adopted in the
more v igourous quality control of the rainfall data. In
general, it is expected that the standard error σK

should be a monotonic decreasing f unction of the
local rainfall rate RT. Howev er, in the previous
analysis of the rainf all dataset (a sample chart of Chan
and LI (2009) is reproduced in Figure 1(a), with T = 50
minutes), there are many “bumps” in the plot of σK

against RT. Such “bumps” may be related to
potentially erroneous rainfall record of one or more of

the rain gauges. For the range of RT in a selected
“bump”, the corresponding rainfall data of the gauges
with such v alues of local rainf all rate are examined
caref ully through two methods: (a) checking of the
maintenance logs of the rain gauges to see if there
were any reported problems/maintenance in the
period, and (b) the rainf all data of all the Ogawa
gauges are compared with thosef rom other gauges at
the same time, including a 0.5-mm tipping bucket rain
gauge, a tilting-siphon rain gauge, and manual rainf all
measurement. If there are sufficient reasons to
suspect that the data from one or more of the Ogawa
rain gauges in the period may be erroneous, f or
instance, much different (say, > 20%) f rom the rainf all
record of the other gauges, the rainfall data f rom the
three gauges are not considered. With the remov al
of the rainf all data in the period, the resulting σK is
plotted against RT again to check the shape of the
curv e. If there are still bumps present, the abov e
process is repeated.

Following the above steps, the rainfall data in
the periods as giv en in Table 1 have been removed.
The resulting “clean” dataset is used to plot σK against
RT. For instance, the plot for T = 50 minutes is giv en
in Figure 1(b), together with the variation of the
number of samples with the local rainfall rate. It
could be seen that the standard error generally drops
with RT, and the curve is smooth without signif icant
“bumps” in comparison with that in Figure 1(a). It is
noted that it may not be practical to prepare an “ideally
clean” rainf all dataset. For instance, in the iterativ e
quality control method as described abov e, one
criterion being used to assess the quality of the rainf all
data is to compare with the rainfall records of the other
independent gauges with different operation
mechanism at the meteorological garden at HKIA. It
is not triv ial to set up an objectiv e guideline to
determine if one or more of the Ogawa rain gauges
is/are not functioning well through such comparisons
because of the naturalv ariability of the rainfall (though
all the gauges are close to each other, with a
maximum separation of at most a couple of metres or
so) and the different working principles and reporting
resolutions of the various gauges. The best attempt
has been made by the authors to “clean” the Ogawa
rainf all dataset in order to produce a plot of σK against
RT that looks reasonable and much better than the
one obtained bef ore the quality control procedure.

For completeness, the plot of σK against RTf or
other values of T are given in Figure 2, namely, T = 10
seconds, 1 minute, 3 minutes and 10 minutes. With
the “clean” Ogawa dataset, the standard error
generally falls with the local rainf all rate f or thevarious
v alues of period T. This is another indication that the
dataset is relatively “clean”, and the new plots are
much better than those in the previous study, e.g.
Figures 4(a) and (c) in Chan and Li (2009).
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3. PRELIMINARY STUDY OF THE CHOICE OF
THE PAR AMETER a

In both Ciach (2003) and Chan and Li (2009),
the parameter a in the computation kernel estimator is
taken to be 0.2. A preliminary study has been
conducted to find out the suitable range of v alue for a
based on the Ogawa dataset. The initial results are
presented here.

As a start, the period T is taken to be 3 minutes.
The Ogawa dataset is arranged in a list of increasing
av erage rainf all f rom the three gauges. The odd and
ev en samples of this list are grouped together to f orm
two subsamples S1 and S2. If there are a number of
samples with the same av erage rainf all, it does not
matter which one goes to S1 or S2.

For subsample S1, the first nonparametric

sigma square function 2
1 is calculated with the

application of the kernel regression. The f irst
prediction mean square difference, PMSD1, between

the error square v alues e
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where the summation is made over all data fulf illing R2

> R0. Note that in general there may not be data
points in subsample S1 having RT at exactly the value
R2 giv en in subsample S2. In that situation, linear

interpolation is perf ormed on 2
1 to obtain )( 2

2
1 R .

Similar computation is carried out f or subsample S2 to
obtain PMSD2 . The av erage of PMSD1, and PMSD2

giv es the final PMSD for a particular value of
parameter a. The process is repeated for eachv alue
of a.

A plot of PMSD against a is madefor eachv alue
of R0 in order to find out the range of the parameter a
that minimizes the PMSD. Figure 3 shows some
plots with R0 = 0.5, 2 and 5. It appears that the
optimum range of a does not depend very much on R0,
and it could be taken as 0.1 – 0.4. Thus the previous
choice of 0.2 is a reasonablev alue.

As an illustration, the sigma plots for the various
v alues of a (with T taken to be 3 minutes) are given in
Figure 4. As could be expected, with an increasing
v alue of a, the sigma plot becomes smoother.
Starting f rom a = 0.1 onwards, the shape of the sigma
plot does not change significantly.

The abov e analysis is based on a particular
v alue of T only. Other values of T would be
considered in f uture studies. Moreov er, a lower
bound R0 is adopted in the present analysis, and an
upper bound may be considered as well. Preliminary
results (not shown here) seem to suggest that the
optimum range of parameter a does not depend v ery
much on this upper bound.

4. AN ALYTICAL MODEL FOR STAND ARD
ERROR

In Chan and Li (2009), attempt was madeto use
an analy tical model to fit σK against 1/RT. It turned
out that, f or larger value of T, the model did not f it so
well with the data and the correlation coefficient of the
f it decreased. It is not sure if the problem is related
to the model itself or the quality of the dataset.
Based on the rainfall dataset with better quality in the
present paper, the use of the analytical model is
rev isited.

Figure 5 shows the following for T = 10 seconds,
3 minutes and 50 minutes: the f it of the analytical
model in the plot of σK against RT for the whole range
of RT, thecorrespondingf it for small local rainf all rates,
and thef it in the plot σK against 1/RT with the equation
and correlation coefficient of the fit. In the last plot,
the data points in general fluctuate less rapidly with
1/RT and get closer to a straight line in comparison
with the results in Chan and Li (2009) (e.g. Figure 4(f)
of that paper for T = 50 minutes). Howev er, the
correlation coefficient R

2
of the fit still decreases quite

dramatically with T, from 0.96 f or T = 10 seconds to
0.44 f or T = 50 minutes. As such, based on the
present dataset, it may be concluded that the
analytical model in Ciach (2003) does not seem to
work well, at least it is not universal to be applicable
f or different v alues of T. Another model of standard
error may need to be established.

5. CONCLUSIONS

A more vigourous control quality procedure is
adopted in the present study in order to obtain a
relativ ely “clean” dataset of Ogawa rainfall as
recorded at the meteorological garden at HKIA.

In the prev ious studies, the parameter a in the
calculation of the kernel estimator is taken to be 0.2.
The optimum range of value of this parameter is
studied in more detail using prediction mean square
diff erence in statistical analysis. Preliminary results
are presented here, namely, a period T = 3 minutes is
adopted, and only a lower bound R0 is applied to the
dataset. It turns out that the optimum range of a is
between around 0.1 and 0.4. As such, the previous
choice of 0.2 appears to be reasonable. More
in-depth study of the choice of a would be carried out
in thef uture, f or instance, f or different v alues period T.

Moreov er, using the “clean” dataset f rom Ogawa
rain gauges, it looks like the linear analytical model as
adopted in Ciach (2003) and Chan and Li (2009) is not
univ ersal f or the v arious v alues of the period T.
Another model would need to be set up.

The three Ogawa rain gauges hav e been
installed at HKIA again since September 2009, though
there are some changes in the characteristics of the
gauges based on the new calibration results. The
new dataset obtained since September 2009 would
also be analy zed separately to see if there is a
corresponding change of the behaviour of the local
random error.

References

Chan P.W., and C.M. Li, 2009: Perf ormance of
drop-counting rain gauges in an operational
env ironment. 13th Conference on Integrated



Observing and Assimilation Systems for
Atmosphere, Oceans, and Land Surface,
American Meteorological Society, Phoenix,
U.S.A.

Ciach, G.J., 2003: Local random errors in
tipping-bucket rain gauge measurements. J.
Atmos. Oceanic Technol., 20, 752 – 759.



2007/06/28 0000-2359
2007/08/08 1640-1700
2008/01/25 0125-1014
2008/04/19 0000-2359
2008/05/10 1940-2325
2008/06/03 1755-1900
2008/06/06 0425-2359
2008/06/07 0000-0035
2008/06/18 0816-2347
2008/08/22 0000-2359
2008/08/23 0000-2359
2008/09/24 1000-1115

Figure 1 The plot of standard error against local rainf
(2009) and (b) results based on the dataset in the pres

Table 1 The periods (in Hong Kong time) in which the
(a)
(b)

all rate f or T = 50 minutes: (a) results in Chan and Li
ent paper.

Ogawa rainfall data are removed.



(a) 10 seconds

(b) 1 minute

(c) 3 minutes

(d) 10 minutes

Figure 2 The plot of standard error against local rainf all rate f or T = 10 seconds, 1 minute, 3 minutes and 10
minutes.



(a)

(b)

(c)

Figure 3 Plots of PMSD against a for R0 = (a) 0.5, (b) 2, and (c) 5.



(a) (b)

(c) (d)

(e) (f )

Figure 4 Sigma plots f or thev arious values of parameter a. T is taken to be 3 minutes.



Figure 5 Fitting of standard error data (black dots) using an analytical model (y ellow curv es). In the plots, R means RT for T = 10 seconds (10s), 3 minutes (3m) and 50 minutes
(50m).


