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1. INTRODUCTION  
 

The effective management of convective 
weather in congested airspace requires decision 
support tools that can translate weather 
information available to air traffic managers into 
anticipated impact on air traffic operations.  The 
Convective Weather Avoidance Model (CWAM) 
has been under development at Lincoln Lab under 
sponsorship of NASA to develop a correlation 
between pilot behavior and observable weather 
parameters (Chan et al, 2007).  To date, the 
observable weather parameters have been 
derived primarily from the Corridor Integrated 
Weather System (CIWS) (Klingle-Wilson and 
Evans, 2005 and Evans and Ducot, 2006) high 
resolution Vertically Integrated Liquid (VIL) 
precipitation map and the CIWS Echo Top 
product. Deviations have been identified using a 
database of planned and actual en route flight 
trajectories based on data from the Enhanced 
Traffic management System (ETMS).  CWAM has 
used a simple model that is based upon finding 
weather encounters and then comparing the 
distance between the planned and actual flight 
trajectories to define pilot deviations.  Due to a 
large number of false deviations from this model, a 
significant amount of hand editing was required to 
use the database. 

This paper will present two areas of work to 
improve the performance and usefulness of the 
enroute convective weather avoidance models.  
First, an improved automated algorithm to detect 
weather-related deviations that significantly 
reduces the percentage of false deviation 
detections will be presented.  This new model 
includes additional information on each deviation, 
including the location where the decision was 
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made to deviate.  The additional information 
extracted from this algorithm can be used to 
evaluate the conditions at the decision time which 
may impact the severity of weather pilots are 
willing to penetrate.  The new deviation detection 
algorithm has also reduced the amount of hand 
editing required by limiting the deviation detections 
to only include weather encounters that occur 
within 15 minutes of the time the aircraft deviated 
from the planned flight path. 

The second focus of this paper will be the 
evaluation of the Convective Weather Avoidance 
Model.  Six weather impact days from 2007 and 
2008 have been added to the existing case set 
from 2006, tripling the number of flight trajectories 
used in validating the model.  The deviation 
prediction skill for several variations of the CWAM 
will be compared, and results will be presented as 
a function of air traffic control region, weather type 
and forecast lead time.  
 
2. DEVIATION MODEL 
 

The Convective Weather Avoidance Model 
described in the initial version (DeLaura and 
Evans, 2006 and DeLaura et al., 2008) defines 
weather encounters by looking for minimum 
weather thresholds along a planned flight 
trajectory.  Once an encounter was established 
along the planned trajectory, the actual trajectory 
points nearest to the encounter were collected and 
the mean and maximum distance between the two 
paths were calculated and compared to a 
deviation distance threshold to determine if the 
aircraft was deviating.  These thresholds were set 
based upon the typical maneuverability of flights 
observed along a route in clear air conditions.  The 
initial version required review by an analyst and a 
significant amount of hand editing of the deviation 
flags. 

The original CWAM deviation database 
developed in 2006 consisted of approximately 
1500 weather encounters, with almost 500 of 
those deviating due to the weather.  In order to 
perform a more comprehensive evaluation of the 
CWAM and look towards additional variables or 
situations which could improve the model, an 
expansion of the deviation database was required.  



However, to expand the database, improvements 
would be required to the deviation detection model 
to reduce the level of effort required to review and 
edit the data.  An improved deviation detection 
model has been developed which reduces the 
deviation classification error rate from roughly one-
third to just under ten percent.  Several examples 
of the deviation classification done by the 
algorithm are shown in figure 1.   

The major improvement to the deviation 
detection algorithm is to perform processing of the 
planned and actual trajectories independently from 
the weather encounters to identify deviations.  A 
deviation is defined as having a decision point and 
an end point.  The decision point is the point at 
which the actual trajectory separates from the 
planned trajectory.  The end point is the point at 
which the actual trajectory rejoins the planned 
trajectory or 15 minutes after the decision point, 
whichever comes first.  The 15 minute limit is 
chosen with the assumption that the pilot is likely 
unaware of the specific characteristics of the 
weather in the more distant future.  This limit also 
eliminates a significant number of cases that 
would have required hand editing to eliminate 
short cuts, airborne holding, or other unplanned 
reroutes that heavily impacted the results of the 
initial algorithm. 

The deviation detection algorithm begins by 
computing the distance between each point on the 
planned trajectory and the nearest actual 
trajectory point.  The mean deviation threshold 
(nominally 20 kilometers) representing the limits of 
normal operational variations in flight trajectories is 
then applied to the distance computation to flag 
any trajectory point in which the aircraft is likely 
deviating.  If at least six contiguous points are 
larger than the mean deviation threshold, 
representing 60 seconds of flight time, a deviation 
is declared.  Next, deviations with less than 30 
seconds (3 data points) between them are joined 
together.  Finally, the algorithm will identify the 
beginning of each deviation (first point greater 
than mean deviation threshold) and search 
backwards along the planned trajectory to the 
point where the planned and actual trajectories are 
less than 2 kilometers apart.  This point is defined 
as the decision point. 

The deviation detection algorithm also 
performs several functions to identify scenarios in 

which the algorithm is unable to adequately 
characterize or detect deviations.  These 
scenarios include aircraft that have entered 
airborne holding patterns and deviations that occur 
prior to the aircraft entering the region of interest.  
Deviations that may be detected in these 
scenarios will be flagged as invalid in the 
database. 

The improved deviation detection algorithm 
does not modify the method used to identify 
weather encounters.  A weather encounter is 
defined as a portion of a planned trajectory that 
passes through either VIL level 2 or greater or 
echo tops of 25 kft or greater for at least 2 
minutes.  Multiple weather encounters may be 
defined along a flight path if the weather along the 
planned trajectory drops below the encounter 
thresholds (VIL level 2 and echo tops of 25 kft) for 
at least one minute. 

Once all of the weather encounters and 
deviations are determined, the algorithm will 
merge the two, looking for overlapping deviations 
with weather encounters.  For weather encounters 
that coincide with deviations the weather 
encounter will be flagged as a deviation and three 
critical points will be stored in the database: the 
decision point along with the beginning and ending 
points of the weather encounter.  For weather 
encounters that do not coincide with deviations the 
encounter will be flagged as a non-deviation and 
the beginning and ending points of the weather 
encounter will be stored.  For non-deviations an 
estimate of the decision point is computed that is 
nominally four minutes of flight time prior to the 
beginning of the encounter.  Deviations that do not 
coincide with weather encounters are assumed to 
be unrelated to the weather. 

In addition to reducing the amount of hand-
editing required to use the database for the 
CWAM, the identification of a specific decision 
point supports future analysis of pilot decision 
making; for instance, comparing IFR vs. visual 
conditions when making the decision to deviate, 
estimating the distance from the deviation decision 
point to weather encounter, etc.  The classification 
algorithm also identifies the reason for rejection of 
each trajectory that is edited out of the dataset, 
supporting further review of algorithm 
performance. 



 
Figure 1.Example illustrations of deviations, non-deviations and deviation filters from improved deviation 
detection model. 
 
3. DESCRIPTION OF THE CONVECTIVE 

WEATHER AVOIDANCE MODEL AND 
EVALUATION DATASET 

 
The Convective Weather Avoidance Model 

translates deterministic weather information grids 
from systems such as the Corridor Integrated 
Weather System (CIWS) into estimates of the 
likelihood of pilot deviation.  The CWAM output is 
a three-dimensional Weather Avoidance Field 
(WAF), which estimates the probability (0 to 
100%) that a pilot will deviate around the 
convective weather at each point in the WAF grid.  
From the WAF, automated decision support tools 
could estimate the capacity reduction due to 
weather and provide alternative route suggestions 

to avoid the convective weather. The CWAM 
evaluated here applies to flights above 25kft in the 
en-route airspace. 

Figure 2 shows the steps involved in 
generating a WAF from the CWAM.  Spatial filters 
are run on each weather input to generate 
deviation predictors.  The two best predictors of 
deviation were identified, using a Gaussian 
classification algorithm.  Two-dimensional 
histograms, based on the observed deviation 
statistics, give the observed probability of 
deviation as a function of the two best predictors.  
These histograms are smoothed and extrapolated 
to create a deviation probability lookup table that is 
used to generate the WAF. 
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Figure 2. Generation of Weather Avoidance Field (WAF) using the Convective Weather Avoidance Model 
(CWAM). 
 
 

For this evaluation, the CWAM database 
was expanded from the original 1,500 encounters 
from six case days to just over 5,200 encounters, 
with the addition of data from five case days 
during the summer of 2007 and one case day 
during the winter of 2008.  Flight trajectories were 
collected from three Air Route Traffic Control 
Centers (ARTCC); ZID, ZOB, and ZDC.  Figure 3 
illustrates the ARTCCs, showing the major jet 
routes and fair weather traffic in each.  The 
majority of ZOB traffic flow is carried along several 
parallel and closely spaced East-West oriented jet 
routes. The ZID traffic is evenly distributed among 
several jet routes with different orientations. The 
ZDC traffic is primarily orientated Northeast to 
Southwest and carries a heavy demand of aircraft 
leaving the Northeast corridor.  Table 1 presents a 
summary of the case dates and times, the 
ARTCCs analyzed on each day, and the number 
of deviations and non-deviations. 
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Figure 3.  ARTCCs studied in the CWAM.  Red 
lines are jet routes; thicknesses are proportional to 
peak traffic load. 
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Table 1.  Summary of case days in Convective Weather Avoidance Model. 

Date Start 
(GMT) 

End 
(GMT) ARTCCs Deviations Non-

Deviations 
June 1, 2006 1700 2400 ZDC,ZID,ZOB 141 206 
June 19 , 2006 0000 2400 ZDC,ZID,ZOB 125 565 
June 23, 2006 0000 0800 ZDC,ZOB 30 29 
July 12, 2006 0800 2100 ZID 7 93 
July 14, 2006 1900 2400 ZDC,ZID,ZOB 153 176 
September 22, 2006 1100 2400 ZID 7 81 
June 4, 2007 1600 2400 ZDC,ZID,ZOB 164 279 
June 27, 2007 1700 2100 ZDC,ZID,ZOB 132 149 
July 10, 2007 1300 2400 ZDC,ZID,ZOB 171 166 
July 19, 2007 1500 (20)0200 ZDC,ZID,ZOB 227 626 
August 8, 2007 0000 (9)0300 ZDC,ZID,ZOB 373 635 
February 5, 2008 0900 (6)0500 ZDC,ZID,ZOB 34 666 

 
 

The additional days represent a wider variety 
of weather regimens than were in the original 
CWAM data set, which were heavily weighted 
toward well organized convection.  For instance, 
June 4, 2007 saw a cold pool of air settling into the 
region in the upper atmosphere that triggered a 
large region of convectively induced cells that did 
not grow very tall or produce a significant amount 
of precipitation.  Figure 4 depicts a flight deviating 
around one of these many cells.   

 

 
Figure 4. CIWS precipitation image and aircraft 
trajectory on June 4, 2007 at 20:18:40Z. 

 
 The February 5, 2008 case represented a 
winter event with a low pressure system tracking 
through the Midwest with the associated warm and 
cold fronts.  Although the VIL levels were fairly 
intense with the cold front, the echo tops were at 
or below 40kft.  Figure 5 depicts a flight 
penetrating the cold front as was common on this 
day. 
 

 
Figure 5. CIWS precipitation image and aircraft 
trajectory on February 5, 2008 at 12:40:29Z. 
 

Figure 6 depicts a deviating flight from June 
27, 2007.  On this day the cells appear similar in 
size and scale to the 4th of June, however these 
cells grew to over 50kft as is typical on a warm 
summer day.  Finally, figure 7 depicts a flight 
deviating around a mesoscale convective complex 
on July 10, 2007.  On this day a significant number 
of aircraft were deviating around the weather. 

 
 



 
Figure 6. CIWS precipitation image and aircraft 
trajectory on June 27, 2007 at 20:03:40Z. 
 

 
Figure 7. CIWS precipitation image and aircraft 
trajectory on July 10, 2007 at 17:16:20Z. 
 
4. CWAM EVALUATION 
 

The original CWAM (CWAM-ORIG) identified 
the difference between flight altitude and echo top 
height as the primary predictor of deviation to 
avoid convective weather, and the percent of area 
covered by VIL>=level 3 as a secondary predictor.  
The echo top height used in the difference 
calculation was the 90th percentile calculated over 
a 16 x 16 km kernel.  The VIL coverage kernel 
was  60 x 60 km.  Logically, these two filters 
represent the regional coverage of heavy weather 
and whether the flight was above or below the 
tallest nearby echo tops. 

In order to validate CWAM-ORIG against the 
new test dataset from 2007 and 2008 case days, 
the deviation and non-deviation probability 
distributions as a function of maximum WAF 
deviation probability encountered along the 

planned trajectory were calculated and compared 
(figure 8).  Probability distributions from the 
training and the test datasets are similar and well-
calibrated, suggesting that CWAM-ORIG may be 
applied to a wide range of weather regimes with 
consistent results.  All evaluations described in the 
remainder of this paper were performed on the 
complete trajectory dataset (2006, 2007, 2008). 

CWAM deviation prediction errors are greatest 
where the uncertainty is greatest (probability of 
deviation is in the 30 – 70% range, illustrated on 
the two-dimensional deviation probability 
histogram in figure 9).  The best deviation 
predictors, resulting in the lowest CWAM 
prediction error, are characterized by the smallest 
range of uncertainty.  In an effort to further 
improve CWAM performance, three variations 
were defined, and their deviation prediction errors 
were compared to CWAM-ORIG.  

CWAM-ORIG-LITE is based on the same two 
deviation predictors as CWAM-ORIG, but uses 
smaller spatial filter kernels on the echo top (4 x 4 
km) and VIL (16 x 16 km) fields.  CWAM-1KM 
does not apply spatial filters to either weather 
input; WAF deviation probabilities at each grid 
point are based on echo top and VIL values at that 
grid point only.  Finally, CWAM-16KM-MAX uses 
the 90th percentile value of both echo top and VIL 
in a 16 x 16 km kernel as deviation predictors.  
Figures 10-13 present the two-dimensional 
histograms of observed deviation probability, and 
the smoothed / extrapolated CWAM deviation 
probability lookup tables for CWAM-ORIG, 
CWAM-ORIG-LITE, CWAM-1KM, and CWAM-
16KM-MAX, respectively.  Figure 14 shows the 
WAF outputs from each of the four CWAM 
variations for the illustrated VIL and echo top 
fields. 

The skill of CWAM deviation predictions was 
evaluated by turning CWAM deviation probabilities 
into deterministic deviation predictions by applying 
a deviation probability threshold (Pdev). First, each 
trajectory in the database was analyzed to find the 
maximum WAF (Pmax) along the planned path.  A 
deviation was predicted for flights whose 
Pmax>=Pdev.  Finally each deviation prediction was 
classified as a hit (correct prediction of deviation), 
a miss (no deviation predicted for trajectory 
classified as a deviation), or a false (deviation 
predicted for a trajectory that did not deviate). 

For each CWAM, the probability of correct 
deviation prediction (PoD), probability of incorrect 
deviation detection (false alarm rate, or FAR), and 
critical skill index (CSI) were calculated for 
different values of Pdev. These quantities are 
defined as: 



PoD = hits / ( hits + misses ) 
FAR = false / ( hits + false ) 

CSI = hits / ( hits + misses + false ) 
 

POD vs. FAR plots can be created, with the 
optimum performance being the closest point to 
the top left corner.  The highest WAF threshold of 
100 will be in the lower left hand corner (low false 
rate and low detection rate) and the lowest WAF 

threshold of 10 will be in the upper right hand 
corner (high false alarm rate and high detection 
rate). The CSI, which provides one number to 
identify the optimum performance, allows easy 
identification of the best WAF threshold (Pdev) for 
deviation predictions.  The POD vs. FAR and CSI 
results for the four CWAM versions at 10 WAF 
thresholds are shown in figure 15. 
 

 

      
(a)          (b) 

Figure 8.  Deviation and non-deviation probability distributions for CWAM-ORIG from the initial dataset (a) 
and the new test dataset (b). 
 

 
Figure 9.  Maximum Deviation Probability distributions for CWAM-ORIG from the new test dataset 
denoting the region of uncertainty for the deviation prediction model between 30 and 70 percent.  
Percentages give the percent of total encounters in the dataset whose planned trajectories encountered 
the specified maximum deviation probability. 
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Figure 10. Observed deviation probability for CWAM-ORIG (a) and smoothed / extrapolated CWAM 
deviation probability lookup table (b). 
 
 
 
 
 

  
(a)         (b) 

 
Figure 11. Observed deviation probability for CWAM-ORIG-LITE (a) and smoothed / extrapolated CWAM 
deviation probability lookup table (b). 
 



  
(a)         (b) 

 
Figure 12. Observed deviation probability for CWAM-1KM (a) and smoothed / extrapolated CWAM 
deviation probability lookup table (b). 
 
 
 
 

  
(a)         (b) 

 
Figure 13. Observed deviation probability for CWAM-16KM-MAX (a) and smoothed / extrapolated CWAM 
deviation probability lookup table (b). 
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Figure 14.  Input VIL (a) and echo top (b) fields, and output WAF from CWAM variations CWAM-ORIG(c), 
CWAM-ORIG-LITE(d), CWAM-1KM(e) and CWAM-16KM-MAX(f) for July 10, 2007 18:40Z. 
 

 
 
 



      
(a) 

 
(b) 

Figure 15. Probability of Detection vs. False Alarm Rate (a) and Critical Success Index (b) for original 
CWAM, CWAM Lite, 1km CWAM, and 16km Max CWAM. 
 

A comparison of the four CWAM versions in 
figure 15 shows the performance of the 1km 
CWAM is not as good as the other three versions.  
This indicates that performing a spatial filter on the 
weather is important for optimum results.  
However, any differences between the three 
versions using a spatial filter appear to be 
negligible.  CWAM-16KM-MAX does show slightly 
better results suggesting that a 90th percentile filter 
on VIL may be better than using a level 3 area 
coverage filter.  The results also indicate that the 
optimal WAF deviation probability threshold of 70 
produces a POD of ~65% and a FAR of ~25% for 
CWAM-16KM-MAX. 

The preceding analysis evaluates the 
deviation prediction skill of the CWAM variants 
based on actual weather.  However, for planning 
purposes, air traffic control managers need to 
know which regions will be impacted by weather 
well in advance.  To do this, ATC makes use of 
weather forecasts provided by CIWS and other 
sources.  Ultimately, the CWAM will be combined 
with weather forecasts from CIWS to predict future 
regions that will be closed or impacted due to the 
weather. 

The same methods used to measure the 
performance of CWAM using actual weather can 
be expanded to use forecasted weather.  Figure 
16 shows the POD vs. FAR from CWAM-ORIG 
WAF calculated from the actual weather 
(FCST000), the 60 minute forecast (FCST060) 
and the 120 minute (FCST120) forecast.  As 
expected the performance decreases with lead 
time due to errors in the location or intensity of the 
forecasted weather. 

 
Figure 16. Probability of Detection vs. False Alarm 
Rate for the original CWAM at encounter time 
(T=0) and 60 and 120 minute forecasts. 
 

Figures 17 and 18 compares the POD vs. FAR 
and CSI curves calculated for all four CWAM using 
60 minute (figure 17) and 120 minute (figure 18) 
forecast WAF.  As the forecast time horizon 
increases, the differences in deviation prediction 
errors associated with the different CWAM 
variants decreases.   The deviation prediction 
performance of the three spatially filtered CWAM 
variants is virtually identical for the two hour 
forecasts.  This finding suggests that the the 
characteristics of the forecast – spatial smoothing 
and forecast error – have a greater impact on 
CWAM deviation prediction accuracy then the 
choice of spatial filter applied in the CWAM itself. 

 
 



 
(a) 

 
(b) 

Figure 17. Probability of Detection vs. False Alarm Rate(a) and Critical Success Index ((b) for four 
versions of CWAM using the 60 minute CIWS VIL and echo tops forecasts. 

 

 
(a) 

 
(b) 

Figure 18. Probability of Detection vs. False Alarm Rate(a) and Critical Success Index ((b) for four 
versions of CWAM using the 120 minute CIWS VIL and echo tops forecasts. 
 

This result, if it is confirmed by additional 
studies, has significant consequences for real time 
applications of CWAM.  The choice of spatial filter 
will determine the computational resources 
needed to run the CWAM.  In particular, using no 
spatial filter on the weather inputs greatly reduces 
the computational load and complexity of running 
the CWAM to create real time WAF predictions in 
operational systems.  

CWAM evaluation was also partitioned by 
region and case day, in an effort to gain insight 
into the set of factors that influence deviation 
prediction accuracy.  Figure 19 shows that there 
are clear differences in predictive skill for weather 
impacts in different ARTCCs, but the reasons for 
these differences are not readily evident. Factors 
that may be related to these differences include 
differences in the predominant weather type in 
each ARTCC (e.g. severe thunderstorm cores vs. 
weak or moderate high topped convection), 

differences in the geometric relationship of the 
route structure and weather orientation (e.g., do 
routes cross or parallel major weather features), or 
the perceived willingness of air traffic control to 
accommodate deviations (possibly affecting pilot 
behavior). 

Figure 20 shows that clear variations in 
performance are also evident on different case 
days. Three days show particularly high false 
alarm rates, which may be related to the 
predominant weather type on those days. The 
strong distinction between these high false alarm 
days and more ‘typical’ days suggests that 
weather may be classified according to CWAM 
performance. Weather characteristics that 
differentiate between typical and false alarm days 
could be incorporated directly into CWAM to 
improve its performance, or to identify days when 
CWAM will perform poorly. 
 



 
Figure 19. Probability of Detection vs False Alarm 
Rate for the original CWAM partitioned by ARTCC. 
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Figure 20. Probability of Detection vs False Alarm 
Rate for the original CWAM partitioned by case 
day. 

 
Figure 21a illustrates a false alarm (predicted 

deviation, actual penetration)  from a day with a 
high false alarm rate, September 22, 2006. The 
high false alarm rate in this case is associated 
primarily with flights below the echo tops (between 
25 and 35kft).  The weather demonstrates several 
characteristics which may influence the pilot 
decision making process.  First, the weather 
(greater than level 1) has a large spatial coverage 
that may make it difficult for the pilot to see 
alternate routes.  Second, the weather along the 
trajectory does not appear to be ‘convective’.  
Although it is intense (> level 3), it does not appear 
to be cellular in nature and the echo tops are low 
(<35kft) compared to intensely convective 
weather. For these lower altitude flights, the actual 
echo top height and organization of the weather, 
not the height of the echo top relative to flight 
altitude, may suggest to the pilot that the weather 
is benign and can be penetrated. 

Figure 21b illustrates a trajectory from a day 
with a low probability of detecting deviations, June 
4, 2007.  Looking at each storm cell 
independently, CWAM classifies this weather as 
having a low probability of deviation.  However, 
pilots appear to be choosing to maneuver around 
these small storms.  One might speculate that the 
appearance of several of these storms from the 
cockpit window suggests that the weather is very 
convective in nature. The current CWAM does not 
capture such details of storm organization.  Note 
that the characteristics used by CWAM to estimate 
the severity of weather impacts – echo top and 
precipitation intensity – are very similar in both 
illustrations.  What is different is the spatial 
organization and strength of convection of the 
storm – factors that are poorly captured by the 
spatial filters currently used in CWAM variations. 

The difference in POD vs. FAR results by 
case day of CWAM suggests a possible 
correlation between the type of weather and the 
algorithm performance.  With the expanded data 
set used in this study, CWAM cases can be 
partitioned into one of three weather types; Strong 
organized convection (strong cold fronts, MCCs), 
synoptic scale events (low pressure systems, 
warm fronts, weak cold fronts), and cellular 
convection (small scale cells, short life cycle).   

The 2D deviation probability histograms from 
the 1km CWAM were regenerated using the entire 
data partitioned by weather type, and are shown in 
figure 22.  The cellular convection consists of all 
valid weather encounters on June 4, 2007.  The 
synoptic scale events are all encounters from July 
12, 2006, September 22, 2006 and February 5, 
2008.  The eight remaining case days were typical 
days with strong organized convection.  The 
results from days with strong organized convection 
are similar to the overall results presented in figure 
14.  However, very different results are observed 
in the cellular convection and synoptic scale event 
days.  The region highlighted with a red box shows 
the most significant difference.  This region covers 
the cases with VIL greater than level 3 and flight 
altitudes at or slightly above the echo tops.  For 
synoptic scale events, the pilots are unlikely to 
deviate at or below the echo top heights.  For the 
cellular convection weather type pilots are more 
likely to deviate even when well above the echo 
tops.  In fact, on days with cellular convection the 
likelihood of pilot deviation is roughly 50% over a 
large segment of the 2D probability of deviation 
histogram, suggesting that the current CWAM 
predictors are a poor choice in cellular convection. 
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(b) 

Figure 21. Illustration of a (a) deviation prediction false alarm from September 22, 2006 and a (b) missed 
deviation from June 4, 2007. Magenta track is planned trajectory, blue is actual trajectory. Numbers give 
the flight altitude in kft., every minute. 
 

The comparison of CWAM accuracy, based on 
both true and forecast weather, also provides 
some insight into what may be operationally 
meaningful measures of uncertainty.  The CWAM 
forecast error is a convolution of two terms: 
deviation prediction errors in the CWAM itself 
(based on deviation probabilities calculated using 
true weather as the CWAM inputs), and weather 
forecast errors. The comparison of CSI scores for 
CWAM based on true and forecast weather 
provides a basis for the assessment of the relative 
contributions of CWAM prediction error and 
weather forecast error to the total deviation 
prediction error that is observed in operational 
use. In essence, the comparison of CWAM 

performance based on forecast and truth may be 
used as a weather forecast uncertainty metric. 

Figure 23 shows the deviation prediction CSI 
scores for true weather, one hour and two hour 
weather forecasts, for each of the 12 case days. 
Figure 23a shows ‘typical’ forecast behavior: 
deviation prediction skill decreases as the forecast 
time horizon increases. Figure 23b shows 
examples of excellent weather forecasts: deviation 
predictions based on one and two hour forecasts 
are as accurate as those based on the actual 
weather. It may be desirable to develop a forecast 
scoring model based on weather characteristics 
that correlate well to deviation prediction forecast 
performance.



 
Figure 22. 2D histograms of observed probability of deviation (percentage of flights in each histogram bin 
that deviated) for (a) cellular convection, (b) synoptic scale events, and (c) strong organized convection.  
The region of the 2D histogram with the most significant differences is highlighted in red. 
 

 
(a)                                                                          (b) 

 
Figure 23. CSI for deviation prediction using original CWAM, as a function of forecast time for (a) 
typical forecast performance days and (b) robust forecast performance days. 
 
 

The ability to predict the contributions of 
CWAM deviation prediction errors and weather 
forecast errors to overall uncertainty during 
operations can be useful in providing decision 
support (figure 24).  Clearly, it is important to be 
able to identify the type of weather in which both 
CWAM and the weather forecasts are likely to be 
correct (decision makers can follow decision 
support guidance with high confidence).  It is also 
useful to know when CWAM accuracy is high and 

weather forecast uncertainty increases over time. 
In these cases, there will be a limited time horizon 
during which CWAM predictions can be used with 
high confidence. Conversely, when weather 
forecasts are good but CWAM predictions are 
poor, decision makers know that the weather 
forecast on its own provides valuable information, 
but CWAM guidance is likely to be unreliable. 
 

 



Weather typing by CWAM accuracy, predictability
Uncertainty model correlates weather characteristics to observed 

CWAM performance

 
Figure 24. Application of CWAM and weather forecast uncertainty models for decision support. 
 
5. CONCLUSIONS AND FUTURE WORK 

 
This paper presented the results of ongoing 

work to improve the usability of the Convective 
Weather Avoidance Model (CWAM) that has been 
under development at Lincoln Lab under the 
sponsorship of NASA Ames Laboratory.  CWAM is 
being developed to identify the correlation 
between pilot behavior and observable and 
predictable weather parameters.  The CWAM 
deviation database of en-route weather 
encounters was expanded from the initial data set 
of 1,500 encounters to over 5,200.  The 
automated deviation detection model used to 
classify flight trajectories was redesigned to 
improve the ability of the algorithm to automatically 
detect deviations that are associated with weather 
encounters.  The redesigned model has reduced 
the hand editing required from over 30% to less 
than 10%.  

The performance of four different variations of 
the CWAM was evaluated.  The original CWAM 
developed in 2006 used two spatial filters to 
process the VIL and echo tops data into 
parameters found to provide the best correlation 
with pilot behavior.  Two of the CWAM variations 
used different spatial filters to derive deviation 
predictors from the weather inputs; a third 
variation used unfiltered weather data.  The 
accuracy of deviation predictions, based on the 
different CWAM, were compared for both true 
(observed) and forecast weather inputs. 

Deviation prediction accuracy based on true 
weather, was similar for the three versions of 

CWAM that used filtered weather inputs, although 
the CWAM version based on filters that extracted 
the 90th percentile of echo top and VIL intensity 
over a 16 x 16 km kernel was slightly better than 
the other filtered versions.  The CWAM based on 
unfiltered weather was less accurate.  However, 
when using forecasted weather data in the 
CWAM, the difference in performance between all 
four versions was almost insignificant. 

Finally, the data were partitioned by case day 
and weather type.  Significant differences in 
CWAM performance by case day suggested that 
weather types that correlate to CWAM 
performance could be identified.  This information 
could be incorporated directly into CWAM or 
provide information on the usefulness of the 
CWAM under different circumstances.  Differences 
in CWAM skill based on forecast weather were 
also evident for different case days.  This suggests 
that weather type may also be correlated to 
weather forecast performance, with CWAM-based 
deviation prediction as the forecast metric.  
Further research into the definition of weather 
types based on the predictability of pilot behavior 
for use in weather and weather impact uncertainty 
models is suggested as future work. 
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