Validation of the operational D-Region Absorption Prediction (D-RAP) model at the NOAA **Space Weather Prediction Center (SWPC)**

D-RAP Product

Provides real-time global estimates of combined HF ionospheric absorption:

- Polar Cap Absorption (PCA) due to solar energetic particle (SEP) precipitation (new feature) after Sauer and Wilkinson (2008).
- X-ray absorption due to solar X-ray flares on the dayside.

Products:

- Global map of highest frequency affected by 1-dB absorption.
- Two polar maps of highest frequency affected by 10-db absorption.
- Estimated recovery time.
- Text file with highest frequency affected by 1-dB absorption.

Global Display

Normal X-ray Background Product Valid At : 2009-12-22 04:57 UTC Normal Proton Background NOAA/SWPC Boulder, CO USA

Validation

Stations

	Station	Latitude	Longitude	Frequency
1	Thule, Greenland	77.50° N	69.20° W	30.0 MHz
2	Taloyoak, Canada	69.54° N	93.55° W	30.0 MHz
3	Rovaniemi, Finland	66.78° N	25.94° E	32.4 MHz
4	Dawson, Canada	64.05° N	139.11° W	30.0 MHz
5	Jyväskylä, Finland	62.42° N	25.28° E	32.4 MHz
6	Pinawa, Canada	50.20° N	96.04° W	30.0 MHz

Events

	Start date	Stations	X-rays
1	April 20, 1998	1, 2, 4, 6	yes
2	July 14, 2000	1, 2, 4, 6	yes
3	November 8, 2000	1, 2, 4, 6	
4	April 2, 2001	1-6	yes
5	April 15, 2001	1-6	
6	September 24, 2001	1-6	
7	October 1, 2001	1-6	
8	November 4, 2001	1-6	yes
9	November 22, 2001	1-6	yes
10	December 26, 2001	1, 2, 3, 4, 5	yes
11	April 21, 2002	1, 2, 4, 6	
12	January 19, 2005	2, 4, 6	yes
13	September 6, 2005	none	yes

R. A. Akmaev, A. Newman, M. V. Codrescu, C. Schultz, and E. Nerney

Examples

Station	RMSE (dB)	Bias (dB)	Mean (dB)	Rel. Err. (%)	Rel. Bias (%)
Thule	1.1	0.1	1.5	69.2	3.8
Taloyoak	1.7	0.4	1.2	144.1	30.6
Rovaniemi	0.9	-0.4	0.7	120.2	-51.9
Dawson	2.0	0.1	1.2	173.4	6.6
Jyväskylä	0.6	-0.2	0.3	227.5	-61.5
Pinawa	1.8	-0.2	0.6	319.7	-44.3

The combined absorption model performs reasonably well inside the auroral oval (e.g., Thule). In general, however, the model output should be treated as a qualitative indicator of disturbed conditions.

The following areas may need to be addressed in future model development and validation:

- latitudes.

- latitudes.
- absorption.

Sauer, H. H., and D. C. Wilkinson, Global mapping of ionosphéric HF/VHF radio wave absorption due to solar energetic protons, Space Weather, 6, S12002, 2008.

Summary Results

• The present validation project could not validate the X-ray component.

• At high-latitude stations in the American sector the PCA model substantially (about a factor of 2) overestimates absorption during some events.

• In the European sector the model systematically underestimates absorption.

• The model also underestimates absorption at

midlatitudes apparently due the lack of parameterization of auroral absorption.

 This project did not address validation of the estimated recovery time

Recommendations

Future validation effort:

 Validate the X-ray component model on well isolated flare events using data from more midlatitude stations or other data sources at lower

Consider the feasibility of (near) real-time "on-thefly" verification of the model.

• Expand the present effort to other longitude sectors and the Southern Hemisphere.

Scientific model improvements:

 With more data available consider further "tuning" of the PCA model (Sauer and Wilkinson, 2008) by a more accurate treatment of the SEP spectrum and the geomagnetic energy cutoff at subauroral

• Initiate an R&D effort to parameterize the auroral

Reference