"NOAA'S CLIMATE DATABASE MODERNIZATION PROGRAM (CDMP) A DECADE OF DATA RESCUE AND MODERNIZATION ACTIVITIES."

Thomas F. Ross NOAA National Climatic Data Center, Asheville, North Carolina

Raymond T. Truesdell National Interest Security Company, Asheville, North Carolina

1. Project Goals and Background

Having just completed its tenth year, CDMP continues to support every NOAA line office by preserving and enhancing the availability of valuable climate and environmental data. These data are used by researchers and others dealing with climate and environmental issues crucial to our planet and our global society.

2. CDMP: A Decade of Achievement

How time flies! The National Oceanic and Atmospheric Administration's Climate Database Modernization Program (NOAA's CDMP) has just completed its tenth year. Ten years ago in 2000, the demand for rapid and complete access to the Nation's and world's climate data by researchers and global change scientists was a key motivation in the establishment of CDMP, which is managed through NOAA's National Climatic Data Center (NCDC) located in Asheville, NC. This program was initiated by Congress to assist NOAA in modernizing and improving access to the Nation's climate data and information.

A decade later, that demand for climate data access has, if anything, increased. In addition, CDMP has expanded its support across all of NOAA, preserving and making available environmental data ranging from the ocean floor to the top of the ionosphere. Partnering with four private sector contractors, CDMP has placed online over 54 million weather and environmental images, available to researchers around the world via the Internet. The amount of data online has grown from 1.75 terabytes in 2001 to 12 terabytes in 2009. Major progress continues in making these data available through a number of NOAA web sites. In addition, hourly weather records keyed through CDMP continue to be integrated into NCDC's digital database holdings, extending the period of record for many stations back into the 1800's. The increase in the quality and quantity of historical data is helping researchers worldwide to improve real-time monitoring and forecasting of environmental, solar and geophysical events.

Figure 1. NOAA CDMP Projects reached an all-time high of 86 in 2009.

3. Supporting NOAA's Stewardship Commitment

The Climate Database Modernization Program supports NOAA's mission to collect, integrate, assimilate and effectively manage Earth observations on a global scale, ranging from atmospheric, weather, and climate observations to oceanic, coastal, and marine life observations. Many of these holdings, which are part of the U.S. National Archives, were originally recorded on paper, film, and other fragile media, and stored at various NOAA Centers (see Figure 1). Without proper preservation of the media, the information they contained was in danger of being lost forever.

As CDMP celebrates its 10th anniversary, the program has greatly improved the preservation and access to NOAA's holdings by migrating many of these resources to new digital media. Digital images of many of the holdings are now available online, and millions of historic data records have been keyed and integrated into digital databases. CDMP projects span the full spectrum of NOAA, supporting all five line offices. CDMP also works with U.S. regional climate centers, state climatologists, the U.S. Air Force, the World Meteorological Organization, and foreign meteorological services in Europe, Africa, Asia, and the Americas. These NOAA efforts benefit researchers and data users throughout the Nation and worldwide. The increase in data accessibility and the inclusion of these historical data sets into the integrated global databases needed by today's climate and environmental data users support the CDMP mission: to make major climate and environmental databases

J7.2

^{*} *Corresponding author address:* Thomas F. Ross, NOAA/NCDC, 151 Patton Avenue, Asheville NC 28801; e-mail: <u>Tom.Ross@noaa.gov</u>.

available via the World Wide Web.

4. NOAA's CDMP Project Partners

lesources. Solutions. Results."

Figure 2. CDMP support contractors

The CDMP could not exist without the extraordinary efforts of people within NOAA and those in the private sector who do the keying, imaging, and database development. CDMP projects have created hundreds of new private sector data entry and information management jobs in several economically challenged areas in West Virginia, Kentucky, and Maryland. The project tasks supported by CDMP are well suited for the private sector. Many of these tasks have been shifted from government employees to CDMP contractors in the above mentioned states. Tasks performed by these contractors include the printing and distributing of the NCDC serial climate publications, managing accounts receivable, imaging and keying incoming records, hosting and maintaining online images, and providing expert personnel in support of various projects.

The three prime contractors (see Figure 2) for CDMP are: National Interest Security Company LLC, Rocket Center, West Virginia; SourceCorp, Mount Vernon, Kentucky; and HOV Services, Beltsville, Maryland. Excellent support is also provided by the NCDC on-site contractor, STG Corporation, whose staff prepares many of the data for shipment and performs extensive quality control on the returning data products. The CDMP program employs nearly 300 highly skilled government and contractor personnel dealing with climate and environmental data rescue tasks. With over 85 projects ongoing, the contractors must remain focused and flexible to meet each project's requirements.

5. Looking to the Future

The Climate Database Modernization Program – or more precisely, the outstanding group of people that make it work – has clearly accomplished a great deal in the last decade. But the mission of CDMP is far from accomplished. In many ways, the work has just begun.

In 2009, the number of NOAA projects supported through CDMP reached an all-time high of 86 tasks (see Figure 1). Most of these are multi-year projects, and many are, for all intents and purposes, barely underway. Without continued support through CDMP, these projects would be incomplete, and valuable climate and environmental data would be left undiscovered and unavailable to the scientific community.

Figure 3. EDADS system

The task of modernizing NCDC's vast archive of weather and climate data continues. While millions of records have been imaged, about a third of the paper documents held by NCDC, and much of its microfilm and microfiche archive, remains unscanned. Accompanying this imaging task, keying of many of the scanned images is ongoing, further supplementing NCDC's digital data resources. At the current pace, there are still years of work ahead to image and key the remaining archived NCDC data. Currently, more than 54 million images are available to researchers and educators thru the Environmental Document Access and Display System (EDADS). (See Figure 3.) Ongoing CDMP projects involving other agencies within NOAA are also expected to extend well into the program's second decade. Work continues with NOAA's National Hurricane Center and Atlantic Oceanographic and Meteorological Laboratory to digitize historical hurricane reconnaissance data and "storm wallet" collections; the first of these datasets are already being utilized by hurricane specialists and storm researchers. Several projects with the National Ocean Service and National Marine Fisheries Service are making available rare historical nautical charts, plankton databases, shoreline data, fish surveys in Alaska, and

Figure 4. International Projects

much more. CDMP-produced images of historical glacier photographs via the National Geophysical Data Center have already made global headlines, with more photos still to be digitized. International cooperation through the National Weather Service International Activities (IA) is bringing valuable African, Asian, and South American climate data into global databases, and CDMP is actively involved with the World Meteorological Organization's (WMO) Commission for Climatology. And that short list barely scrapes the surface of CDMP's ongoing service. Data from more than two dozen international data rescue projects will be added to NOAA's baseline (surface, marine, upper air, biological and ecological) databases to aid in research and applied climate and environmental studies and applications (see Figure 4).

Of course, that's just the current CDMP agenda. To further extend the program's mission, additional proposals are solicited and, funding permitted, accepted each year. Just this year, nine new tasks were added to the docket, with still more proposals recently submitted for 2010 consideration at CDMP's annual proposal workshop. Just because these projects are new doesn't make them any less valuable. One project started in 2009 is expanding the digital database of northwest Atlantic fisheries, extending hydrographic and plankton databases for this area back in time, and providing invaluable data on how environmental change and extensive fishing have impacted fish stocks in the Atlantic. Two additional tasks will digitize rare surface weather observations from data-sparse areas in the southwestern U.S. in Navajo Nation and from San Cristobal in the Galapagos Islands (see Figure 5), providing more data to help initialize and verify vital climate change models. Still another new project will digitize rare aerial photography of our Nation's coastlines from as far back as the 1920's, helping coastal scientists better understand how erosion and other factors have impacted our beaches and shorelines.

10100		INCOMPTONIC COLOR			1	PUPERINA PURCH			UN CLEATUR					an any area				Table in sold				TELEPISK BY UNK												
	20	0	10	the ma	he	here	-	-	-	-			-	-	-			-	-				-	-	-	-	-	£	H	10			-	
1	ar	07	40	354/1.	- 44	1.000	20	-	42	40					1	-		-			420			100		-	18	0.07	10	121	100	12 5	39	10
	184	102	10.2	34.2 12.1	17	-544	124	57	667	1.1	12	14.7	3.10	193	125	Sec	14	29	104	1	and.	2.6	4.2	667	11	21		\$19		120		11 5	260	6
2		16	14	924 100	1.50	201	1.20	411	625	1.12	- 1	12.6	1.1	1.7	1.00	wet.	212	475	40	Sec.	129	297	111	651	40	24	10	125				19 5	10	17
	124	16	£1.	725 111												3.74									16	20	37	244	11 6	6.15	345	A6 6	4	11
		N				100		10																		a		122		152 .	dr.	17 5	25	14
		N		367 140						223															10	30		286	19	196 1	200	12 5	841)	
		19		299 27					143	724	24.7	245	221	-26.0	21	218	724	122	178	235	748	1.54	502	774	80	43	12	124				80 60		
A	16	11	22	349 /12	7.0	1 212	4.4	411	2/3	225	164	778	127	242	-sul	215	216	145	212	720	210	249	199	244	N	*	N	241				440		
100	112		34	A \$ 142	1.2.2	2,208	6.0	487	764	227	76/	200	775	79.4	9.14	24	216	210	213	10	4/6	025	3.90	wil	22	23	pr	141				223 61		
15		ni.		12.2.75	25	7.67	63	699	22.0	326	24.9	-77	342	28.6	21	-125	211	676	218	226	720	11/2	200	常計	N	31	11	-23	19	an -	215-	778 L.	19	
St Park				255-446		1.00	1 290	824	740	2010	26.06		2.49	27.50	40	2,53	2000	Geo.	1.49	ne.	1977	1000	100	19.1	124	132	24	124.7	171	F. 7.5	1221	441.43	120	19
11	100	15	12	341 112	de	127	11	114	24	22.1	234	2/7	344	14	40	42	2/1	110	12.0	2/7	249	200	1.88	144	0	30	17	127				199.12		
	1966	22	9¥.	317 114	17.	120	1.66	15		2.1	237	24.7	48	201	2.6	111	4.5	22	111	146	208	7/6	546	- 11	d	10	11 :	122				ca \$ 45		
				44.9 114		1.24		572	119	245	2.1	243	320	10	2.0	-24	3.12	150 :	513	217	3440	118	2.3	41	11	72	24	377				1926		
N.	19	123	107	31 11.1	12.	2.14	6 61	+72	2.64	325	135	-11	395	347	210	840	-17	127	2/6	1.12	7.37	144	24		90	44	0	235				10.0 40		
18	14	12	13	269 116			6.56	129	207	not.	2.74	240	244	247	Vi	207	700	160	160	and .	114	138	115	721	92	14	10	:31				m 3 / 1		
100	127			342 12			60		10	101	14	116	242	141	304	227	2.00	412	118	200	301	798	hat.	ल्ल	Dr.	70	22	142	17	245	2117	1974	190	÷
102	127	124	11	977 14	1.0	1.20	1.25	122	257	736	red.	-22	245	948	100	200	77.0	444	1111	240	21	14	27	10	19	3/1	11	111	10 1	444 3	1.2 4	19 6	1913	
10.1	13.2				157	1.20	10	606	673	324	21	74.3	249	266	7.00	224	215	452	1/2	780.	20	ni-c	371	140	11	11	272	144	17 1	44.5	N 7	11 41	11	
14	15	14	ni	325 113	157											174					76.0			101	22	44	41	771	14	163 3	cest i	120	10	ñ
26	11	nI	**	331 110	72	1 211	1.1	100	2365	120	12	265	2.92	74.5	201	-18	150	737		116	252	125	37		14	66	20 3	284	170	7+1	17	dera.	36	ň
Sec.	land	1732	1034	245.00				1000	1199	01571	271	2015	m	100	Lor	22.4	1.68	2/122	2.40	100	NVI.	inst.	int.	del.	20.0	281	Ares:	ave.	11.10	443	43.7	19366	136	
21	102	12	15	31.2 1.04	2.17	146	14	435	249	2/7	411	244	125	411	.01	224	00.0	10	7.78	147		100	200	11.4	29	74	22	225	54 1	41 3	20.1	24 64	(A)	
22	10	14	14	265 113	211	2.17	22	142	280	-42.2	390 I	82	375	277	100	-97	10.0	44		100	45	10.1	56	271		17	24	3.27	10 3	65.0	10.0	11.63	15	÷
20	44	12	44	2ml 10.1	223	128	101	\$25	785	125	21	880) 1997	100	201	1261	22.6	2.15	de	274						0.5	69	22	177	6 1	15 0	2/ 2	N2 .51	25	ö
34	100	12	11	21.3 100	120	387		1.00		724						21					11.		272		ñ.			227				18 J A.		
12	20	194	11	229,10	1.94	94	40	112	257	22*	20	157	2/7		2.2	al.	120	140	77.0	56	44	net.	144		14	44		24	18	1	14 1	14 4	4 3	i.
24	100	dit.	100	747 113	177	124	12.	100	\$73	117	31	10	760	17.3	200	120	-127	44	11	242	24	661	125	21	23	10	11	628	21	67.1	07 T	77 41	61	ž
10	11	125	64	230 100	1.36	277	22	1025	210	1000	2.80	201	140		2.00	-144	721	152	1.41	20	Sec.	318 I	3.25	195		42		22.0				112 6		
100	10	NS	16	406.98	123	2/3	32	¥ 95	24.	200	-34	-10	104		All I	-20	·10	450	121	100	100	ert.	141	211	-71	4	541	724		1.1	411	16 60	31.	5
24	64	-	17	478 41	1.0	21	32	118	14	207	120	266	Sec	1.1	1.00	100	212	10.00	100	n.C	26.20	79.7	100	211	21	10		1.14				10 A	51	ü
20	19	41	14	-282 09	1000	234	1.2	10	10	701	Acres 1	net.	842		-320		and.	133.	24	100	10.5	de	10.2	92ľ	5	2.1	17 -	1.2	or. 14	100 0	-	16 6	1	
10	100	19.3	11.7	329 100	1.04	42.7	1.4.1	10.00	363	282	12.4	421	2	20	-24.2	117	2012	100	1001	1223	41	12.70	362		1	31	N		121.	101 -	07 -	1.9 63	71	
10.0	1029	100	11/2	+4.5 AT	1.00	233																										NC 42		
000	411	TT'X	79.20	100 234	127	14.5	2.46	2 7	1.20.0	1522	1.00	in/-		10.2	1.5	des.	1000	14.4	22	20	104	and it		2.8		1.000	100	inter-	Col.			108.14		
and.	RI	1.4	76	708 1.28	381	241	130	1022	- 22	6/5	5.4	25	11.	1	00.0	Test 1	201		272		200	1.0	1.15		쓹	11						N 8 144		
ALC: N	134	10	12	354 543	Carl	1.216	101	100	1	411.	2.74-	117	557	21	100	28.2	441	1.0	81	42.1	21	24	10	691	66	24		-	61	do	2/ 4	19.67	96	ź
0.000				213 8/						208			130	25	ind	100	246	41	24	11	62		22		16	14	12	722	20	61.2	16	1 33	517	i
meret.	147			100 6 3			177		25	37	140	41	3.1	177	122	12	12.0	141	21	20	-	10	100	- 1	10	14	16 L			50	100	19 50	20	Ŕ
Sec.				34615			175	1.00	24	105.	12.1	31	3.5%	15	10	12.1	201	in.	1.1	2012	5.0	100	73	5.1	14			10		in the	333	14	GĽ	4
Sec.	Tex-			25 103																														

Figure 5. San Cristobal Weather Data Form - Galapagos Islands.

Selected CDMP Climate and Environmental Data Rescue Projects 2000-2009. The number of NOAA data rescue projects has steadily grown over the last decade (see Figure 6).

6. Conclusion

Figure 6. CDMP Ten Year History

In short, the people associated with CDMP are proud of the program's accomplishments over the last ten years. But they also know that it's only just the start. There's a new decade beginning, and the CDMP mission to make climate and environmental data more accessible is still as relevant and vital now as it was a decade ago.

For more information about CDMP see: www.ncdc.noaa.gov/cdmp.html.