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1. INTRODUCTION 
  
 A range of military, civil and commercial 
activities benefit from cloud-free sky conditions. 
Passive optical or thermal systems, such as 
those on unmanned aerial systems, need a 
cloud-free-line-of-sight in order to sense their 
targets (Norquist 1999). Solar energy available 
to fuel photovoltaic power plants is strongly 
modulated by clouds (Girodo et al. 2006) due to 
their ability to reflect incoming shortwave 
radiation. Additionally, electricity demand on 
power grids is correlated to the amount of solar 
irradiance. Very short-range (i.e., up to 6-hr) sky 
condition forecasts are useful to decision 
makers for these applications.  
 In this paper, we present a concept for 
global, obs-based very short-range sky condition 
(i.e., total cloud or cloud-free amount) 
forecasting. This system would utilize 
meteorological satellite (METSAT) data and 
data-assimilation derived analyses to build 
feature databases for training advanced 
predictive learning algorithms. Such a system 
would be potentially valuable for global, point-
specific forecasts – particularly in data-sparse 
regions. 
 The 0 to 6-hr time frame is a sweet-spot for 
obs-based (i.e., empirical) weather forecasting 
techniques (Bankert and Hadjimichael 2007, 
Hansen 2007, Vislocky and Fritsch 1997). The 
most primitive, obs-based forecast is basic 
persistence (BP) (i.e., the future weather 
condition will be the same as the current 
weather condition). The climatological-
expectancy-of-persistence (CEP), also called 
the persistence probability, combines BP with 
climatology (Enger et al. 1962). CEP was 
developed as an objective tool for operational  
forecasters to help them predict future cloud 
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ceiling height and visibility by matching an initial 
condition with historical conditions and 
categorizing the initial condition in terms of 
stratified climatological data. Common 
stratification variables include month, time of 
day, wind direction, ceiling height, and visibility. 
Climatological forecasting is an empirical 
method based on the statistics of average 
historical weather conditions.  
 Satellite cloud climatologies (SCC) can be 
used to make climatological forecasts based on 
historical averages. Kelly (1988) introduced the 
concept of using digital satellite cloud imagery to 
generate wind-stratified, CEP-based cloud 
forecasts. CEP forecast techniques have been 
applied (or at least suggested) by a number of 
authors including Combs et al. (2004), Connell 
et al. (2001), Hall et al. (1998), and Reinke et al. 
(2003).  
 Advanced, obs-based techniques, driven by 
the analysis of current and historical data, have  
emerged from a number of technical disciplines 
including statistics, applied mathematics, 
artificial intelligence, cognitive psychology, 
engineering, knowledge discovery in databases, 
and meteorology. Non-parametric, predictive 
learning algorithms, trained on past surface 
observations have been applied to cloud 
forecasting by numerous investigators (e.g., 
Wiener et al. 2004, Bankert and Hadjimichael 
2007). Hansen (2007) used a statistical method 
based on a k-nn algorithm to predict ceiling 
height and visibility.   
 In the literature, no advanced, obs-based sky 
condition forecast techniques have been 
developed based on meteorological satellite 
information. In two companion conference 
papers (Hall et al. 2010a, Hall et al. 2010b), 
research results are presented describing the 
development and demonstration of a number of 
obs-based prediction algorithms, based primarily 
on meteorological satellite data, that performed 
very well against several benchmark algorithms. 
A small subset of research results are presented 
in this paper as evidence of the viability of the 



operational concept. Our findings suggest that 
forecast centers with the responsibility to 
forecast sky condition should consider 
integrating predictions from one or more 
advanced, obs-based techniques into their 
production process.     
 
 
2. FORECAST SYSTEM CONCEPT 
 
 The forecast system concept is divided into 
multiple components. First, global (i.e., merged) 
METSAT composites and cloud/no cloud (CNC) 
maps are created and archived, along with 
corresponding data assimilation (DA)-based, 
gridded analyses. Second, these data are used 
to build a feature database for the point of 
interest (i.e., the local collection target). Third, 
this feature database is used to train an 
empirical prediction algorithm. Fourth, the 
prediction algorithm is initialized with features 
extracted or derived from current satellite 
imagery and gridded, numerical model analysis 
or forecast fields. Finally, the prediction 
algorithm is run to generate a very short-range, 
probabilistic forecast.   
 A key aspect of this concept is the notion that 
the weather patterns relevant to the sky 
condition at any point are unique to that location. 
While it may be reasonable (to a first-order 
approximation) to consider the weather patterns 
at to two adjacent points (or small areas) to be 
the same, it is not necessary to do so given the 
temporal and spatial resolution of available 
METSAT data. Therefore, we propose a system 
which trains, in near real-time, a prediction 
model(s) for any local target of interest.   
 
a. Hypothetical decision maker scenario 
 
 To provide context for our concept, a 
hypothetical scenario involving a military 
decision maker is now presented. In the 
scenario, a military commander manages a 
unique (i.e., high-demand, low availability), high-
flying, high-cost unmanned aerial system (UAS) 
that provides surveillance capabilities. The 
UAS’s sensors are ineffective in the presence of 
a cloud ceiling between the platform and any 
intended surveillance target.  
 Due to the nature of the mission and the 
operational environment, the commander is 
faced with frequent decisions to send the UAS 
(or not) to surveil some local target of interest 
(i.e., a small area ≤ 16 km2) in a data-denied 
region. To support the tasking process, the 

forecast system provides the probability of a 
clear sky condition over the target at 1-hr 
increments for a window of 1-5 hr from the time 
a decision is made. The commander is assumed 
to act or not in order to maximize the net benefit 
(i.e., to minimize cost and operational risk), on 
average, over many decisions. Support from a 
human forecaster is not available to assist in this 
scenario.      
 
b. Satellite imagery and gridded analyses 
 
 The first component of the forecast system 
concept involves two databases including a 
METSAT archive and an archive of 
corresponding, DA-based analyses. For a global 
application, these data would probably amount 
to dozens to hundreds of terabytes. Just a few 
years ago this would have been a daunting 
prospect; however, recent advances in data 
storage and management capabilities have now 
made this a tractable problem.  
 Our research suggests that a CHANCES-
class (Reinke et al. 2003, Vonder Haar et al. 
1995) METSAT database would provide the 
foundation for the conceived forecast system. 
The Air Force sponsored CHANCES project 
pioneered the creation of a global, research-
quality METSAT database at 1-hr temporal and 
5-km horizontal spatial resolution (Fig. 1). Each 
CHANCES “image” was created by stitching 
together all available low-earth orbiting (LEO) 
and geostationary (GEO) weather satellite 
imagery into a global mosaic. Challenges in 
creating these mosaics included registration and 
navigation issues (to ensure geographic 
alignment of pixels from image to image), and 
continuity at the seams where the imagery from 
multiple satellites had to be joined together. 
CHANCES also included a binary CNC map for 
every hour (Fig. 1). A significant challenge 
resolved by the CHANCES team to create the 
CNC maps was the cross-calibration of similar 
information (i.e., Iongwave infrared radiance) 
collected by different satellites.  
 A barrier to development of a real-time 
application using CHANCES has been the 
storage media. During the time of the 
CHANCES project, the storage solution (given 
budget constraints and project objectives) was a 
high-capacity digital tape archive with file 
compression. In this format, data retrieval and 
subsequent processing was a time-consuming, 
labor intensive process. To support the present 
investigation, several terabytes of data were 
stored on portable hard drives connected to a  



 
 

 
 
Figure 1: Example of a global CHANCES 
infrared radiance image mosaic (top) and the 
corresponding CNC image (bottom) from Reinke 
et al. (2003). Cloud is white and no cloud is 
black in the CNC image. (Reprinted with 
permission of John Forsythe, CIRA/CSU) 
 
PC that were accessed by the research team 
over a local area network. This type of 
architecture, on a slightly larger scale, would 
enable near real-time forecasting for any, world-
wide local target.   
 To complement the METSAT data, our 
concept includes an archive of DA-based, 
gridded meteorological analyses. From these 
data, many useful variables can be extracted or 
derived, and combined with cloud structural 
features from the METSAT data for a more 
complete characterization of the atmosphere. 
There are numerous, state-of-the-art global or 
regional-scale numerical modeling systems that 
can provide these data. Applying temporal and 
spatial interpolation, these analyses can be 
treated as observations for training of data-
driven prediction algorithms.     
 
c. Training of forecast algorithm(s) 
 
 The second component of this concept 
involves training a forecast algorithm. Training 
requires a feature database. In our concept, the 
feature database for a local target is built by 
extracting cloud structural features from a 
METSAT archive, and meteorological 
parameters from DA-based analyses. This 

process results in a multi-year time-series of 
feature vectors with each vector representing 
the atmospheric state at a specific point in time.    
 Once the feature database is built, a forecast 
algorithm is trained. There are numerous, obs-
based prediction algorithms which are viable for 
implementation in this concept ranging from 
machine learning methods to statistical 
techniques. Approaches tested in this 
investigation (Hall et al. 2010a) included artificial 
neural networks (ANN) (Zhang et al. 1999), 
Random Forests (Breiman 2001), decision tree 
induction (Quinlan 1986), k-nearest neighbor (k-
nn) (Fukunaga 1990), Bayes classification 
(Fukunaga 1990), satellite cloud climatology 
(SCC) (Reinke et al. 1992), and the 
climatological-expectancy-of-persistence (CEP) 
(Enger et al. 1962, Kelly 1988, Hall et al. 1998, 
Reinke et al. 2003). Note that the notion of 
training does not strictly apply to the k-nn, SCC, 
and CEP methods. 
 
d. Generating very short-range forecasts 
 
 The third component of the concept starts 
with characterization of the “current” state of the 
atmospheric in the region of interest, and 
concludes with production of a probabilistic 
forecast using one of the forecast methods. This 
characterization is done by extracting features 
from very recent obs to build a feature vector 
representing the “current” state of the 
atmosphere. The data used include current 
satellite imagery, and the most current DA-
based analysis. In lieu of an analysis, the most 
recent, gridded model forecast (i.e., a 3-hr or 6-
hr forecast) may be used as a surrogate source 
of meteorological parameters. 
 Finally, the “current” feature vector is plugged 
into the forecast algorithm to generate a very 
short-range probabilistic forecast. Depending on 
the method, not all of the features may be used. 
For instance, the CEP technique (as 
implemented in this investigation) only required 
the initial sky condition at the local target point 
along with the time of day and day of year. An 
ANN model, on the other hand, may make 
effective use of a hundred or more features.  
 
 
3. PROTOTYPE SYSTEM CONCEPT 
PREDICTIONS USING A RANDOM FOREST 
ALGORITHM 
 
 For this investigation, numerous prediction 
algorithms demonstrated the viability of this 



forecast system concept (Hall et al. 2010a, 
2010b). In this section, the development of the 
feature database used for algorithm training and 
testing is discussed. Finally, results from 
implementation of a predictive learning algorithm 
called Random Forest are presented for Ft Hood 
which was one of six local targets used in this 
research (Hall et al. 2010a).   
 
a. Data 
 
 The research database for this project, which 
spans from 1 May 2003 to 29 June 2008, 
consists of features (Table 1) extracted from 
satellite imagery and meteorological parameters 
derived or extracted from analysis fields 
generated by the NCEP’s Eta model data 
assimilation system (EDAS) (Black 1994). The 
Eta analyses used in this investigation were 
extracted from a North American sector archived 
at 3-hr temporal resolution, 40-km horizontal 
spatial resolution, and 25 vertical levels. These 
data are maintained for research in the NCAR 
Computational & Information Systems 
Laboratory (CISL) Research Data Archive 
(RDA).  
 Cloud structural features were extracted from 
digital weather satellite imagery collected by 
NOAA Geostationary Operational Environmental 
Satellites (GOES-10 and GOES-12). Half-hourly 
GOES-12 imagery from the National Climate 
Data Center (NCDC) archive comprised the 
primary source of satellite observations. GOES-
10 imagery was used to fill a 13-d GOES-12 
data gap during Dec 2007.  
 Processing these data involved multiple 
steps. First, we read and saved the raw GOES 
variable (GVAR) visible and IR (10.7-µm and 
3.9-µm channels) images for each half hour at 
their native resolution. Next, these data were 
registered, quality controlled, and projected to a 
common, equal-area projection with a uniform 4-
km pixel spacing. 
 Once the GOES data were processed, we 
applied a cloud mask based on the bispectral 
composite threshold (BCT) technique presented 
by Jedlovec et al. 2008. The BCT algorithm uses 
multi-day composites of the difference in the 
10.7- and 3.9-µm channel brightness 
temperatures (BT10.7 and BT3.9) to represent 
spatially and temporally varying cloud-free sky 
condition thresholds for cloud tests. An attractive 
feature of the BCT method is that it provides 
relatively consistent day-and-night cloud 
detection. The result of applying the BCT 
algorithm in this investigation was a five-year, 

half-hourly time series of cloud-no cloud (CNC) 
image composites, each of which represented a 
map of the clouds at a specific observation time. 
These satellite data served as a regional, 
CHANCES-class database.    
 

Ft HoodFt Hood

    
Figure 2: Map showing the Ft Hood local target 
(indicated by the triangle) at 31.14°N 97.72°W. 
The black rectangle surrounding Ft Hood 
represents the outer extent of the 1000 x 1000-
km region in which METSAT data were used as 
a source of features. (Reprinted courtesy of 
NOAA)  
 
b. Feature database development 
 
 A 5-yr database comprised of 105 features 
(Table 1) was built for the Ft Hood region (Fig. 
2). The features were a mix of real and 
categorical variables extracted or derived from 
the EDAS model analyses, satellite-based CNC 
composites and astronomical calculations (e.g., 
solar zenith angle).  
 As mentioned above, an objective of this 
research was to develop and demonstrate an 
approach with global applicability. Due to the 
potential low quality of data assimilation-based 
moisture analyses outside of heavily observed 
regions such as the Continental United States 
(CONUS) and Europe (Andersson et al. 2004), 
the meteorological variables extracted from the 
Eta analyses were restricted to potential 
temperature (θ), pressure, wind and 
geopotential height, and parameters derived 
from them such as the mean layer vector wind 
(MLVW) (Blanchard and Lopez 1985) and dry  
static stability (Δθ/Δz). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Features extracted or derived from the EDAS 
database were spatially interpolated to one of 
five points 100-km north, east, south, and west 

Table 1: List and description of features selected as predictors.  Features refer to the sky condition of the 
pixel at Ft Hood unless specified other wise.  N, W, E, and S refer to points 100-km north, west, east and 
south of Ft Hood, respectively. Ft Hood is referenced as the target (T) in the table.    



of the target. Since the EDAS analyses are 
three-hourly, these data were interpolated 
temporally in order to populate the database at 
the half-hourly frequency of the CNC 
composites. Fifty cloud structural features were 
extracted from the CNC maps and BT10.7  
imagery. The cloud features (Table 1) fall into 
five categories: 
 
 (1) Static sky condition features (56-75) that 
represent the percent coverage of cloudy or 
clear pixels at the current observation time in 
some region near or around the target.  
 (2) Static sky condition features stratified by 
MLVW (76-85).  
 (3) Dynamic sky condition features (87, 88, 
96-101) created by analyzing the change (or 
trend) in percent area coverage of cloudy or 
clear conditions over an interval of time (e.g., 6 
hr).  
 (4) Sky condition persistence features (86, 
89-95) that capture the persistency of a 
particular sky condition over an interval of time.  
 (5) IR image statistical features (102-105) 
derived from the distribution of BT10.7  values in 
each 10.7-µm image including mean, variance, 
skew, and kurtosis.   
  
 For Random Forest feature selection, and 
testing, these data were divided into two 
subsets. The first three years were designated 
as training data. The last two years of data were 
reserved for testing. All performance metrics, 
discussed below, are based on validation 
against the 2-yr test dataset.   
 
c. Forecast performance benchmarks  
 
 Three benchmark forecast methods were 
computed as detailed below based on 
information in the feature databases.  
 
1) Basic persistence   
 BP of clear for any given forecast interval 
was taken to be a 0 or 100% probability of clear 
at forecast time based on the initial sky 
condition. This translates to a 100% forecast 
probability of clear if the initial sky condition was 
clear in the CNC composite and 0% forecast 
probability of clear if the initial sky condition was 
cloudy. 
 
 
2) Climatological-expectancy-of-persistence 
 CEP was derived using the 3-yr training 
dataset and was calculated as the probability 

(i.e., the frequency of occurrence) of clear at 
each forecast interval (1, 2, 3, 4, and 5 hr) given 
the current (i.e., initial) sky condition (i.e., cloudy 
or clear) based on training data events within ± 1 
hr and ± 30 d of that time of day and day of year. 
There was no differentiation between true 
persistence and recurrence in these 
calculations.   
 
3) Satellite Cloud Climatology (SCC) 
 The SCC forecasts were based on the 
unconditional, prior probability of cloud-free 
conditions at the target calculated using the 3-yr 
training dataset for given (time of day, day of 
year) combinations. For all observations within ± 
1 hr and ± 30 d, the percentage of occurrences 
with clear conditions were used as the a priori 
(i.e., climatological) sky condition probability for 
that time of day and time of year.    
 
d. Random Forest forecast algorithm  
 

The Random Forest method was developed 
by Leo Breiman (Breiman 2001) to improve the 
performance of his decision tree algorithm 
(Breiman et al. 1998). Random Forest creates 
an ensemble of decision trees by training on a 
random redistribution of the training set. Each 
distribution is generated by randomly drawing N 
samples (with replacement), where N is the size 
of the training set. A tree is grown on a fixed-
size subset of features randomly drawn on each 
round. The algorithm outputs the class that is 
the mode of the output by the individual trees. In 
this investigation, the output was interpreted as 
a probability. Various analytical techniques were 
used to prune the feature space to 78 features 
(Hall et al. 2010a) for the final implementation.   
  
e. Proof-of-concept, Random Forest 
performance 
 
 No single measure of performance can 
completely and unambiguously describe the 
quality of a forecast system. Therefore, our 
approach to assess the RF, CEP, SCC and BP 
forecasts was multifaceted. Overall performance 
potential was assessed using relative operating 
characteristic (ROC) analysis and its associated 
ROC score (Harvey et al. 1992, Mason and 
Graham 2002). Additional insights were gleaned 
from an ensemble of metrics including 
sharpness, accuracy, expected best cost (EBC), 
and reliability. Hall et al. (2010b) contains a 
detailed description of these metrics.  



 Following Mason (1982) and Fawcett (2006), 
ROC curves are plotted on a two-dimensional 
graph with hit rate (i.e., positives correctly 
forecasted divided by total positives) on the y-
axis and false alarm rate (i.e., negatives 
incorrectly forecasted divided by total negatives) 
on the x-axis. Given a set of probabilistic 
forecasts, the information needed to create a set 
of hit rate, false alarm rate pairs (to create the 
ROC curve) can be generated from categorical 
forecasts by stepping a decision probability pc 
through a range of values (i.e., decision 
thresholds). The ROC score is the area under 
the ROC curve and is considered a single-
number-summary of forecast algorithm 
performance (Mason and Graham 2002). BP 
has one hit rate, false alarm rate pair associated 
with it and, hence, results in only a single point 
in ROC space.   
 ROC curves for Random Forest, CEP, and 
BP are shown in Fig. 3. Perfect performance 
(i.e., a ROC score = 1.0) is represented on a 
ROC graph by the upper left-hand corner. A 
ROC curve oriented along the major diagonal 
line from the origin (0,0) to the point (1,1) 
represents random forecasting (i.e., a ROC 
score of 0.5). In Fig. 3, it is clear that the 
performance potential of the Random Forest 
forecasts exceeds the other methods for all 
possible decision thresholds for the 1-, 3-, and 
5-hr forecast intervals. The same holds for the 2- 
and 4-hr intervals (not shown). Based on the 
ROC curves, the performance potential for SCC 
exceeded random forecasting but was well 
under all other methods. For the 5-hr forecast, 
the ROC scores of Random Forest, CEP, and 
SCC were 0.8532, 0.7714, and 0.6073, 
respectively.  
 Sharpness (Fig. 4) indicates the tendency of 
a probabilistic forecast method to correctly 
assign extreme probability values (i.e., the 
tendency toward correct categorical forecasts). 
Forecast performance (in terms of sharpness) is 
dependent on the amount of separation between 
the probability values output by the algorithm 
when the true class is clear and when the true 
class is cloudy. Therefore, a histogram of the 
distribution of probabilities plotted against the 
data of how each instance turned out was 
used to graphically assess sharpness. The 
sharper the performance, the more the graph 
assumes a shape of a bathtub’s cross-section. 
The probability distributions shown in Fig. 4 

 
Figure 3:  ROC graph for Random Forest, CEP, 
SCC and BP for the Ft Hood, local target.  
 

 
Figure 4:  Histogram of the distribution of 
probabilities of how each instance turned out 
that graphically depicts the sharpness of the 
Random Forest algorithm. 
 
reveal that the Random Forest forecasts for Ft 
Hood were very sharp. For comparisons to other 
algorithms refer to Hall et al. (2010b). 
 Accuracy for this investigation (Fig. 5) was 
taken as the percent correct match (PCM) which 
was defined as the percent of all forecasts that 
turned out to be correct (i.e., either a hit or a 
correct negative). Determination of PCM 
requires choosing a probabilistic decision 
threshold at which the forecast is made. Given a 
forecast sky condition probability provided by the 
Random Forest algorithm in this investigation, a 
threshold of 0.5 was used to transform each 
probabilistic forecast into a categorical forecast 
of cloudy or clear. This threshold minimizes the 



 
Figure 5: Accuracy of Random Forest, CEP, 
BP, and SCC forecast methods for forecast 
intervals of 1-5 hr for Ft Hood local target.   
 
probability of error, P(error) which is equal to 1 – 
P(correct forecast). As shown in Fig. 5, the 
accuracy of the Random Forest algorithm 
decreases with increasing forecast interval, but 
clearly exceeds the accuracy of the benchmark 
methods including CEP, BP, and SCC. CEP and 
BP are competitive, however, at the 1- and 2-hr 
forecast intervals. 

EBC is a value metric that was used in this 
investigation to assess performance in the 
context of the decision maker’s average, net 
benefit from the obs-based forecasts. The basic 
premise of the cost-loss problem is that a 
decision maker is faced with the uncertain 
prospect of a weather event (E). As discussed 
by Murphy and Ehrendorfer (1987), the 
prototype cost-loss scenario is a problem 
involving two possible decisions to act or not 
and the two weather events (i.e., clear or 
cloudy). E = 0 corresponds to clear conditions 
and E = 1 corresponds to cloudy conditions. Let 
f  = 0 represent a categorical forecast of clear 
sky condition and f = 1 a cloudy sky condition 
forecast. The decision maker incurs a cost c (> 
0) if action is taken and (E = 1), a cost 
equivalent to (c – v) if action is taken and E = 0, 
and a cost equivalent to (v – c) if no action is 
taken and (E = 0). Here, v (≥ 0) is the additional 
value of taking the action when (E = 0) (not 
including the cost of the action). Note that if  
(v > c), the cost would turn out to be negative, 
meaning a “profit” is realized. For this 
investigation, this problem was considered in 
terms of an expected best cost expressed in 
terms of the value-cost ratio (α = v/c). If (E = 1), 
then (v = 0). The decision maker is assumed to 
take action or not in order to maximize “profit” 
(i.e., minimize cost) such that α > 1.   
 The use of a specific probabilistic threshold 
to transform the probabilistic forecast output by 

 
 
Figure 6: EBC for with α =3 for Random Forest, 
CEP, SCC, and BP forecast methods across all 
forecast intervals assuming a cost (c) = 100 
monetary units. 
 
the Random Forest algorithm into a categorical  
forecast will generate the following probabilities: 
P00 = P(f  = 0 | E = 0), P10 = P(f  = 1 | E = 0), P01 
= P(f  = 0  | E = 1), P11 = P(f  = 1  | E = 1). The 
test data can also be used to generate the a 
priori probabilities P0 = P(E = 0), and P1 = 
P(E=1). It can be shown that the EBC, or max 
net “profit” per action taken, on average, is 
equivalent to: 
 

  101010)1(2)1( PPPPcEBC    
 
Assuming a cost of 100 monetary units, the 
variation in EBC (converted to  “profit” by plotting 
–EBC) for Random Forest, CEP, SCC, and BP 
with increasing forecast interval, for a value-cost 
ratio α = 3  is shown in Fig. 6. The average profit 
per action of the Random Forest forecasts 
exceeds CEP by about 15% across all forecast 
intervals. Random Forest forecasts are about 
15% more profitable than BP for 1-hr. and over 
100% more profitable for 5-hr forecasts. 
 Reliability is equivalent to bias and answers 
the question of how well the predicted 
probabilities of an event correspond to their 
observed frequencies. It complements ROC 
analysis and EBC. Reliability for the Random 
Forest algorithm at each forecast interval is 
shown in Fig. 7 by plotting the observed 
frequency of clear versus the forecast probability 
of clear (to the nearest tenth). Theoretical, 
perfect reliability is shown by the emboldened 
line that extends from the origin (0,0) to the point 
(1,1) in the figure. The Random Forest algorithm 



 
 
Figure 7: Reliability graph for Random Forest.  
 
had slight tendencies to under-forecast when the 
observed frequency of clear is above 0.5, and 
over-forecast when the observed frequency is 
below 0.5. The average root mean square 
reliability error (RMSRE) over all forecast 
intervals was 0.056. This was slightly higher 
than the average RMSRE for CEP (0.0255) and 
SCC (0.0484). 
 
 
4. CONCLUSION 
 

In this paper, a new concept for production of  
obs-based sky condition forecasts was 
presented. Our research demonstrated an 
approach to automated, very short-range 
forecasting that could potentially be 
implemented globally. The key enablers are a 
multi-year, CHANCES-class METSAT database, 
and advanced prediction algorithms that can be 
trained to make probabilistic forecasts when 
presented with a “current” weather pattern as 
defined by a set of cloud structural features. 
Future implementation of a CHANCES-class 
database would rely on NPOESS imagery 
(along with data from other low-earth orbiting 
weather satellites) for information north (south) 
and of 60° N lat (60° S lat), along with 
geostationary weather imagery for the region 
spanning from the tropics through the mid-
latitudes.  Data assimilation-based analyses 
were found to improve the performance of the 
prediction algorithms when used in conjunction 
with the METSAT data. Based on our work, data 
storage and processing would appear not be 
significant constraints for an operational system. 

During this investigation, several algorithms 
that we tested were trained on multiple years of 
data and produced forecasts in less than 10 min 
on standard desktop computers. This does not 
include the time for initial construction of the 
feature database. The Random Forest 
algorithm, discussed in this paper, was among 
the top performing methods. Other obs-based 
methods that we tested also performed well. The 
results of all algorithms across six target areas 
(representing different weather regimes) are 
presented in two companion conference papers 
(Hall et al. 2010a, 2010b). 

Our findings indicate that the performance of 
obs-based sky condition techniques for very 
short-range forecasting may exceed the 
performance of state-of-the-art algorithms 
currently in use such as those based on 
advection (Kopp et al. 1997) and cloud-motion 
vectors (Banniehr et al. 1996, Hammer et al. 
2003, Hamill and Nehrkorn 1993). Additionally, 
advanced obs-based forecasts would provide a 
useful baseline for on-going work to develop 
very short-range forecast techniques based on 
numerical modeling. The next step in 
demonstrating this concept would be to conduct 
trials to compare performance of the obs-based 
forecasts we have demonstrated with current, 
operational techniques. We encourage other 
research groups to take up this challenge.       
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